// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "op/reader_op.h" #include #include "framework/memory.h" namespace baidu { namespace paddle_serving { namespace serving { using baidu::paddle_serving::predictor::MempoolWrapper; using baidu::paddle_serving::predictor::format::XImageReqInstance; using baidu::paddle_serving::predictor::image_classification::Request; int ReaderOp::inference() { const Request* req = dynamic_cast(get_request_message()); LOG(INFO) << "Receive request in dense service:" << req->ShortDebugString(); ReaderOutput* res = mutable_data(); if (!res) { LOG(ERROR) << "Failed get op tls reader object output"; return -1; } TensorVector* in = &res->tensors; uint32_t sample_size = req->instances_size(); if (sample_size <= 0) { LOG(WARNING) << "No instances need to inference!"; return -1; } // TODO(xxx) pmeans/scales/isize/enable_crop should be configurable. float pmean[3] = {0.485 * 255, 0.456 * 255, 0.406 * 255}; float scale[3] = {1 / (0.229 * 255), 1 / (0.224 * 255), 1 / (0.225 * 255)}; size_t iresize[] = {244, 244}; // row, column bool enable_crop = true; cv::Size resize; resize.height = iresize[0]; resize.width = iresize[1]; for (uint32_t si = 0; si < sample_size; si++) { // parse image object from x-image const XImageReqInstance& ins = req->instances(si); // read dense image from request bytes const char* binary = ins.image_binary().c_str(); size_t length = ins.image_length(); if (length == 0) { LOG(ERROR) << "Empty image, length is 0"; return -1; } _image_vec_tmp.clear(); _image_vec_tmp.assign(binary, binary + length); _image_8u_tmp = cv::imdecode(cv::Mat(_image_vec_tmp), CV_LOAD_IMAGE_COLOR /*1*/); // in B/G/R order. if (_image_8u_tmp.data == NULL) { LOG(ERROR) << "Image decode failed!"; return -1; } // accumulate length const int HH = _image_8u_tmp.rows; const int WW = _image_8u_tmp.cols; const int CC = _image_8u_tmp.channels(); // resize/crop if (_image_8u_tmp.cols != resize.width || _image_8u_tmp.rows != resize.height) { int short_egde = std::min(_image_8u_tmp.cols, _image_8u_tmp.rows); int yy = static_cast((_image_8u_tmp.rows - short_egde) / 2); int xx = static_cast((_image_8u_tmp.cols - short_egde) / 2); _image_8u_tmp = cv::Mat(_image_8u_tmp, cv::Rect(xx, yy, short_egde, short_egde)); if (_image_8u_tmp.cols != resize.width || _image_8u_tmp.rows != resize.height) { cv::Mat resize_image; cv::resize(_image_8u_tmp, resize_image, resize); _image_8u_tmp = resize_image; } LOG(INFO) << "Succ crop one image[CHW=" << _image_8u_tmp.channels() << ", " << _image_8u_tmp.cols << ", " << _image_8u_tmp.rows << "]" << " from image[CHW=" << CC << ", " << HH << ", " << WW << "]"; } // BGR->RGB transformer cv::cvtColor(_image_8u_tmp, _image_8u_rgb, CV_BGR2RGB); const int H = _image_8u_rgb.rows; const int W = _image_8u_rgb.cols; const int C = _image_8u_rgb.channels(); size_t dense_capacity = H * W * C; paddle::PaddleTensor in_tensor; in_tensor.name = "tensor"; in_tensor.dtype = paddle::FLOAT32; // shape assignment in_tensor.shape.push_back(1); // batch_size // accoreding to training stage, the instance shape should be // in order of C-W-H. in_tensor.shape.push_back(C); in_tensor.shape.push_back(W); in_tensor.shape.push_back(H); LOG(INFO) << "Succ read one image, C: " << C << ", W: " << W << ", H: " << H; // tls resource assignment size_t len = dense_capacity * sizeof(float); float* data = reinterpret_cast(MempoolWrapper::instance().malloc(len)); if (data == NULL) { LOG(ERROR) << "Failed create temp float array, " << "size=" << dense_capacity; return -1; } for (int h = 0; h < H; h++) { // p points to a new line unsigned char* p = _image_8u_rgb.ptr(h); for (int w = 0; w < W; w++) { for (int c = 0; c < C; c++) { // HWC(row,column,channel) -> CWH data[W * H * c + W * h + w] = (p[C * w + c] - pmean[c]) * scale[c]; } } } paddle::PaddleBuf pbuf(data, len); in_tensor.data = pbuf; in->push_back(in_tensor); } return 0; } DEFINE_OP(ReaderOp); } // namespace serving } // namespace paddle_serving } // namespace baidu