# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing import grpc from .proto import general_python_service_pb2 from .proto import general_python_service_pb2_grpc import numpy as np class PyClient(object): def __init__(self): self._channel = None def connect(self, endpoint): self._channel = grpc.insecure_channel(endpoint) self._stub = general_python_service_pb2_grpc.GeneralPythonServiceStub( self._channel) def _pack_data_for_infer(self, feed_data): req = general_python_service_pb2.Request() for name, data in feed_data.items(): if isinstance(data, list): data = np.array(data) elif not isinstance(data, np.ndarray): raise TypeError("only list and numpy array type is supported.") req.feed_var_names.append(name) req.feed_insts.append(data.tobytes()) req.shape.append(np.array(data.shape, dtype="int32").tobytes()) req.type.append(str(data.dtype)) return req def predict(self, feed, fetch): if not isinstance(feed, dict): raise TypeError( "feed must be dict type with format: {name: value}.") if not isinstance(fetch, list): raise TypeError( "fetch_with_type must be list type with format: [name].") req = self._pack_data_for_infer(feed) resp = self._stub.inference(req) if resp.ecode != 0: return {"ecode": resp.ecode, "error_info": resp.error_info} fetch_map = {"ecode": resp.ecode} for idx, name in enumerate(resp.fetch_var_names): if name not in fetch: continue fetch_map[name] = np.frombuffer( resp.fetch_insts[idx], dtype=resp.type[idx]) fetch_map[name].shape = np.frombuffer( resp.shape[idx], dtype="int32") return fetch_map