# Lod字段说明 (简体中文|[English](LOD.md)) ## 概念 LoD(Level-of-Detail) Tensor是Paddle的高级特性,是对Tensor的一种扩充。LoDTensor通过牺牲灵活性来提升训练的效率。 ``` 注:对于大部分用户来说,无需关注LoDTensor的用法,目前Serving中仅支持一维Lod的用法。 ``` ## 使用 **前提:** 首先您的预测模型需要支持变长Tensor的输入。 以视觉任务为例,在视觉任务中,时常需要处理视频和图像这些元素是高维的对象,假设现存的一个mini-batch包含3个视频,分别有3个,1个和2个帧。 每个帧都具有相同大小:640x480,则这个mini-batch可以被表示为: ``` 3 1 2 口口口 口 口口 ``` 最底层tensor大小为(3+1+2)x640x480,每一个 口 表示一个640x480的图像。 那么此时,Tensor的shape为[6,640,480],lod=[0,3,4,6]. 其中0为起始值,3-0=3;4-3=1;6-4=2,这三个值正好表示您的变长信息,lod中的最后一个元素6,应等于shape中第一维度的总长度。 lod中记录的变长信息与Tensor中shape的第一维度的信息应按照上述方式对齐。