# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle_serving_server.pyserver import Op from paddle_serving_server.pyserver import Channel from paddle_serving_server.pyserver import PyServer import numpy as np import logging logging.basicConfig( format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M', #level=logging.DEBUG) level=logging.INFO) class CombineOp(Op): def preprocess(self, input_data): combined_prediction = 0 for op_name, channeldata in input_data.items(): data = channeldata.parse() logging.info("{}: {}".format(op_name, data["prediction"])) combined_prediction += data["prediction"] data = {"prediction": combined_prediction / 2} return data read_op = Op(name="read", inputs=None) bow_op = Op(name="bow", inputs=[read_op], server_model="imdb_bow_model", server_port="9393", device="cpu", client_config="imdb_bow_client_conf/serving_client_conf.prototxt", server_name="127.0.0.1:9393", fetch_names=["prediction"], concurrency=1, timeout=0.1, retry=2) cnn_op = Op(name="cnn", inputs=[read_op], server_model="imdb_cnn_model", server_port="9292", device="cpu", client_config="imdb_cnn_client_conf/serving_client_conf.prototxt", server_name="127.0.0.1:9292", fetch_names=["prediction"], concurrency=1, timeout=-1, retry=1) combine_op = CombineOp( name="combine", inputs=[bow_op, cnn_op], concurrency=1, timeout=-1, retry=1) pyserver = PyServer(profile=False, retry=1) pyserver.add_ops([read_op, bow_op, cnn_op, combine_op]) pyserver.prepare_server(port=8080, worker_num=2) pyserver.run_server()