// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "examples/demo-serving/op/general_model_op.h" #include #include #include #include #include "core/predictor/framework/infer.h" #include "core/predictor/framework/memory.h" #include "core/predictor/framework/resource.h" namespace baidu { namespace paddle_serving { namespace serving { using baidu::paddle_serving::predictor::MempoolWrapper; using baidu::paddle_serving::predictor::general_model::Tensor; using baidu::paddle_serving::predictor::general_model::Request; using baidu::paddle_serving::predictor::general_model::FeedInst; using baidu::paddle_serving::predictor::general_model::Response; using baidu::paddle_serving::predictor::general_model::FetchInst; using baidu::paddle_serving::predictor::PaddleGeneralModelConfig; static std::once_flag g_proto_init_flag; int GeneralModelOp::inference() { // request const Request *req = dynamic_cast(get_request_message()); TensorVector *in = butil::get_object(); int batch_size = req->insts_size(); int input_var_num = 0; std::vector elem_type; std::vector elem_size; std::vector capacity; // infer if (batch_size > 0) { int var_num = req->insts(0).tensor_array_size(); VLOG(2) << "var num: " << var_num; elem_type.resize(var_num); elem_size.resize(var_num); capacity.resize(var_num); paddle::PaddleTensor lod_tensor; for (int i = 0; i < var_num; ++i) { elem_type[i] = req->insts(0).tensor_array(i).elem_type(); VLOG(2) << "var[" << i << "] has elem type: " << elem_type[i]; if (elem_type[i] == 0) { // int64 elem_size[i] = sizeof(int64_t); lod_tensor.dtype = paddle::PaddleDType::INT64; } else { elem_size[i] = sizeof(float); lod_tensor.dtype = paddle::PaddleDType::FLOAT32; } if (req->insts(0).tensor_array(i).shape(0) == -1) { lod_tensor.lod.resize(1); lod_tensor.lod[0].push_back(0); VLOG(2) << "var[" << i << "] is lod_tensor"; } else { lod_tensor.shape.push_back(batch_size); capacity[i] = 1; for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) { int dim = req->insts(0).tensor_array(i).shape(k); VLOG(2) << "shape for var[" << i << "]: " << dim; capacity[i] *= dim; lod_tensor.shape.push_back(dim); } VLOG(2) << "var[" << i << "] is tensor, capacity: " << capacity[i]; } if (i == 0) { lod_tensor.name = "words"; } else { lod_tensor.name = "label"; } in->push_back(lod_tensor); } for (int i = 0; i < var_num; ++i) { if (in->at(i).lod.size() == 1) { for (int j = 0; j < batch_size; ++j) { const Tensor &tensor = req->insts(j).tensor_array(i); int data_len = tensor.data_size(); VLOG(2) << "tensor size for var[" << i << "]: " << tensor.data_size(); int cur_len = in->at(i).lod[0].back(); VLOG(2) << "current len: " << cur_len; in->at(i).lod[0].push_back(cur_len + data_len); VLOG(2) << "new len: " << cur_len + data_len; } in->at(i).data.Resize(in->at(i).lod[0].back() * elem_size[i]); in->at(i).shape = {in->at(i).lod[0].back(), 1}; VLOG(2) << "var[" << i << "] is lod_tensor and len=" << in->at(i).lod[0].back(); } else { in->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]); VLOG(2) << "var[" << i << "] is tensor and capacity=" << batch_size * capacity[i]; } } for (int i = 0; i < var_num; ++i) { if (elem_type[i] == 0) { int64_t *dst_ptr = static_cast(in->at(i).data.data()); int offset = 0; for (int j = 0; j < batch_size; ++j) { for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) { dst_ptr[offset + k] = *(const int64_t *)req->insts(j).tensor_array(i).data(k).c_str(); } if (in->at(i).lod.size() == 1) { offset = in->at(i).lod[0][j + 1]; } else { offset += capacity[i]; } } } else { float *dst_ptr = static_cast(in->at(i).data.data()); int offset = 0; for (int j = 0; j < batch_size; ++j) { for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) { dst_ptr[offset + k] = *(const float *)req->insts(j).tensor_array(i).data(k).c_str(); } if (in->at(i).lod.size() == 1) { offset = in->at(i).lod[0][j + 1]; } else { offset += capacity[i]; } } } } VLOG(2) << "going to infer"; TensorVector *out = butil::get_object(); if (!out) { LOG(ERROR) << "Failed get tls output object"; return -1; } // print request std::ostringstream oss; int64_t *example = reinterpret_cast((*in)[0].data.data()); for (uint32_t i = 0; i < 10; i++) { oss << *(example + i) << " "; } VLOG(2) << "msg: " << oss.str(); // infer if (predictor::InferManager::instance().infer( GENERAL_MODEL_NAME, in, out, batch_size)) { LOG(ERROR) << "Failed do infer in fluid model: " << GENERAL_MODEL_NAME; return -1; } // print response float *example_1 = reinterpret_cast((*out)[0].data.data()); VLOG(2) << "result: " << *example_1; Response *res = mutable_data(); for (int i = 0; i < batch_size; ++i) { FetchInst *fetch_inst = res->add_insts(); for (int j = 0; j < out->size(); ++j) { Tensor *tensor = fetch_inst->add_tensor_array(); tensor->set_elem_type(1); if (out->at(j).lod.size() == 1) { tensor->add_shape(-1); } else { for (int k = 1; k < out->at(j).shape.size(); ++k) { tensor->add_shape(out->at(j).shape[k]); } } } } for (int i = 0; i < out->size(); ++i) { float *data_ptr = static_cast(out->at(i).data.data()); int cap = 1; for (int j = 1; j < out->at(i).shape.size(); ++j) { cap *= out->at(i).shape[j]; } if (out->at(i).lod.size() == 1) { for (int j = 0; j < batch_size; ++j) { for (int k = out->at(i).lod[0][j]; k < out->at(i).lod[0][j + 1]; k++) { res->mutable_insts(j)->mutable_tensor_array(i)->add_data( reinterpret_cast(&(data_ptr[k])), sizeof(float)); } } } else { for (int j = 0; j < batch_size; ++j) { for (int k = j * cap; k < (j + 1) * cap; ++k) { res->mutable_insts(j)->mutable_tensor_array(i)->add_data( reinterpret_cast(&(data_ptr[k])), sizeof(float)); } } } } for (size_t i = 0; i < in->size(); ++i) { (*in)[i].shape.clear(); } in->clear(); butil::return_object(in); for (size_t i = 0; i < out->size(); ++i) { (*out)[i].shape.clear(); } out->clear(); butil::return_object(out); } return 0; } DEFINE_OP(GeneralModelOp); } // namespace serving } // namespace paddle_serving } // namespace baidu