Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
f369d66a
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f369d66a
编写于
2月 17, 2020
作者:
M
MRXLT
浏览文件
操作
浏览文件
下载
差异文件
fix conflict
上级
0b12fa00
e1ee71cd
变更
17
显示空白变更内容
内联
并排
Showing
17 changed file
with
351 addition
and
204 deletion
+351
-204
core/general-server/op/general_infer_helper.h
core/general-server/op/general_infer_helper.h
+65
-0
core/general-server/op/general_infer_op.cpp
core/general-server/op/general_infer_op.cpp
+11
-87
core/general-server/op/general_infer_op.h
core/general-server/op/general_infer_op.h
+4
-4
core/general-server/op/general_reader_op.cpp
core/general-server/op/general_reader_op.cpp
+20
-23
core/general-server/op/general_reader_op.h
core/general-server/op/general_reader_op.h
+3
-15
core/general-server/op/general_response_op.cpp
core/general-server/op/general_response_op.cpp
+128
-0
core/general-server/op/general_response_op.h
core/general-server/op/general_response_op.h
+4
-2
core/general-server/op/general_text_reader_op.cpp
core/general-server/op/general_text_reader_op.cpp
+3
-3
core/general-server/op/general_text_reader_op.h
core/general-server/op/general_text_reader_op.h
+2
-16
core/general-server/op/general_text_response_op.cpp
core/general-server/op/general_text_response_op.cpp
+20
-43
core/general-server/op/general_text_response_op.h
core/general-server/op/general_text_response_op.h
+48
-0
core/predictor/framework/dag_view.cpp
core/predictor/framework/dag_view.cpp
+16
-0
core/predictor/op/op.cpp
core/predictor/op/op.cpp
+1
-0
core/predictor/op/op.h
core/predictor/op/op.h
+9
-0
go/client_app/imdb_client.go
go/client_app/imdb_client.go
+1
-1
python/paddle_serving_server/__init__.py
python/paddle_serving_server/__init__.py
+9
-6
python/paddle_serving_server_gpu/__init__.py
python/paddle_serving_server_gpu/__init__.py
+7
-4
未找到文件。
core/general-server/op/general_infer_helper.h
0 → 100644
浏览文件 @
f369d66a
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
static
const
char
*
GENERAL_MODEL_NAME
=
"general_model"
;
struct
GeneralBlob
{
std
::
vector
<
paddle
::
PaddleTensor
>
tensor_vector
;
double
infer_time
;
std
::
vector
<
std
::
string
>
fetch_name_vector
;
void
Clear
()
{
size_t
tensor_count
=
tensor_vector
.
size
();
for
(
size_t
ti
=
0
;
ti
<
tensor_count
;
++
ti
)
{
tensor_vector
[
ti
].
shape
.
clear
();
}
tensor_vector
.
clear
();
}
int
GetBatchSize
()
const
{
if
(
tensor_vector
.
size
()
>
0
)
{
if
(
tensor_vector
[
0
].
lod
.
size
()
==
1
)
{
return
tensor_vector
[
0
].
lod
[
0
].
size
()
-
1
;
}
else
{
return
tensor_vector
[
0
].
shape
[
0
];
}
}
else
{
return
-
1
;
}
}
std
::
string
ShortDebugString
()
const
{
return
"Not implemented!"
;
}
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_infer_op.cpp
浏览文件 @
f369d66a
...
...
@@ -17,7 +17,6 @@
#include <memory>
#include <sstream>
#include "core/general-server/op/general_infer_op.h"
#include "core/general-server/op/general_reader_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
...
...
@@ -37,34 +36,26 @@ using baidu::paddle_serving::predictor::InferManager;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralInferOp
::
inference
()
{
const
GeneralReaderOutput
*
reader_out
=
get_depend_argument
<
GeneralReaderOutput
>
(
"general_reader_op"
);
if
(
!
reader_out
)
{
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
());
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op:"
<<
"general_reader_op"
;
<<
pre_name
()
;
return
-
1
;
}
int
reader_status
=
reader_out
->
reader_status
;
if
(
reader_status
!=
0
)
{
LOG
(
ERROR
)
<<
"Read request wrong."
;
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
GetBatchSize
();
const
TensorVector
*
in
=
&
reader_out
->
tensor_vector
;
TensorVector
*
out
=
butil
::
get_object
<
TensorVector
>
();
int
batch_size
=
0
;
if
((
*
in
)[
0
].
lod
.
size
()
==
1
)
{
batch_size
=
(
*
in
)[
0
].
lod
[
0
].
size
()
-
1
;
}
else
{
batch_size
=
(
*
in
)[
0
].
shape
[
0
];
}
VLOG
(
2
)
<<
"infer batch size: "
<<
batch_size
;
// infer
Timer
timeline
;
double
infer_time
=
0.0
;
timeline
.
Start
();
VLOG
(
2
)
<<
"batch size : "
<<
batch_size
;
if
(
InferManager
::
instance
().
infer
(
GENERAL_MODEL_NAME
,
in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
GENERAL_MODEL_NAME
;
return
-
1
;
...
...
@@ -72,73 +63,6 @@ int GeneralInferOp::inference() {
timeline
.
Pause
();
infer_time
=
timeline
.
ElapsedUS
();
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
VLOG
(
2
)
<<
"start to call load general model_conf op"
;
baidu
::
paddle_serving
::
predictor
::
Resource
&
resource
=
baidu
::
paddle_serving
::
predictor
::
Resource
::
instance
();
VLOG
(
2
)
<<
"get resource pointer done."
;
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
();
std
::
vector
<
int
>
fetch_index
;
fetch_index
.
resize
(
req
->
fetch_var_names_size
());
for
(
int
i
=
0
;
i
<
req
->
fetch_var_names_size
();
++
i
)
{
fetch_index
[
i
]
=
model_config
->
_fetch_alias_name_to_index
[
req
->
fetch_var_names
(
i
)];
}
// response inst with only fetch_var_names
Response
*
res
=
mutable_data
<
Response
>
();
res
->
set_mean_infer_us
(
infer_time
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
FetchInst
*
fetch_inst
=
res
->
add_insts
();
for
(
auto
&
idx
:
fetch_index
)
{
Tensor
*
tensor
=
fetch_inst
->
add_tensor_array
();
// currently only response float tensor or lod_tensor
tensor
->
set_elem_type
(
1
);
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
VLOG
(
2
)
<<
"out["
<<
idx
<<
"] is lod_tensor"
;
tensor
->
add_shape
(
-
1
);
}
else
{
VLOG
(
2
)
<<
"out["
<<
idx
<<
"] is tensor"
;
for
(
int
k
=
1
;
k
<
out
->
at
(
idx
).
shape
.
size
();
++
k
)
{
VLOG
(
2
)
<<
"shape["
<<
k
-
1
<<
"]: "
<<
out
->
at
(
idx
).
shape
[
k
];
tensor
->
add_shape
(
out
->
at
(
idx
).
shape
[
k
]);
}
}
}
}
int
var_idx
=
0
;
for
(
auto
&
idx
:
fetch_index
)
{
float
*
data_ptr
=
static_cast
<
float
*>
(
out
->
at
(
idx
).
data
.
data
());
int
cap
=
1
;
for
(
int
j
=
1
;
j
<
out
->
at
(
idx
).
shape
.
size
();
++
j
)
{
cap
*=
out
->
at
(
idx
).
shape
[
j
];
}
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
out
->
at
(
idx
).
lod
[
0
][
j
];
k
<
out
->
at
(
idx
).
lod
[
0
][
j
+
1
];
k
++
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
var_idx
)
->
add_data
(
reinterpret_cast
<
char
*>
(
&
(
data_ptr
[
k
])),
sizeof
(
float
));
}
}
}
else
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
j
*
cap
;
k
<
(
j
+
1
)
*
cap
;
++
k
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
var_idx
)
->
add_data
(
reinterpret_cast
<
char
*>
(
&
(
data_ptr
[
k
])),
sizeof
(
float
));
}
}
}
var_idx
++
;
}
return
0
;
}
DEFINE_OP
(
GeneralInferOp
);
...
...
core/general-server/op/general_infer_op.h
浏览文件 @
f369d66a
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
...
...
@@ -24,22 +25,21 @@
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
static
const
char
*
GENERAL_MODEL_NAME
=
"general_model"
;
class
GeneralInferOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
>
{
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralInferOp
);
int
inference
();
};
}
// namespace serving
...
...
core/general-server/op/general_reader_op.cpp
浏览文件 @
f369d66a
...
...
@@ -16,6 +16,7 @@
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_infer_helper.h"
#include "core/general-server/op/general_reader_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
...
...
@@ -77,16 +78,12 @@ int GeneralReaderOp::inference() {
std
::
vector
<
int64_t
>
elem_size
;
std
::
vector
<
int64_t
>
capacity
;
General
ReaderOutput
*
res
=
mutable_data
<
GeneralReaderOutput
>
();
TensorVector
*
in
=
&
res
->
tensor_vector
;
General
Blob
*
res
=
mutable_data
<
GeneralBlob
>
();
TensorVector
*
out
=
&
res
->
tensor_vector
;
if
(
!
res
)
{
LOG
(
ERROR
)
<<
"Failed get op tls reader object output"
;
}
if
(
batch_size
<=
0
)
{
res
->
reader_status
=
-
1
;
return
0
;
}
int
var_num
=
req
->
insts
(
0
).
tensor_array_size
();
VLOG
(
2
)
<<
"var num: "
<<
var_num
;
...
...
@@ -102,9 +99,9 @@ int GeneralReaderOp::inference() {
VLOG
(
2
)
<<
"print general model config done."
;
//
check
res
->
reader_status
=
conf_check
(
req
,
model_config
);
if
(
re
s
->
reader_status
!=
0
)
{
//
TODO(guru4elephant): how to do conditional check?
int
ret
=
conf_check
(
req
,
model_config
);
if
(
re
t
!=
0
)
{
LOG
(
INFO
)
<<
"model conf of server:"
;
resource
.
print_general_model_config
(
model_config
);
return
0
;
...
...
@@ -142,26 +139,26 @@ int GeneralReaderOp::inference() {
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is tensor, capacity: "
<<
capacity
[
i
];
}
lod_tensor
.
name
=
model_config
->
_feed_name
[
i
];
in
->
push_back
(
lod_tensor
);
out
->
push_back
(
lod_tensor
);
}
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
in
->
at
(
i
).
lod
.
size
()
==
1
)
{
if
(
out
->
at
(
i
).
lod
.
size
()
==
1
)
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
const
Tensor
&
tensor
=
req
->
insts
(
j
).
tensor_array
(
i
);
int
data_len
=
tensor
.
data_size
();
VLOG
(
2
)
<<
"tensor size for var["
<<
i
<<
"]: "
<<
tensor
.
data_size
();
int
cur_len
=
in
->
at
(
i
).
lod
[
0
].
back
();
int
cur_len
=
out
->
at
(
i
).
lod
[
0
].
back
();
VLOG
(
2
)
<<
"current len: "
<<
cur_len
;
in
->
at
(
i
).
lod
[
0
].
push_back
(
cur_len
+
data_len
);
out
->
at
(
i
).
lod
[
0
].
push_back
(
cur_len
+
data_len
);
VLOG
(
2
)
<<
"new len: "
<<
cur_len
+
data_len
;
}
in
->
at
(
i
).
data
.
Resize
(
in
->
at
(
i
).
lod
[
0
].
back
()
*
elem_size
[
i
]);
in
->
at
(
i
).
shape
=
{
in
->
at
(
i
).
lod
[
0
].
back
(),
1
};
out
->
at
(
i
).
data
.
Resize
(
out
->
at
(
i
).
lod
[
0
].
back
()
*
elem_size
[
i
]);
out
->
at
(
i
).
shape
=
{
out
->
at
(
i
).
lod
[
0
].
back
(),
1
};
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is lod_tensor and len="
<<
in
->
at
(
i
).
lod
[
0
].
back
();
<<
"] is lod_tensor and len="
<<
out
->
at
(
i
).
lod
[
0
].
back
();
}
else
{
in
->
at
(
i
).
data
.
Resize
(
batch_size
*
capacity
[
i
]
*
elem_size
[
i
]);
out
->
at
(
i
).
data
.
Resize
(
batch_size
*
capacity
[
i
]
*
elem_size
[
i
]);
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is tensor and capacity="
<<
batch_size
*
capacity
[
i
];
}
...
...
@@ -169,29 +166,29 @@ int GeneralReaderOp::inference() {
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
elem_type
[
i
]
==
0
)
{
int64_t
*
dst_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
i
).
data
.
data
());
int64_t
*
dst_ptr
=
static_cast
<
int64_t
*>
(
out
->
at
(
i
).
data
.
data
());
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
0
;
k
<
req
->
insts
(
j
).
tensor_array
(
i
).
data_size
();
++
k
)
{
dst_ptr
[
offset
+
k
]
=
*
(
const
int64_t
*
)
req
->
insts
(
j
).
tensor_array
(
i
).
data
(
k
).
c_str
();
}
if
(
in
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
in
->
at
(
i
).
lod
[
0
][
j
+
1
];
if
(
out
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
out
->
at
(
i
).
lod
[
0
][
j
+
1
];
}
else
{
offset
+=
capacity
[
i
];
}
}
}
else
{
float
*
dst_ptr
=
static_cast
<
float
*>
(
in
->
at
(
i
).
data
.
data
());
float
*
dst_ptr
=
static_cast
<
float
*>
(
out
->
at
(
i
).
data
.
data
());
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
0
;
k
<
req
->
insts
(
j
).
tensor_array
(
i
).
data_size
();
++
k
)
{
dst_ptr
[
offset
+
k
]
=
*
(
const
float
*
)
req
->
insts
(
j
).
tensor_array
(
i
).
data
(
k
).
c_str
();
}
if
(
in
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
in
->
at
(
i
).
lod
[
0
][
j
+
1
];
if
(
out
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
out
->
at
(
i
).
lod
[
0
][
j
+
1
];
}
else
{
offset
+=
capacity
[
i
];
}
...
...
core/general-server/op/general_reader_op.h
浏览文件 @
f369d66a
...
...
@@ -25,6 +25,7 @@
#endif
#include <string>
#include "core/predictor/framework/resource.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/load_general_model_service.pb.h"
...
...
@@ -32,28 +33,15 @@ namespace baidu {
namespace
paddle_serving
{
namespace
serving
{
struct
GeneralReaderOutput
{
std
::
vector
<
paddle
::
PaddleTensor
>
tensor_vector
;
int
reader_status
=
0
;
void
Clear
()
{
size_t
tensor_count
=
tensor_vector
.
size
();
for
(
size_t
ti
=
0
;
ti
<
tensor_count
;
++
ti
)
{
tensor_vector
[
ti
].
shape
.
clear
();
}
tensor_vector
.
clear
();
}
std
::
string
ShortDebugString
()
const
{
return
"Not implemented!"
;
}
};
class
GeneralReaderOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
General
ReaderOutput
>
{
General
Blob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralReaderOp
);
int
inference
();
};
}
// namespace serving
...
...
core/general-server/op/general_response_op.cpp
0 → 100644
浏览文件 @
f369d66a
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_infer_helper.h"
#include "core/general-server/op/general_response_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
FetchInst
;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralResponseOp
::
inference
()
{
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
());
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op: "
<<
pre_name
();
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
GetBatchSize
();
VLOG
(
2
)
<<
"input batch size: "
<<
batch_size
;
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
VLOG
(
2
)
<<
"start to call load general model_conf op"
;
baidu
::
paddle_serving
::
predictor
::
Resource
&
resource
=
baidu
::
paddle_serving
::
predictor
::
Resource
::
instance
();
VLOG
(
2
)
<<
"get resource pointer done."
;
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
();
std
::
vector
<
int
>
fetch_index
;
fetch_index
.
resize
(
req
->
fetch_var_names_size
());
for
(
int
i
=
0
;
i
<
req
->
fetch_var_names_size
();
++
i
)
{
fetch_index
[
i
]
=
model_config
->
_fetch_alias_name_to_index
[
req
->
fetch_var_names
(
i
)];
}
// response inst with only fetch_var_names
Response
*
res
=
mutable_data
<
Response
>
();
// res->set_mean_infer_us(infer_time);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
FetchInst
*
fetch_inst
=
res
->
add_insts
();
for
(
auto
&
idx
:
fetch_index
)
{
Tensor
*
tensor
=
fetch_inst
->
add_tensor_array
();
// currently only response float tensor or lod_tensor
tensor
->
set_elem_type
(
1
);
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
VLOG
(
2
)
<<
"out["
<<
idx
<<
" is lod_tensor"
;
tensor
->
add_shape
(
-
1
);
}
else
{
VLOG
(
2
)
<<
"out["
<<
idx
<<
"] is tensor"
;
for
(
int
k
=
1
;
k
<
in
->
at
(
idx
).
shape
.
size
();
++
k
)
{
VLOG
(
2
)
<<
"shape["
<<
k
-
1
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
tensor
->
add_shape
(
in
->
at
(
idx
).
shape
[
k
]);
}
}
}
}
int
var_idx
=
0
;
for
(
auto
&
idx
:
fetch_index
)
{
float
*
data_ptr
=
static_cast
<
float
*>
(
in
->
at
(
idx
).
data
.
data
());
int
cap
=
1
;
for
(
int
j
=
1
;
j
<
in
->
at
(
idx
).
shape
.
size
();
++
j
)
{
cap
*=
in
->
at
(
idx
).
shape
[
j
];
}
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
in
->
at
(
idx
).
lod
[
0
][
j
];
k
<
in
->
at
(
idx
).
lod
[
0
][
j
+
1
];
k
++
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
var_idx
)
->
add_data
(
reinterpret_cast
<
char
*>
(
&
(
data_ptr
[
k
])),
sizeof
(
float
));
}
}
}
else
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
j
*
cap
;
k
<
(
j
+
1
)
*
cap
;
++
k
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
var_idx
)
->
add_data
(
reinterpret_cast
<
char
*>
(
&
(
data_ptr
[
k
])),
sizeof
(
float
));
}
}
}
var_idx
++
;
}
return
0
;
}
DEFINE_OP
(
GeneralResponseOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_
text_infer
_op.h
→
core/general-server/op/general_
response
_op.h
浏览文件 @
f369d66a
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
...
...
@@ -29,15 +30,16 @@ namespace baidu {
namespace
paddle_serving
{
namespace
serving
{
class
General
TextInfer
Op
class
General
Response
Op
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
General
TextInfer
Op
);
DECLARE_OP
(
General
Response
Op
);
int
inference
();
};
}
// namespace serving
...
...
core/general-server/op/general_text_reader_op.cpp
浏览文件 @
f369d66a
...
...
@@ -42,7 +42,7 @@ int GeneralTextReaderOp::inference() {
std
::
vector
<
int64_t
>
elem_size
;
std
::
vector
<
int64_t
>
capacity
;
General
TextReaderOutput
*
res
=
mutable_data
<
GeneralTextReaderOutput
>
();
General
Blob
*
res
=
mutable_data
<
GeneralBlob
>
();
TensorVector
*
in
=
&
res
->
tensor_vector
;
if
(
!
res
)
{
...
...
@@ -50,8 +50,8 @@ int GeneralTextReaderOp::inference() {
}
if
(
batch_size
<=
0
)
{
res
->
reader_status
=
-
1
;
return
0
;
LOG
(
ERROR
)
<<
"Batch size < 0"
;
return
-
1
;
}
int
var_num
=
req
->
insts
(
0
).
tensor_array_size
();
...
...
core/general-server/op/general_text_reader_op.h
浏览文件 @
f369d66a
...
...
@@ -25,6 +25,7 @@
#endif
#include <string>
#include "core/predictor/framework/resource.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/load_general_model_service.pb.h"
...
...
@@ -32,23 +33,8 @@ namespace baidu {
namespace
paddle_serving
{
namespace
serving
{
struct
GeneralTextReaderOutput
{
std
::
vector
<
paddle
::
PaddleTensor
>
tensor_vector
;
int
reader_status
=
0
;
void
Clear
()
{
size_t
tensor_count
=
tensor_vector
.
size
();
for
(
size_t
ti
=
0
;
ti
<
tensor_count
;
++
ti
)
{
tensor_vector
[
ti
].
shape
.
clear
();
}
tensor_vector
.
clear
();
}
std
::
string
ShortDebugString
()
const
{
return
"Not implemented!"
;
}
};
class
GeneralTextReaderOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralTextReaderOutput
>
{
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
...
...
core/general-server/op/general_text_
infer
_op.cpp
→
core/general-server/op/general_text_
response
_op.cpp
浏览文件 @
f369d66a
...
...
@@ -16,10 +16,7 @@
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_text_infer_op.h"
#include "core/general-server/op/general_infer_op.h"
#include "core/general-server/op/general_text_reader_op.h"
#include "core/general-server/op/general_reader_op.h"
#include "core/general-server/op/general_text_response_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
...
...
@@ -29,7 +26,6 @@ namespace baidu {
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
serving
::
GENERAL_MODEL_NAME
;
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
...
...
@@ -39,40 +35,21 @@ using baidu::paddle_serving::predictor::general_model::FetchInst;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralTextInferOp
::
inference
()
{
const
GeneralTextReaderOutput
*
reader_out
=
get_depend_argument
<
GeneralTextReaderOutput
>
(
"general_text_reader_op"
);
if
(
!
reader_out
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op:"
<<
"general_text_reader_op"
;
return
-
1
;
}
int
GeneralTextResponseOp
::
inference
()
{
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
());
i
nt
reader_status
=
reader_out
->
reader_status
;
if
(
reader_status
!=
0
)
{
LOG
(
ERROR
)
<<
"Read request wrong."
;
i
f
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op: "
<<
pre_name
()
;
return
-
1
;
}
const
TensorVector
*
in
=
&
reader_out
->
tensor_vector
;
TensorVector
*
out
=
butil
::
get_object
<
TensorVector
>
();
int
batch_size
=
0
;
if
(
in
->
at
(
0
).
lod
.
size
()
==
1
)
{
batch_size
=
in
->
at
(
0
).
lod
[
0
].
size
()
-
1
;
}
else
{
batch_size
=
in
->
at
(
0
).
shape
[
0
];
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
GetBatchSize
();
VLOG
(
2
)
<<
"infer batch size: "
<<
batch_size
;
// infer
Timer
timeline
;
double
infer_time
=
0.0
;
timeline
.
Start
();
if
(
InferManager
::
instance
().
infer
(
GENERAL_MODEL_NAME
,
in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
GENERAL_MODEL_NAME
;
return
-
1
;
}
timeline
.
Pause
();
infer_time
=
timeline
.
ElapsedUS
();
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
...
...
@@ -94,7 +71,7 @@ int GeneralTextInferOp::inference() {
// response inst with only fetch_var_names
Response
*
res
=
mutable_data
<
Response
>
();
res
->
set_mean_infer_us
(
infer_time
);
//
res->set_mean_infer_us(infer_time);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
FetchInst
*
fetch_inst
=
res
->
add_insts
();
...
...
@@ -107,10 +84,10 @@ int GeneralTextInferOp::inference() {
tensor
->
add_shape
(
-
1
);
}
else
{
VLOG
(
2
)
<<
"out["
<<
idx
<<
"] is tensor"
;
for
(
int
k
=
1
;
k
<
out
->
at
(
idx
).
shape
.
size
();
++
k
)
{
for
(
int
k
=
1
;
k
<
in
->
at
(
idx
).
shape
.
size
();
++
k
)
{
VLOG
(
2
)
<<
"shape["
<<
k
-
1
<<
"]: "
<<
out
->
at
(
idx
).
shape
[
k
];
tensor
->
add_shape
(
out
->
at
(
idx
).
shape
[
k
]);
<<
in
->
at
(
idx
).
shape
[
k
];
tensor
->
add_shape
(
in
->
at
(
idx
).
shape
[
k
]);
}
}
}
...
...
@@ -118,15 +95,15 @@ int GeneralTextInferOp::inference() {
int
var_idx
=
0
;
for
(
auto
&
idx
:
fetch_index
)
{
float
*
data_ptr
=
static_cast
<
float
*>
(
out
->
at
(
idx
).
data
.
data
());
float
*
data_ptr
=
static_cast
<
float
*>
(
in
->
at
(
idx
).
data
.
data
());
int
cap
=
1
;
for
(
int
j
=
1
;
j
<
out
->
at
(
idx
).
shape
.
size
();
++
j
)
{
cap
*=
out
->
at
(
idx
).
shape
[
j
];
for
(
int
j
=
1
;
j
<
in
->
at
(
idx
).
shape
.
size
();
++
j
)
{
cap
*=
in
->
at
(
idx
).
shape
[
j
];
}
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
out
->
at
(
idx
).
lod
[
0
][
j
];
k
<
out
->
at
(
idx
).
lod
[
0
][
j
+
1
];
k
++
)
{
for
(
int
k
=
in
->
at
(
idx
).
lod
[
0
][
j
];
k
<
in
->
at
(
idx
).
lod
[
0
][
j
+
1
];
k
++
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
k
]);
}
...
...
@@ -143,7 +120,7 @@ int GeneralTextInferOp::inference() {
}
return
0
;
}
DEFINE_OP
(
GeneralText
Infer
Op
);
DEFINE_OP
(
GeneralText
Response
Op
);
}
// namespace serving
}
// namespace paddle_serving
...
...
core/general-server/op/general_text_response_op.h
0 → 100644
浏览文件 @
f369d66a
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
class
GeneralTextResponseOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralTextResponseOp
);
int
inference
();
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/predictor/framework/dag_view.cpp
浏览文件 @
f369d66a
...
...
@@ -45,6 +45,8 @@ int DagView::init(Dag* dag, const std::string& service_name) {
<<
"at:"
<<
si
;
return
ERR_MEM_ALLOC_FAILURE
;
}
VLOG
(
2
)
<<
"stage["
<<
si
<<
"] name: "
<<
stage
->
full_name
;
VLOG
(
2
)
<<
"stage["
<<
si
<<
"] node size: "
<<
stage
->
nodes
.
size
();
vstage
->
full_name
=
service_name
+
NAME_DELIMITER
+
stage
->
full_name
;
uint32_t
node_size
=
stage
->
nodes
.
size
();
// create tls view node
...
...
@@ -63,16 +65,30 @@ int DagView::init(Dag* dag, const std::string& service_name) {
}
// initialize a TLS op object
VLOG
(
2
)
<<
"dag view initialized:
\n
"
<<
"node id: "
<<
node
->
id
<<
"
\n
"
<<
"node name: "
<<
node
->
name
<<
"
\n
"
<<
"node type: "
<<
node
->
type
;
if
(
op
->
init
(
_bus
,
dag
,
node
->
id
,
node
->
name
,
node
->
type
,
node
->
conf
)
!=
0
)
{
LOG
(
WARNING
)
<<
"Failed init op, type:"
<<
node
->
type
;
return
ERR_INTERNAL_FAILURE
;
}
op
->
set_full_name
(
service_name
+
NAME_DELIMITER
+
node
->
full_name
);
vnode
->
conf
=
node
;
vnode
->
op
=
op
;
vstage
->
nodes
.
push_back
(
vnode
);
}
// TODO(guru4elephant): this seems buggy, please review later
if
(
si
>
0
)
{
VLOG
(
2
)
<<
"set op pre name:
\n
"
<<
"current op name: "
<<
vstage
->
nodes
.
back
()
->
op
->
op_name
()
<<
" previous op name: "
<<
_view
[
si
-
1
]
->
nodes
.
back
()
->
op
->
op_name
();
vstage
->
nodes
.
back
()
->
op
->
set_pre_node_name
(
_view
[
si
-
1
]
->
nodes
.
back
()
->
op
->
op_name
());
}
_view
.
push_back
(
vstage
);
}
...
...
core/predictor/op/op.cpp
浏览文件 @
f369d66a
...
...
@@ -127,6 +127,7 @@ int Op::process(bool debug) {
return -1;
}
}*/
if
(
debug
&&
_timer
)
{
_timer
->
check
(
"depend"
);
}
...
...
core/predictor/op/op.h
浏览文件 @
f369d66a
...
...
@@ -128,10 +128,18 @@ class Op {
const
char
*
name
()
const
;
const
std
::
string
&
op_name
()
const
{
return
_name
;
}
const
std
::
string
&
full_name
()
const
{
return
_full_name
;
}
const
std
::
string
&
pre_name
()
const
{
return
_pre_node_name
;
}
void
set_full_name
(
const
std
::
string
full_name
)
{
_full_name
=
full_name
;
}
void
set_pre_node_name
(
const
std
::
string
pre_name
)
{
_pre_node_name
=
pre_name
;
}
const
std
::
string
&
type
()
const
;
uint32_t
id
()
const
;
...
...
@@ -181,6 +189,7 @@ class Op {
Bus
*
_bus
;
Dag
*
_dag
;
uint32_t
_id
;
std
::
string
_pre_node_name
;
// only for sequential execution
std
::
string
_name
;
std
::
string
_full_name
;
// service_workflow_stageindex_opname
std
::
string
_type
;
...
...
go/client_app/imdb_client.go
浏览文件 @
f369d66a
...
...
@@ -21,7 +21,7 @@ import (
"bufio"
"strconv"
"os"
"
serving_client"
serving_client
"github.com/PaddlePaddle/Serving/go/
serving_client"
)
func
main
()
{
...
...
python/paddle_serving_server/__init__.py
浏览文件 @
f369d66a
...
...
@@ -23,12 +23,15 @@ from version import serving_server_version
class
OpMaker
(
object
):
def
__init__
(
self
):
self
.
op_dict
=
{
"general_infer"
:
"GeneralInferOp"
,
"general_text_infer"
:
"GeneralText
InferOp"
,
self
.
op_dict
=
{
"general_infer"
:
"General
InferOp"
,
"general_reader"
:
"GeneralReaderOp"
,
"general_response"
:
"GeneralResponseOp"
,
"general_text_reader"
:
"GeneralTextReaderOp"
,
"general_text_response"
:
"GeneralTextResponseOp"
,
"general_single_kv"
:
"GeneralSingleKVOp"
,
"general_dist_kv"
:
"GeneralDistKVOp"
}
"general_dist_kv"
:
"GeneralDistKVOp"
}
# currently, inputs and outputs are not used
# when we have OpGraphMaker, inputs and outputs are necessary
...
...
python/paddle_serving_server_gpu/__init__.py
浏览文件 @
f369d66a
...
...
@@ -24,10 +24,13 @@ from version import serving_server_version
class
OpMaker
(
object
):
def
__init__
(
self
):
self
.
op_dict
=
{
"general_infer"
:
"GeneralInferOp"
,
"general_reader"
:
"GeneralReaderOp"
,
"general_single_kv"
:
"GeneralSingleKVOp"
,
"general_dist_kv"
:
"GeneralDistKVOp"
"general_infer"
:
"GeneralInferOp"
,
"general_reader"
:
"GeneralReaderOp"
,
"general_response"
:
"GeneralResponseOp"
,
"general_text_reader"
:
"GeneralTextReaderOp"
,
"general_text_response"
:
"GeneralTextResponseOp"
,
"general_single_kv"
:
"GeneralSingleKVOp"
,
"general_dist_kv"
:
"GeneralDistKVOp"
}
# currently, inputs and outputs are not used
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录