// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "core/predictor/framework/resource.h" #include #include #include "core/predictor/common/inner_common.h" #include "core/predictor/framework/kv_manager.h" namespace baidu { namespace paddle_serving { namespace predictor { using configure::ResourceConf; using configure::GeneralModelConfig; using rec::mcube::CubeAPI; // __thread bool p_thread_initialized = false; static void dynamic_resource_deleter(void* d) { #if 1 LOG(INFO) << "dynamic_resource_delete on " << bthread_self(); #endif delete static_cast(d); } DynamicResource::DynamicResource() {} DynamicResource::~DynamicResource() {} int DynamicResource::initialize() { return 0; } std::shared_ptr Resource::getDB() { return db; } std::shared_ptr Resource::get_general_model_config() { return _config; } void Resource::print_general_model_config( const std::shared_ptr& config) { if (config == nullptr) { LOG(INFO) << "paddle general model config is not set"; return; } LOG(INFO) << "Number of Feed Tensor: " << config->_feed_name.size(); std::ostringstream oss; LOG(INFO) << "Feed Name Info"; for (auto& feed_name : config->_feed_name) { oss << feed_name << " "; } LOG(INFO) << oss.str(); oss.clear(); oss.str(""); LOG(INFO) << "Feed Type Info"; for (auto& feed_type : config->_feed_type) { oss << feed_type << " "; } LOG(INFO) << oss.str(); oss.clear(); oss.str(""); LOG(INFO) << "Lod Type Info"; for (auto is_lod : config->_is_lod_feed) { oss << is_lod << " "; } LOG(INFO) << oss.str(); oss.clear(); oss.str(""); LOG(INFO) << "Capacity Info"; for (auto& cap : config->_capacity) { oss << cap << " "; } LOG(INFO) << oss.str(); oss.clear(); oss.str(""); LOG(INFO) << "Feed Shape Info"; int tensor_idx = 0; for (auto& shape : config->_feed_shape) { for (auto& dim : shape) { oss << dim << " "; } LOG(INFO) << "Tensor[" << tensor_idx++ << "].shape: " << oss.str(); oss.clear(); oss.str(""); } } int DynamicResource::clear() { return 0; } int Resource::initialize(const std::string& path, const std::string& file) { ResourceConf resource_conf; if (configure::read_proto_conf(path, file, &resource_conf) != 0) { LOG(ERROR) << "Failed initialize resource from: " << path << "/" << file; return -1; } // mempool if (MempoolWrapper::instance().initialize() != 0) { LOG(ERROR) << "Failed proc initialized mempool wrapper"; return -1; } LOG(WARNING) << "Successfully proc initialized mempool wrapper"; if (FLAGS_enable_model_toolkit) { int err = 0; std::string model_toolkit_path = resource_conf.model_toolkit_path(); if (err != 0) { LOG(ERROR) << "read model_toolkit_path failed, path[" << path << "], file[" << file << "]"; return -1; } std::string model_toolkit_file = resource_conf.model_toolkit_file(); if (err != 0) { LOG(ERROR) << "read model_toolkit_file failed, path[" << path << "], file[" << file << "]"; return -1; } if (InferManager::instance().proc_initialize( model_toolkit_path.c_str(), model_toolkit_file.c_str()) != 0) { LOG(ERROR) << "failed proc initialize modeltoolkit, config: " << model_toolkit_path << "/" << model_toolkit_file; return -1; } if (KVManager::instance().proc_initialize( model_toolkit_path.c_str(), model_toolkit_file.c_str()) != 0) { LOG(ERROR) << "Failed proc initialize kvmanager, config: " << model_toolkit_path << "/" << model_toolkit_file; } } if (THREAD_KEY_CREATE(&_tls_bspec_key, dynamic_resource_deleter) != 0) { LOG(ERROR) << "unable to create tls_bthread_key of thrd_data"; return -1; } // init rocksDB instance if (db.get() == nullptr) { db = RocksDBWrapper::RocksDBWrapperFactory("kvdb"); } THREAD_SETSPECIFIC(_tls_bspec_key, NULL); return 0; } // model config int Resource::general_model_initialize(const std::string& path, const std::string& file) { VLOG(2) << "general model path: " << path; VLOG(2) << "general model file: " << file; if (!FLAGS_enable_general_model) { LOG(ERROR) << "general model is not enabled"; return -1; } ResourceConf resource_conf; if (configure::read_proto_conf(path, file, &resource_conf) != 0) { LOG(ERROR) << "Failed initialize resource from: " << path << "/" << file; return -1; } int err = 0; std::string general_model_path = resource_conf.general_model_path(); std::string general_model_file = resource_conf.general_model_file(); if (err != 0) { LOG(ERROR) << "read general_model_path failed, path[" << path << "], file[" << file << "]"; return -1; } GeneralModelConfig model_config; if (configure::read_proto_conf(general_model_path.c_str(), general_model_file.c_str(), &model_config) != 0) { LOG(ERROR) << "Failed initialize model config from: " << general_model_path << "/" << general_model_file; return -1; } _config.reset(new PaddleGeneralModelConfig()); int feed_var_num = model_config.feed_var_size(); VLOG(2) << "load general model config"; VLOG(2) << "feed var num: " << feed_var_num; _config->_feed_name.resize(feed_var_num); _config->_feed_type.resize(feed_var_num); _config->_is_lod_feed.resize(feed_var_num); _config->_capacity.resize(feed_var_num); _config->_feed_shape.resize(feed_var_num); for (int i = 0; i < feed_var_num; ++i) { _config->_feed_name[i] = model_config.feed_var(i).name(); VLOG(2) << "feed var[" << i << "]: " << _config->_feed_name[i]; _config->_feed_type[i] = model_config.feed_var(i).feed_type(); VLOG(2) << "feed type[" << i << "]: " << _config->_feed_type[i]; if (model_config.feed_var(i).is_lod_tensor()) { VLOG(2) << "var[" << i << "] is lod tensor"; _config->_feed_shape[i] = {-1}; _config->_is_lod_feed[i] = true; } else { VLOG(2) << "var[" << i << "] is tensor"; _config->_capacity[i] = 1; _config->_is_lod_feed[i] = false; for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) { int32_t dim = model_config.feed_var(i).shape(j); VLOG(2) << "var[" << i << "].shape[" << i << "]: " << dim; _config->_feed_shape[i].push_back(dim); _config->_capacity[i] *= dim; } } } int fetch_var_num = model_config.fetch_var_size(); _config->_fetch_name.resize(fetch_var_num); _config->_fetch_shape.resize(fetch_var_num); for (int i = 0; i < fetch_var_num; ++i) { _config->_fetch_name[i] = model_config.fetch_var(i).name(); for (int j = 0; j < model_config.fetch_var(i).shape_size(); ++j) { int dim = model_config.fetch_var(i).shape(j); _config->_fetch_shape[i].push_back(dim); } } return 0; } int Resource::cube_initialize(const std::string& path, const std::string& file) { // cube if (!FLAGS_enable_cube) { return 0; } ResourceConf resource_conf; if (configure::read_proto_conf(path, file, &resource_conf) != 0) { LOG(ERROR) << "Failed initialize resource from: " << path << "/" << file; return -1; } int err = 0; std::string cube_config_file = resource_conf.cube_config_file(); if (err != 0) { LOG(ERROR) << "reade cube_config_file failed, path[" << path << "], file[" << cube_config_file << "]"; return -1; } err = CubeAPI::instance()->init(cube_config_file.c_str()); if (err != 0) { LOG(ERROR) << "failed initialize cube, config: " << cube_config_file << " error code : " << err; return -1; } LOG(INFO) << "Successfully initialize cube"; return 0; } int Resource::thread_initialize() { // mempool if (MempoolWrapper::instance().thread_initialize() != 0) { LOG(ERROR) << "Failed thread initialized mempool wrapper"; return -1; } LOG(WARNING) << "Successfully thread initialized mempool wrapper"; // infer manager if (FLAGS_enable_model_toolkit && InferManager::instance().thrd_initialize() != 0) { LOG(ERROR) << "Failed thrd initialized infer manager"; return -1; } DynamicResource* p_dynamic_resource = reinterpret_cast(THREAD_GETSPECIFIC(_tls_bspec_key)); if (p_dynamic_resource == NULL) { p_dynamic_resource = new (std::nothrow) DynamicResource; if (p_dynamic_resource == NULL) { LOG(ERROR) << "failed to create tls DynamicResource"; return -1; } if (p_dynamic_resource->initialize() != 0) { LOG(ERROR) << "DynamicResource initialize failed."; delete p_dynamic_resource; p_dynamic_resource = NULL; return -1; } if (THREAD_SETSPECIFIC(_tls_bspec_key, p_dynamic_resource) != 0) { LOG(ERROR) << "unable to set tls DynamicResource"; delete p_dynamic_resource; p_dynamic_resource = NULL; return -1; } } #if 0 LOG(INFO) << "Successfully thread initialized dynamic resource"; #else LOG(INFO) << bthread_self() << ": Successfully thread initialized dynamic resource " << p_dynamic_resource; #endif return 0; } int Resource::thread_clear() { // mempool if (MempoolWrapper::instance().thread_clear() != 0) { LOG(ERROR) << "Failed thread clear mempool wrapper"; return -1; } // infer manager if (FLAGS_enable_model_toolkit && InferManager::instance().thrd_clear() != 0) { LOG(ERROR) << "Failed thrd clear infer manager"; return -1; } DynamicResource* p_dynamic_resource = reinterpret_cast(THREAD_GETSPECIFIC(_tls_bspec_key)); if (p_dynamic_resource == NULL) { #if 0 LOG(ERROR) << "tls dynamic resource shouldn't be null after " << "thread_initialize"; #else LOG(ERROR) << bthread_self() << ": tls dynamic resource shouldn't be null after thread_initialize"; #endif return -1; } if (p_dynamic_resource->clear() != 0) { LOG(ERROR) << "Failed to invoke dynamic resource clear"; return -1; } // ... return 0; } int Resource::reload() { if (FLAGS_enable_model_toolkit && InferManager::instance().reload() != 0) { LOG(ERROR) << "Failed reload infer manager"; return -1; } // other resource reload here... return 0; } int Resource::finalize() { if (FLAGS_enable_model_toolkit && InferManager::instance().proc_finalize() != 0) { LOG(ERROR) << "Failed proc finalize infer manager"; return -1; } if (CubeAPI::instance()->destroy() != 0) { LOG(ERROR) << "Destory cube api failed "; return -1; } THREAD_KEY_DELETE(_tls_bspec_key); return 0; } } // namespace predictor } // namespace paddle_serving } // namespace baidu