# -*- coding: utf-8 -*- # # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from __future__ import unicode_literals, absolute_import import os import sys import time import requests import json import base64 from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner from paddle_serving_client.utils import benchmark_args from paddle_serving_app.reader import Sequential, File2Image, Resize from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize args = benchmark_args() seq_preprocess = Sequential([ File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True) ]) def single_func(idx, resource): file_list = [] turns = 10 for file_name in os.listdir("./image_data/n01440764"): file_list.append(file_name) img_list = [] for i in range(1000): img_list.append("./image_data/n01440764/" + file_list[i]) profile_flags = False if "FLAGS_profile_client" in os.environ and os.environ[ "FLAGS_profile_client"]: profile_flags = True if args.request == "rpc": fetch = ["score"] client = Client() client.load_client_config(args.model) client.connect([resource["endpoint"][idx % len(resource["endpoint"])]]) start = time.time() for i in range(turns): if args.batch_size >= 1: feed_batch = [] i_start = time.time() for bi in range(args.batch_size): img = seq_preprocess(img_list[i]) feed_batch.append({"image": img}) i_end = time.time() if profile_flags: print("PROFILE\tpid:{}\timage_pre_0:{} image_pre_1:{}". format(os.getpid(), int(round(i_start * 1000000)), int(round(i_end * 1000000)))) result = client.predict(feed=feed_batch, fetch=fetch) else: print("unsupport batch size {}".format(args.batch_size)) elif args.request == "http": py_version = sys.version_info[0] server = "http://" + resource["endpoint"][idx % len(resource[ "endpoint"])] + "/image/prediction" start = time.time() for i in range(turns): if py_version == 2: image = base64.b64encode( open("./image_data/n01440764/" + file_list[i]).read()) else: image = base64.b64encode(open(image_path, "rb").read()).decode( "utf-8") req = json.dumps({"feed": [{"image": image}], "fetch": ["score"]}) r = requests.post( server, data=req, headers={"Content-Type": "application/json"}) end = time.time() return [[end - start]] if __name__ == '__main__': multi_thread_runner = MultiThreadRunner() endpoint_list = [ "127.0.0.1:9292", "127.0.0.1:9293", "127.0.0.1:9294", "127.0.0.1:9295" ] result = multi_thread_runner.run(single_func, args.thread, {"endpoint": endpoint_list}) #result = single_func(0, {"endpoint": endpoint_list}) avg_cost = 0 for i in range(args.thread): avg_cost += result[0][i] avg_cost = avg_cost / args.thread print("average total cost {} s.".format(avg_cost))