# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner from paddle_serving_client.utils import benchmark_args, show_latency import time import paddle import sys import requests args = benchmark_args() def single_func(idx, resource): train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=1) total_number = sum(1 for _ in train_reader()) if args.request == "rpc": client = Client() client.load_client_config(args.model) client.connect([args.endpoint]) start = time.time() for data in train_reader(): fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["price"]) end = time.time() return [[end - start], [total_number]] elif args.request == "http": train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=1) start = time.time() for data in train_reader(): r = requests.post( 'http://{}/uci/prediction'.format(args.endpoint), data={"x": data[0]}) end = time.time() return [[end - start], [total_number]] start = time.time() multi_thread_runner = MultiThreadRunner() result = multi_thread_runner.run(single_func, args.thread, {}) end = time.time() total_cost = end - start avg_cost = 0 for i in range(args.thread): avg_cost += result[0][i] avg_cost = avg_cost / args.thread print("total cost: {}s".format(total_cost)) print("each thread cost: {}s. ".format(avg_cost)) print("qps: {}samples/s".format(args.batch_size * args.thread / total_cost)) show_latency(result[1])