// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include "core/configure/include/configure_parser.h" #include "core/configure/inferencer_configure.pb.h" #include "core/predictor/common/utils.h" #include "core/predictor/framework/infer.h" #include "paddle_inference_api.h" // NOLINT namespace baidu { namespace paddle_serving { namespace inference { using paddle_infer::Config; using paddle_infer::PrecisionType; using paddle_infer::Predictor; using paddle_infer::Tensor; using paddle_infer::CreatePredictor; DECLARE_int32(gpuid); DECLARE_string(precision); DECLARE_bool(use_calib); static const int max_batch = 32; static const int min_subgraph_size = 3; static PrecisionType precision_type; PrecisionType GetPrecision(const std::string& precision_data) { std::string precision_type = predictor::ToLower(precision_data); if (precision_type == "fp32") { return PrecisionType::kFloat32; } else if (precision_type == "int8") { return PrecisionType::kInt8; } else if (precision_type == "fp16") { return PrecisionType::kHalf; } return PrecisionType::kFloat32; } // Engine Base class PaddleEngineBase { public: virtual ~PaddleEngineBase() {} virtual std::vector GetInputNames() { return _predictor->GetInputNames(); } virtual std::unique_ptr GetInputHandle(const std::string& name) { return _predictor->GetInputHandle(name); } virtual std::vector GetOutputNames() { return _predictor->GetOutputNames(); } virtual std::unique_ptr GetOutputHandle(const std::string& name) { return _predictor->GetOutputHandle(name); } virtual bool Run() { if (!_predictor->Run()) { LOG(ERROR) << "Failed call Run with paddle predictor"; return false; } return true; } virtual int create(const configure::EngineDesc& conf) = 0; virtual int clone(void* predictor) { if (predictor == NULL) { LOG(ERROR) << "origin paddle Predictor is null."; return -1; } Predictor* prep = static_cast(predictor); _predictor = prep->Clone(); if (_predictor.get() == NULL) { LOG(ERROR) << "fail to clone paddle predictor: " << predictor; return -1; } return 0; } virtual void* get() { return _predictor.get(); } protected: std::shared_ptr _predictor; }; // Paddle Inference Engine class PaddleInferenceEngine : public PaddleEngineBase { public: int create(const configure::EngineDesc& engine_conf) { std::string model_path = engine_conf.model_dir(); if (access(model_path.c_str(), F_OK) == -1) { LOG(ERROR) << "create paddle predictor failed, path not exits: " << model_path; return -1; } Config config; // todo, auto config(zhangjun) if (engine_conf.has_encrypted_model() && engine_conf.encrypted_model()) { // decrypt model std::string model_buffer, params_buffer, key_buffer; predictor::ReadBinaryFile(model_path + "/encrypt_model", &model_buffer); predictor::ReadBinaryFile(model_path + "/encrypt_params", ¶ms_buffer); predictor::ReadBinaryFile(model_path + "/key", &key_buffer); auto cipher = paddle::MakeCipher(""); std::string real_model_buffer = cipher->Decrypt(model_buffer, key_buffer); std::string real_params_buffer = cipher->Decrypt(params_buffer, key_buffer); config.SetModelBuffer(&real_model_buffer[0], real_model_buffer.size(), &real_params_buffer[0], real_params_buffer.size()); } else if (engine_conf.has_combined_model()) { if (!engine_conf.combined_model()) { config.SetModel(model_path); } else { config.SetParamsFile(model_path + "/__params__"); config.SetProgFile(model_path + "/__model__"); } } else { config.SetParamsFile(model_path + "/__params__"); config.SetProgFile(model_path + "/__model__"); } config.SwitchSpecifyInputNames(true); config.SetCpuMathLibraryNumThreads(1); if (engine_conf.has_use_gpu() && engine_conf.use_gpu()) { // 2000MB GPU memory config.EnableUseGpu(2000, FLAGS_gpuid); } precision_type = GetPrecision(FLAGS_precision); if (engine_conf.has_use_trt() && engine_conf.use_trt()) { if (!engine_conf.has_use_gpu() || !engine_conf.use_gpu()) { config.EnableUseGpu(2000, FLAGS_gpuid); } config.EnableTensorRtEngine(1 << 20, max_batch, min_subgraph_size, precision_type, false, FLAGS_use_calib); LOG(INFO) << "create TensorRT predictor"; } if (engine_conf.has_use_lite() && engine_conf.use_lite()) { config.EnableLiteEngine(precision_type, true); } if ((!engine_conf.has_use_lite() && !engine_conf.has_use_gpu()) || (engine_conf.has_use_lite() && !engine_conf.use_lite() && engine_conf.has_use_gpu() && !engine_conf.use_gpu())) { if (precision_type == PrecisionType::kInt8) { config.EnableMkldnnQuantizer(); } else if (precision_type == PrecisionType::kHalf) { config.EnableMkldnnBfloat16(); } } if (engine_conf.has_use_xpu() && engine_conf.use_xpu()) { // 2 MB l3 cache config.EnableXpu(2 * 1024 * 1024); } if (engine_conf.has_enable_ir_optimization() && !engine_conf.enable_ir_optimization()) { config.SwitchIrOptim(false); } else { config.SwitchIrOptim(true); } if (engine_conf.has_enable_memory_optimization() && engine_conf.enable_memory_optimization()) { config.EnableMemoryOptim(); } predictor::AutoLock lock(predictor::GlobalCreateMutex::instance()); _predictor = CreatePredictor(config); if (NULL == _predictor.get()) { LOG(ERROR) << "create paddle predictor failed, path: " << model_path; return -1; } VLOG(2) << "create paddle predictor sucess, path: " << model_path; return 0; } }; } // namespace inference } // namespace paddle_serving } // namespace baidu