# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_server.web_service import WebService, Op import logging import numpy as np import sys import cv2 from paddle_serving_app.reader import * import base64 class PPYoloMbvOp(Op): def init_op(self): self.img_preprocess = Sequential([ BGR2RGB(), Div(255.0), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False), Resize((320, 320)), Transpose((2, 0, 1)) ]) self.img_postprocess = RCNNPostprocess("label_list.txt", "output") def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ target_size = [320, 320] origin_shape = im.shape[:2] resize_h, resize_w = target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() imgs = [] for key in input_dict.keys(): data = base64.b64decode(input_dict[key].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) im_scale_y, im_scale_x = self.generate_scale(im) im = self.img_preprocess(im) imgs.append({ "image": im[np.newaxis,:], "im_shape": np.array(list(im.shape[1:])).reshape(-1)[np.newaxis,:], "scale_factor": np.array([im_scale_y, im_scale_x]).astype('float32'), }) feed_dict = { "image": np.concatenate([x["image"] for x in imgs], axis=0), "im_shape": np.concatenate([x["im_shape"] for x in imgs], axis=0), "scale_factor": np.concatenate([x["scale_factor"] for x in imgs], axis=0) } for key in feed_dict.keys(): print(key, feed_dict[key].shape) return feed_dict, False, None, "" def postprocess(self, input_dicts, fetch_dict, log_id): #print(fetch_dict) res_dict = {"bbox_result": str(self.img_postprocess(fetch_dict, visualize=False))} return res_dict, None, "" class PPYoloMbv(WebService): def get_pipeline_response(self, read_op): ppyolo_mbv3_op = PPYoloMbvOp(name="ppyolo_mbv3", input_ops=[read_op]) return ppyolo_mbv3_op ppyolo_mbv3_service = PPYoloMbv(name="ppyolo_mbv3") ppyolo_mbv3_service.prepare_pipeline_config("config.yml") ppyolo_mbv3_service.run_service()