import argparse def parse_args(): parser = argparse.ArgumentParser(description="PaddlePaddle CTR example") parser.add_argument( '--train_data_path', type=str, default='./data/raw/train.txt', help="The path of training dataset") parser.add_argument( '--sparse_only', type=bool, default=False, help="Whether we use sparse features only") parser.add_argument( '--test_data_path', type=str, default='./data/raw/valid.txt', help="The path of testing dataset") parser.add_argument( '--batch_size', type=int, default=1000, help="The size of mini-batch (default:1000)") parser.add_argument( '--embedding_size', type=int, default=10, help="The size for embedding layer (default:10)") parser.add_argument( '--num_passes', type=int, default=10, help="The number of passes to train (default: 10)") parser.add_argument( '--model_output_dir', type=str, default='models', help='The path for model to store (default: models)') parser.add_argument( '--sparse_feature_dim', type=int, default=1000001, help='sparse feature hashing space for index processing') parser.add_argument( '--is_local', type=int, default=1, help='Local train or distributed train (default: 1)') parser.add_argument( '--cloud_train', type=int, default=0, help='Local train or distributed train on paddlecloud (default: 0)') parser.add_argument( '--async_mode', action='store_true', default=False, help='Whether start pserver in async mode to support ASGD') parser.add_argument( '--no_split_var', action='store_true', default=False, help='Whether split variables into blocks when update_method is pserver') parser.add_argument( '--role', type=str, default='pserver', # trainer or pserver help='The path for model to store (default: models)') parser.add_argument( '--endpoints', type=str, default='127.0.0.1:6000', help='The pserver endpoints, like: 127.0.0.1:6000,127.0.0.1:6001') parser.add_argument( '--current_endpoint', type=str, default='127.0.0.1:6000', help='The path for model to store (default: 127.0.0.1:6000)') parser.add_argument( '--trainer_id', type=int, default=0, help='The path for model to store (default: models)') parser.add_argument( '--trainers', type=int, default=1, help='The num of trianers, (default: 1)') return parser.parse_args()