# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize from paddle_serving_app.local_predict import LocalPredictor import sys predictor = LocalPredictor() predictor.load_model_config(sys.argv[1], use_lite=True, use_xpu=True, ir_optim=True) seq = Sequential([ File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True) ]) image_file = "daisy.jpg" img = seq(image_file) fetch_map = predictor.predict(feed={"image": img}, fetch=["score"]) print(fetch_map["score"].reshape(-1))