# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys import numpy as np import paddle import paddlenlp as ppnlp from scipy.special import softmax from scipy import spatial from paddle import inference from paddlenlp.data import Stack, Tuple, Pad from paddlenlp.datasets import load_dataset from paddlenlp.utils.log import logger sys.path.append('.') # yapf: disable parser = argparse.ArgumentParser() parser.add_argument("--model_dir", type=str, required=True, help="The directory to static model.") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences " "longer than this will be truncated, sequences shorter will be padded.") parser.add_argument("--batch_size", default=15, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu'], default="gpu", help="Select which device to train model, defaults to gpu.") parser.add_argument('--use_tensorrt', default=False, type=eval, choices=[True, False], help='Enable to use tensorrt to speed up.') parser.add_argument("--precision", default="fp32", type=str, choices=["fp32", "fp16", "int8"], help='The tensorrt precision.') parser.add_argument('--cpu_threads', default=10, type=int, help='Number of threads to predict when using cpu.') parser.add_argument('--enable_mkldnn', default=False, type=eval, choices=[True, False], help='Enable to use mkldnn to speed up when using cpu.') parser.add_argument("--benchmark", type=eval, default=False, help="To log some information about environment and running.") parser.add_argument("--save_log_path", type=str, default="./log_output/", help="The file path to save log.") args = parser.parse_args() # yapf: enable def convert_example(example, tokenizer, max_seq_length=512, pad_to_max_seq_len=False): """ Builds model inputs from a sequence. A BERT sequence has the following format: - single sequence: ``[CLS] X [SEP]`` Args: example(obj:`list(str)`): The list of text to be converted to ids. tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` which contains most of the methods. Users should refer to the superclass for more information regarding methods. max_seq_len(obj:`int`): The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded. is_test(obj:`False`, defaults to `False`): Whether the example contains label or not. Returns: input_ids(obj:`list[int]`): The list of query token ids. token_type_ids(obj: `list[int]`): List of query sequence pair mask. """ result = [] for key, text in example.items(): encoded_inputs = tokenizer( text=text, max_seq_len=max_seq_length, pad_to_max_seq_len=pad_to_max_seq_len) input_ids = encoded_inputs["input_ids"] token_type_ids = encoded_inputs["token_type_ids"] result += [input_ids, token_type_ids] return result class Predictor(object): def __init__(self, model_dir, device="gpu", max_seq_length=128, batch_size=32, use_tensorrt=False, precision="fp32", cpu_threads=10, enable_mkldnn=False): self.max_seq_length = max_seq_length self.batch_size = batch_size model_file = model_dir + "/inference.pdmodel" params_file = model_dir + "/inference.pdiparams" if not os.path.exists(model_file): raise ValueError("not find model file path {}".format(model_file)) if not os.path.exists(params_file): raise ValueError("not find params file path {}".format(params_file)) config = paddle.inference.Config(model_file, params_file) if device == "gpu": # set GPU configs accordingly # such as intialize the gpu memory, enable tensorrt config.enable_use_gpu(100, 0) precision_map = { "fp16": inference.PrecisionType.Half, "fp32": inference.PrecisionType.Float32, "int8": inference.PrecisionType.Int8 } precision_mode = precision_map[precision] if args.use_tensorrt: config.enable_tensorrt_engine( max_batch_size=batch_size, min_subgraph_size=30, precision_mode=precision_mode) elif device == "cpu": # set CPU configs accordingly, # such as enable_mkldnn, set_cpu_math_library_num_threads config.disable_gpu() if args.enable_mkldnn: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() config.set_cpu_math_library_num_threads(args.cpu_threads) elif device == "xpu": # set XPU configs accordingly config.enable_xpu(100) config.switch_use_feed_fetch_ops(False) self.predictor = paddle.inference.create_predictor(config) self.input_handles = [ self.predictor.get_input_handle(name) for name in self.predictor.get_input_names() ] self.output_handle = self.predictor.get_output_handle( self.predictor.get_output_names()[0]) if args.benchmark: import auto_log pid = os.getpid() self.autolog = auto_log.AutoLogger( model_name="ernie-1.0", model_precision=precision, batch_size=self.batch_size, data_shape="dynamic", save_path=args.save_log_path, inference_config=config, pids=pid, process_name=None, gpu_ids=0, time_keys=[ 'preprocess_time', 'inference_time', 'postprocess_time' ], warmup=0, logger=logger) def extract_embedding(self, data, tokenizer): """ Predicts the data labels. Args: data (obj:`List(str)`): The batch data whose each element is a raw text. tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` which contains most of the methods. Users should refer to the superclass for more information regarding methods. Returns: results(obj:`dict`): All the feature vectors. """ if args.benchmark: self.autolog.times.start() examples = [] for text in data: input_ids, segment_ids = convert_example(text, tokenizer) examples.append((input_ids, segment_ids)) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # input Pad(axis=0, pad_val=tokenizer.pad_token_id), # segment ): fn(samples) if args.benchmark: self.autolog.times.stamp() input_ids, segment_ids = batchify_fn(examples) self.input_handles[0].copy_from_cpu(input_ids) self.input_handles[1].copy_from_cpu(segment_ids) self.predictor.run() logits = self.output_handle.copy_to_cpu() if args.benchmark: self.autolog.times.stamp() if args.benchmark: self.autolog.times.end(stamp=True) return logits def predict(self, data, tokenizer): """ Predicts the data labels. Args: data (obj:`List(str)`): The batch data whose each element is a raw text. tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` which contains most of the methods. Users should refer to the superclass for more information regarding methods. Returns: results(obj:`dict`): All the predictions probs. """ if args.benchmark: self.autolog.times.start() examples = [] for idx, text in enumerate(data): input_ids, segment_ids = convert_example({idx: text[0]}, tokenizer) title_ids, title_segment_ids = convert_example({ idx: text[1] }, tokenizer) examples.append( (input_ids, segment_ids, title_ids, title_segment_ids)) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # input Pad(axis=0, pad_val=tokenizer.pad_token_id), # segment Pad(axis=0, pad_val=tokenizer.pad_token_id), # segment Pad(axis=0, pad_val=tokenizer.pad_token_id), # segment ): fn(samples) if args.benchmark: self.autolog.times.stamp() query_ids, query_segment_ids, title_ids, title_segment_ids = batchify_fn( examples) self.input_handles[0].copy_from_cpu(query_ids) self.input_handles[1].copy_from_cpu(query_segment_ids) self.predictor.run() query_logits = self.output_handle.copy_to_cpu() self.input_handles[0].copy_from_cpu(title_ids) self.input_handles[1].copy_from_cpu(title_segment_ids) self.predictor.run() title_logits = self.output_handle.copy_to_cpu() if args.benchmark: self.autolog.times.stamp() if args.benchmark: self.autolog.times.end(stamp=True) result = [ float(1 - spatial.distance.cosine(arr1, arr2)) for arr1, arr2 in zip(query_logits, title_logits) ] return result if __name__ == "__main__": # Define predictor to do prediction. predictor = Predictor(args.model_dir, args.device, args.max_seq_length, args.batch_size, args.use_tensorrt, args.precision, args.cpu_threads, args.enable_mkldnn) # ErnieTinyTokenizer is special for ernie-tiny pretained model. output_emb_size = 256 tokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained('ernie-1.0') id2corpus = {0: '国有企业引入非国有资本对创新绩效的影响——基于制造业国有上市公司的经验证据'} corpus_list = [{idx: text} for idx, text in id2corpus.items()] res = predictor.extract_embedding(corpus_list, tokenizer) print(res.shape) print(res) corpus_list = [['中西方语言与文化的差异', '中西方文化差异以及语言体现中西方文化,差异,语言体现'], ['中西方语言与文化的差异', '飞桨致力于让深度学习技术的创新与应用更简单']] res = predictor.predict(corpus_list, tokenizer) print(res)