# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import sys import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F class SemanticIndexBase(nn.Layer): def __init__(self, pretrained_model, dropout=None, output_emb_size=None): super().__init__() self.ptm = pretrained_model self.dropout = nn.Dropout(dropout if dropout is not None else 0.1) # if output_emb_size is not None, then add Linear layer to reduce embedding_size, # we recommend set output_emb_size = 256 considering the trade-off beteween # recall performance and efficiency self.output_emb_size = output_emb_size if output_emb_size > 0: weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.TruncatedNormal(std=0.02)) self.emb_reduce_linear = paddle.nn.Linear( 768, output_emb_size, weight_attr=weight_attr) @paddle.jit.to_static(input_spec=[ paddle.static.InputSpec( shape=[None, None], dtype='int64'), paddle.static.InputSpec( shape=[None, None], dtype='int64') ]) def get_pooled_embedding(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None): _, cls_embedding = self.ptm(input_ids, token_type_ids, position_ids, attention_mask) if self.output_emb_size > 0: cls_embedding = self.emb_reduce_linear(cls_embedding) cls_embedding = self.dropout(cls_embedding) cls_embedding = F.normalize(cls_embedding, p=2, axis=-1) return cls_embedding def get_semantic_embedding(self, data_loader): self.eval() with paddle.no_grad(): for batch_data in data_loader: input_ids, token_type_ids = batch_data input_ids = paddle.to_tensor(input_ids) token_type_ids = paddle.to_tensor(token_type_ids) text_embeddings = self.get_pooled_embedding( input_ids, token_type_ids=token_type_ids) yield text_embeddings def cosine_sim(self, query_input_ids, title_input_ids, query_token_type_ids=None, query_position_ids=None, query_attention_mask=None, title_token_type_ids=None, title_position_ids=None, title_attention_mask=None): query_cls_embedding = self.get_pooled_embedding( query_input_ids, query_token_type_ids, query_position_ids, query_attention_mask) title_cls_embedding = self.get_pooled_embedding( title_input_ids, title_token_type_ids, title_position_ids, title_attention_mask) cosine_sim = paddle.sum(query_cls_embedding * title_cls_embedding, axis=-1) return cosine_sim @abc.abstractmethod def forward(self): pass class SemanticIndexBaseStatic(nn.Layer): def __init__(self, pretrained_model, dropout=None, output_emb_size=None): super().__init__() self.ptm = pretrained_model self.dropout = nn.Dropout(dropout if dropout is not None else 0.1) # if output_emb_size is not None, then add Linear layer to reduce embedding_size, # we recommend set output_emb_size = 256 considering the trade-off beteween # recall performance and efficiency self.output_emb_size = output_emb_size if output_emb_size > 0: weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.TruncatedNormal(std=0.02)) self.emb_reduce_linear = paddle.nn.Linear( 768, output_emb_size, weight_attr=weight_attr) @paddle.jit.to_static(input_spec=[ paddle.static.InputSpec( shape=[None, None], dtype='int64'), paddle.static.InputSpec( shape=[None, None], dtype='int64') ]) def get_pooled_embedding(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None): _, cls_embedding = self.ptm(input_ids, token_type_ids, position_ids, attention_mask) if self.output_emb_size > 0: cls_embedding = self.emb_reduce_linear(cls_embedding) cls_embedding = self.dropout(cls_embedding) cls_embedding = F.normalize(cls_embedding, p=2, axis=-1) return cls_embedding def get_semantic_embedding(self, data_loader): self.eval() with paddle.no_grad(): for batch_data in data_loader: input_ids, token_type_ids = batch_data input_ids = paddle.to_tensor(input_ids) token_type_ids = paddle.to_tensor(token_type_ids) text_embeddings = self.get_pooled_embedding( input_ids, token_type_ids=token_type_ids) yield text_embeddings def cosine_sim(self, query_input_ids, title_input_ids, query_token_type_ids=None, query_position_ids=None, query_attention_mask=None, title_token_type_ids=None, title_position_ids=None, title_attention_mask=None): query_cls_embedding = self.get_pooled_embedding( query_input_ids, query_token_type_ids, query_position_ids, query_attention_mask) title_cls_embedding = self.get_pooled_embedding( title_input_ids, title_token_type_ids, title_position_ids, title_attention_mask) cosine_sim = paddle.sum(query_cls_embedding * title_cls_embedding, axis=-1) return cosine_sim def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None): _, cls_embedding = self.ptm(input_ids, token_type_ids, position_ids, attention_mask) if self.output_emb_size > 0: cls_embedding = self.emb_reduce_linear(cls_embedding) cls_embedding = self.dropout(cls_embedding) cls_embedding = F.normalize(cls_embedding, p=2, axis=-1) return cls_embedding