提交 f369d66a 编写于 作者: M MRXLT

fix conflict

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
namespace baidu {
namespace paddle_serving {
namespace serving {
static const char* GENERAL_MODEL_NAME = "general_model";
struct GeneralBlob {
std::vector<paddle::PaddleTensor> tensor_vector;
double infer_time;
std::vector<std::string> fetch_name_vector;
void Clear() {
size_t tensor_count = tensor_vector.size();
for (size_t ti = 0; ti < tensor_count; ++ti) {
tensor_vector[ti].shape.clear();
}
tensor_vector.clear();
}
int GetBatchSize() const {
if (tensor_vector.size() > 0) {
if (tensor_vector[0].lod.size() == 1) {
return tensor_vector[0].lod[0].size() - 1;
} else {
return tensor_vector[0].shape[0];
}
} else {
return -1;
}
}
std::string ShortDebugString() const { return "Not implemented!"; }
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
......@@ -17,7 +17,6 @@
#include <memory>
#include <sstream>
#include "core/general-server/op/general_infer_op.h"
#include "core/general-server/op/general_reader_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
......@@ -37,34 +36,26 @@ using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralInferOp::inference() {
const GeneralReaderOutput *reader_out =
get_depend_argument<GeneralReaderOutput>("general_reader_op");
if (!reader_out) {
const GeneralBlob * input_blob =
get_depend_argument<GeneralBlob>(pre_name());
GeneralBlob * output_blob = mutable_data<GeneralBlob>();
if (!input_blob) {
LOG(ERROR) << "Failed mutable depended argument, op:"
<< "general_reader_op";
<< pre_name();
return -1;
}
int reader_status = reader_out->reader_status;
if (reader_status != 0) {
LOG(ERROR) << "Read request wrong.";
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->GetBatchSize();
const TensorVector *in = &reader_out->tensor_vector;
TensorVector *out = butil::get_object<TensorVector>();
int batch_size = 0;
if ((*in)[0].lod.size() == 1) {
batch_size = (*in)[0].lod[0].size() - 1;
}
else {
batch_size = (*in)[0].shape[0];
}
VLOG(2) << "infer batch size: " << batch_size;
// infer
Timer timeline;
double infer_time = 0.0;
timeline.Start();
VLOG(2) << "batch size : " << batch_size;
if (InferManager::instance().infer(GENERAL_MODEL_NAME, in, out, batch_size)) {
LOG(ERROR) << "Failed do infer in fluid model: " << GENERAL_MODEL_NAME;
return -1;
......@@ -72,73 +63,6 @@ int GeneralInferOp::inference() {
timeline.Pause();
infer_time = timeline.ElapsedUS();
const Request *req = dynamic_cast<const Request *>(get_request_message());
VLOG(2) << "start to call load general model_conf op";
baidu::paddle_serving::predictor::Resource &resource =
baidu::paddle_serving::predictor::Resource::instance();
VLOG(2) << "get resource pointer done.";
std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config();
std::vector<int> fetch_index;
fetch_index.resize(req->fetch_var_names_size());
for (int i = 0; i < req->fetch_var_names_size(); ++i) {
fetch_index[i] =
model_config->_fetch_alias_name_to_index[req->fetch_var_names(i)];
}
// response inst with only fetch_var_names
Response *res = mutable_data<Response>();
res->set_mean_infer_us(infer_time);
for (int i = 0; i < batch_size; ++i) {
FetchInst *fetch_inst = res->add_insts();
for (auto & idx : fetch_index) {
Tensor *tensor = fetch_inst->add_tensor_array();
// currently only response float tensor or lod_tensor
tensor->set_elem_type(1);
if (model_config->_is_lod_fetch[idx]) {
VLOG(2) << "out[" << idx << "] is lod_tensor";
tensor->add_shape(-1);
} else {
VLOG(2) << "out[" << idx << "] is tensor";
for (int k = 1; k < out->at(idx).shape.size(); ++k) {
VLOG(2) << "shape[" << k - 1 << "]: "
<< out->at(idx).shape[k];
tensor->add_shape(out->at(idx).shape[k]);
}
}
}
}
int var_idx = 0;
for (auto & idx : fetch_index) {
float *data_ptr = static_cast<float *>(out->at(idx).data.data());
int cap = 1;
for (int j = 1; j < out->at(idx).shape.size(); ++j) {
cap *= out->at(idx).shape[j];
}
if (model_config->_is_lod_fetch[idx]) {
for (int j = 0; j < batch_size; ++j) {
for (int k = out->at(idx).lod[0][j];
k < out->at(idx).lod[0][j + 1]; k++) {
res->mutable_insts(j)->mutable_tensor_array(var_idx)->add_data(
reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
}
}
} else {
for (int j = 0; j < batch_size; ++j) {
for (int k = j * cap; k < (j + 1) * cap; ++k) {
res->mutable_insts(j)->mutable_tensor_array(var_idx)->add_data(
reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
}
}
}
var_idx++;
}
return 0;
}
DEFINE_OP(GeneralInferOp);
......
......@@ -13,6 +13,7 @@
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
......@@ -24,22 +25,21 @@
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
static const char* GENERAL_MODEL_NAME = "general_model";
class GeneralInferOp
: public baidu::paddle_serving::predictor::OpWithChannel<
baidu::paddle_serving::predictor::general_model::Response> {
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralInferOp);
int inference();
};
} // namespace serving
......
......@@ -16,6 +16,7 @@
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_infer_helper.h"
#include "core/general-server/op/general_reader_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
......@@ -77,16 +78,12 @@ int GeneralReaderOp::inference() {
std::vector<int64_t> elem_size;
std::vector<int64_t> capacity;
GeneralReaderOutput *res = mutable_data<GeneralReaderOutput>();
TensorVector *in = &res->tensor_vector;
GeneralBlob *res = mutable_data<GeneralBlob>();
TensorVector *out = &res->tensor_vector;
if (!res) {
LOG(ERROR) << "Failed get op tls reader object output";
}
if (batch_size <= 0) {
res->reader_status = -1;
return 0;
}
int var_num = req->insts(0).tensor_array_size();
VLOG(2) << "var num: " << var_num;
......@@ -102,9 +99,9 @@ int GeneralReaderOp::inference() {
VLOG(2) << "print general model config done.";
// check
res->reader_status = conf_check(req, model_config);
if (res->reader_status != 0) {
// TODO(guru4elephant): how to do conditional check?
int ret = conf_check(req, model_config);
if (ret != 0) {
LOG(INFO) << "model conf of server:";
resource.print_general_model_config(model_config);
return 0;
......@@ -142,26 +139,26 @@ int GeneralReaderOp::inference() {
VLOG(2) << "var[" << i << "] is tensor, capacity: " << capacity[i];
}
lod_tensor.name = model_config->_feed_name[i];
in->push_back(lod_tensor);
out->push_back(lod_tensor);
}
for (int i = 0; i < var_num; ++i) {
if (in->at(i).lod.size() == 1) {
if (out->at(i).lod.size() == 1) {
for (int j = 0; j < batch_size; ++j) {
const Tensor &tensor = req->insts(j).tensor_array(i);
int data_len = tensor.data_size();
VLOG(2) << "tensor size for var[" << i << "]: " << tensor.data_size();
int cur_len = in->at(i).lod[0].back();
int cur_len = out->at(i).lod[0].back();
VLOG(2) << "current len: " << cur_len;
in->at(i).lod[0].push_back(cur_len + data_len);
out->at(i).lod[0].push_back(cur_len + data_len);
VLOG(2) << "new len: " << cur_len + data_len;
}
in->at(i).data.Resize(in->at(i).lod[0].back() * elem_size[i]);
in->at(i).shape = {in->at(i).lod[0].back(), 1};
out->at(i).data.Resize(out->at(i).lod[0].back() * elem_size[i]);
out->at(i).shape = {out->at(i).lod[0].back(), 1};
VLOG(2) << "var[" << i
<< "] is lod_tensor and len=" << in->at(i).lod[0].back();
<< "] is lod_tensor and len=" << out->at(i).lod[0].back();
} else {
in->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]);
out->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]);
VLOG(2) << "var[" << i
<< "] is tensor and capacity=" << batch_size * capacity[i];
}
......@@ -169,29 +166,29 @@ int GeneralReaderOp::inference() {
for (int i = 0; i < var_num; ++i) {
if (elem_type[i] == 0) {
int64_t *dst_ptr = static_cast<int64_t *>(in->at(i).data.data());
int64_t *dst_ptr = static_cast<int64_t *>(out->at(i).data.data());
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
dst_ptr[offset + k] =
*(const int64_t *)req->insts(j).tensor_array(i).data(k).c_str();
}
if (in->at(i).lod.size() == 1) {
offset = in->at(i).lod[0][j + 1];
if (out->at(i).lod.size() == 1) {
offset = out->at(i).lod[0][j + 1];
} else {
offset += capacity[i];
}
}
} else {
float *dst_ptr = static_cast<float *>(in->at(i).data.data());
float *dst_ptr = static_cast<float *>(out->at(i).data.data());
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
dst_ptr[offset + k] =
*(const float *)req->insts(j).tensor_array(i).data(k).c_str();
}
if (in->at(i).lod.size() == 1) {
offset = in->at(i).lod[0][j + 1];
if (out->at(i).lod.size() == 1) {
offset = out->at(i).lod[0][j + 1];
} else {
offset += capacity[i];
}
......
......@@ -25,6 +25,7 @@
#endif
#include <string>
#include "core/predictor/framework/resource.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/load_general_model_service.pb.h"
......@@ -32,28 +33,15 @@ namespace baidu {
namespace paddle_serving {
namespace serving {
struct GeneralReaderOutput {
std::vector<paddle::PaddleTensor> tensor_vector;
int reader_status = 0;
void Clear() {
size_t tensor_count = tensor_vector.size();
for (size_t ti = 0; ti < tensor_count; ++ti) {
tensor_vector[ti].shape.clear();
}
tensor_vector.clear();
}
std::string ShortDebugString() const { return "Not implemented!"; }
};
class GeneralReaderOp : public baidu::paddle_serving::predictor::OpWithChannel<
GeneralReaderOutput> {
GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralReaderOp);
int inference();
};
} // namespace serving
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_infer_helper.h"
#include "core/general-server/op/general_response_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralResponseOp::inference() {
const GeneralBlob *input_blob =
get_depend_argument<GeneralBlob>(pre_name());
if (!input_blob) {
LOG(ERROR) << "Failed mutable depended argument, op: "
<< pre_name();
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
int batch_size = input_blob->GetBatchSize();
VLOG(2) << "input batch size: " << batch_size;
const Request *req = dynamic_cast<const Request *>(get_request_message());
VLOG(2) << "start to call load general model_conf op";
baidu::paddle_serving::predictor::Resource &resource =
baidu::paddle_serving::predictor::Resource::instance();
VLOG(2) << "get resource pointer done.";
std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config();
std::vector<int> fetch_index;
fetch_index.resize(req->fetch_var_names_size());
for (int i = 0; i < req->fetch_var_names_size(); ++i) {
fetch_index[i] =
model_config->_fetch_alias_name_to_index[req->fetch_var_names(i)];
}
// response inst with only fetch_var_names
Response *res = mutable_data<Response>();
// res->set_mean_infer_us(infer_time);
for (int i = 0; i < batch_size; ++i) {
FetchInst *fetch_inst = res->add_insts();
for (auto & idx : fetch_index) {
Tensor *tensor = fetch_inst->add_tensor_array();
// currently only response float tensor or lod_tensor
tensor->set_elem_type(1);
if (model_config->_is_lod_fetch[idx]) {
VLOG(2) << "out[" << idx << " is lod_tensor";
tensor->add_shape(-1);
} else {
VLOG(2) << "out[" << idx << "] is tensor";
for (int k = 1; k < in->at(idx).shape.size(); ++k) {
VLOG(2) << "shape[" << k - 1 << "]: "
<< in->at(idx).shape[k];
tensor->add_shape(in->at(idx).shape[k]);
}
}
}
}
int var_idx = 0;
for (auto & idx : fetch_index) {
float *data_ptr = static_cast<float *>(in->at(idx).data.data());
int cap = 1;
for (int j = 1; j < in->at(idx).shape.size(); ++j) {
cap *= in->at(idx).shape[j];
}
if (model_config->_is_lod_fetch[idx]) {
for (int j = 0; j < batch_size; ++j) {
for (int k = in->at(idx).lod[0][j];
k < in->at(idx).lod[0][j + 1]; k++) {
res->mutable_insts(j)->mutable_tensor_array(var_idx)->add_data(
reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
}
}
} else {
for (int j = 0; j < batch_size; ++j) {
for (int k = j * cap; k < (j + 1) * cap; ++k) {
res->mutable_insts(j)->mutable_tensor_array(var_idx)->add_data(
reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
}
}
}
var_idx++;
}
return 0;
}
DEFINE_OP(GeneralResponseOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
......@@ -13,6 +13,7 @@
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
......@@ -29,15 +30,16 @@ namespace baidu {
namespace paddle_serving {
namespace serving {
class GeneralTextInferOp
class GeneralResponseOp
: public baidu::paddle_serving::predictor::OpWithChannel<
baidu::paddle_serving::predictor::general_model::Response> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralTextInferOp);
DECLARE_OP(GeneralResponseOp);
int inference();
};
} // namespace serving
......
......@@ -42,7 +42,7 @@ int GeneralTextReaderOp::inference() {
std::vector<int64_t> elem_size;
std::vector<int64_t> capacity;
GeneralTextReaderOutput *res = mutable_data<GeneralTextReaderOutput>();
GeneralBlob *res = mutable_data<GeneralBlob>();
TensorVector *in = &res->tensor_vector;
if (!res) {
......@@ -50,8 +50,8 @@ int GeneralTextReaderOp::inference() {
}
if (batch_size <= 0) {
res->reader_status = -1;
return 0;
LOG(ERROR) << "Batch size < 0";
return -1;
}
int var_num = req->insts(0).tensor_array_size();
......
......@@ -25,6 +25,7 @@
#endif
#include <string>
#include "core/predictor/framework/resource.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/load_general_model_service.pb.h"
......@@ -32,23 +33,8 @@ namespace baidu {
namespace paddle_serving {
namespace serving {
struct GeneralTextReaderOutput {
std::vector<paddle::PaddleTensor> tensor_vector;
int reader_status = 0;
void Clear() {
size_t tensor_count = tensor_vector.size();
for (size_t ti = 0; ti < tensor_count; ++ti) {
tensor_vector[ti].shape.clear();
}
tensor_vector.clear();
}
std::string ShortDebugString() const { return "Not implemented!"; }
};
class GeneralTextReaderOp :
public baidu::paddle_serving::predictor::OpWithChannel<
GeneralTextReaderOutput> {
public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
......
......@@ -16,10 +16,7 @@
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_text_infer_op.h"
#include "core/general-server/op/general_infer_op.h"
#include "core/general-server/op/general_text_reader_op.h"
#include "core/general-server/op/general_reader_op.h"
#include "core/general-server/op/general_text_response_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
......@@ -29,7 +26,6 @@ namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::serving::GENERAL_MODEL_NAME;
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
......@@ -39,40 +35,21 @@ using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralTextInferOp::inference() {
const GeneralTextReaderOutput *reader_out =
get_depend_argument<GeneralTextReaderOutput>("general_text_reader_op");
if (!reader_out) {
LOG(ERROR) << "Failed mutable depended argument, op:"
<< "general_text_reader_op";
return -1;
}
int GeneralTextResponseOp::inference() {
const GeneralBlob *input_blob =
get_depend_argument<GeneralBlob>(pre_name());
int reader_status = reader_out->reader_status;
if (reader_status != 0) {
LOG(ERROR) << "Read request wrong.";
if (!input_blob) {
LOG(ERROR) << "Failed mutable depended argument, op: "
<< pre_name();
return -1;
}
const TensorVector *in = &reader_out->tensor_vector;
TensorVector *out = butil::get_object<TensorVector>();
int batch_size = 0;
if (in->at(0).lod.size() == 1) {
batch_size = in->at(0).lod[0].size() - 1;
} else {
batch_size = in->at(0).shape[0];
}
const TensorVector *in = &input_blob->tensor_vector;
int batch_size = input_blob->GetBatchSize();
VLOG(2) << "infer batch size: " << batch_size;
// infer
Timer timeline;
double infer_time = 0.0;
timeline.Start();
if (InferManager::instance().infer(GENERAL_MODEL_NAME, in, out, batch_size)) {
LOG(ERROR) << "Failed do infer in fluid model: " << GENERAL_MODEL_NAME;
return -1;
}
timeline.Pause();
infer_time = timeline.ElapsedUS();
const Request *req = dynamic_cast<const Request *>(get_request_message());
......@@ -94,7 +71,7 @@ int GeneralTextInferOp::inference() {
// response inst with only fetch_var_names
Response *res = mutable_data<Response>();
res->set_mean_infer_us(infer_time);
// res->set_mean_infer_us(infer_time);
for (int i = 0; i < batch_size; ++i) {
FetchInst *fetch_inst = res->add_insts();
......@@ -107,10 +84,10 @@ int GeneralTextInferOp::inference() {
tensor->add_shape(-1);
} else {
VLOG(2) << "out[" << idx << "] is tensor";
for (int k = 1; k < out->at(idx).shape.size(); ++k) {
for (int k = 1; k < in->at(idx).shape.size(); ++k) {
VLOG(2) << "shape[" << k - 1 << "]: "
<< out->at(idx).shape[k];
tensor->add_shape(out->at(idx).shape[k]);
<< in->at(idx).shape[k];
tensor->add_shape(in->at(idx).shape[k]);
}
}
}
......@@ -118,15 +95,15 @@ int GeneralTextInferOp::inference() {
int var_idx = 0;
for (auto & idx : fetch_index) {
float *data_ptr = static_cast<float *>(out->at(idx).data.data());
float *data_ptr = static_cast<float *>(in->at(idx).data.data());
int cap = 1;
for (int j = 1; j < out->at(idx).shape.size(); ++j) {
cap *= out->at(idx).shape[j];
for (int j = 1; j < in->at(idx).shape.size(); ++j) {
cap *= in->at(idx).shape[j];
}
if (model_config->_is_lod_fetch[idx]) {
for (int j = 0; j < batch_size; ++j) {
for (int k = out->at(idx).lod[0][j];
k < out->at(idx).lod[0][j + 1]; k++) {
for (int k = in->at(idx).lod[0][j];
k < in->at(idx).lod[0][j + 1]; k++) {
res->mutable_insts(j)->mutable_tensor_array(var_idx)->add_float_data(
data_ptr[k]);
}
......@@ -143,7 +120,7 @@ int GeneralTextInferOp::inference() {
}
return 0;
}
DEFINE_OP(GeneralTextInferOp);
DEFINE_OP(GeneralTextResponseOp);
} // namespace serving
} // namespace paddle_serving
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
class GeneralTextResponseOp
: public baidu::paddle_serving::predictor::OpWithChannel<
baidu::paddle_serving::predictor::general_model::Response> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralTextResponseOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
......@@ -45,6 +45,8 @@ int DagView::init(Dag* dag, const std::string& service_name) {
<< "at:" << si;
return ERR_MEM_ALLOC_FAILURE;
}
VLOG(2) << "stage[" << si << "] name: " << stage->full_name;
VLOG(2) << "stage[" << si << "] node size: " << stage->nodes.size();
vstage->full_name = service_name + NAME_DELIMITER + stage->full_name;
uint32_t node_size = stage->nodes.size();
// create tls view node
......@@ -63,16 +65,30 @@ int DagView::init(Dag* dag, const std::string& service_name) {
}
// initialize a TLS op object
VLOG(2) << "dag view initialized: \n"
<< "node id: " << node->id << "\n"
<< "node name: " << node->name << "\n"
<< "node type: " << node->type;
if (op->init(_bus, dag, node->id, node->name, node->type, node->conf) !=
0) {
LOG(WARNING) << "Failed init op, type:" << node->type;
return ERR_INTERNAL_FAILURE;
}
op->set_full_name(service_name + NAME_DELIMITER + node->full_name);
vnode->conf = node;
vnode->op = op;
vstage->nodes.push_back(vnode);
}
// TODO(guru4elephant): this seems buggy, please review later
if (si > 0) {
VLOG(2) << "set op pre name: \n"
<< "current op name: " << vstage->nodes.back()->op->op_name()
<< " previous op name: "
<< _view[si-1]->nodes.back()->op->op_name();
vstage->nodes.back()->op->set_pre_node_name(
_view[si-1]->nodes.back()->op->op_name());
}
_view.push_back(vstage);
}
......
......@@ -127,6 +127,7 @@ int Op::process(bool debug) {
return -1;
}
}*/
if (debug && _timer) {
_timer->check("depend");
}
......
......@@ -128,10 +128,18 @@ class Op {
const char* name() const;
const std::string& op_name() const { return _name; }
const std::string& full_name() const { return _full_name; }
const std::string& pre_name() const { return _pre_node_name; }
void set_full_name(const std::string full_name) { _full_name = full_name; }
void set_pre_node_name(const std::string pre_name) {
_pre_node_name = pre_name;
}
const std::string& type() const;
uint32_t id() const;
......@@ -181,6 +189,7 @@ class Op {
Bus* _bus;
Dag* _dag;
uint32_t _id;
std::string _pre_node_name; // only for sequential execution
std::string _name;
std::string _full_name; // service_workflow_stageindex_opname
std::string _type;
......
......@@ -21,7 +21,7 @@ import (
"bufio"
"strconv"
"os"
"serving_client"
serving_client "github.com/PaddlePaddle/Serving/go/serving_client"
)
func main() {
......
......@@ -23,12 +23,15 @@ from version import serving_server_version
class OpMaker(object):
def __init__(self):
self.op_dict = {"general_infer":"GeneralInferOp",
"general_text_infer":"GeneralTextInferOp",
self.op_dict = {
"general_infer":"GeneralInferOp",
"general_reader":"GeneralReaderOp",
"general_response":"GeneralResponseOp",
"general_text_reader":"GeneralTextReaderOp",
"general_text_response":"GeneralTextResponseOp",
"general_single_kv":"GeneralSingleKVOp",
"general_dist_kv":"GeneralDistKVOp"}
"general_dist_kv":"GeneralDistKVOp"
}
# currently, inputs and outputs are not used
# when we have OpGraphMaker, inputs and outputs are necessary
......
......@@ -24,10 +24,13 @@ from version import serving_server_version
class OpMaker(object):
def __init__(self):
self.op_dict = {
"general_infer": "GeneralInferOp",
"general_reader": "GeneralReaderOp",
"general_single_kv": "GeneralSingleKVOp",
"general_dist_kv": "GeneralDistKVOp"
"general_infer":"GeneralInferOp",
"general_reader":"GeneralReaderOp",
"general_response":"GeneralResponseOp",
"general_text_reader":"GeneralTextReaderOp",
"general_text_response":"GeneralTextResponseOp",
"general_single_kv":"GeneralSingleKVOp",
"general_dist_kv":"GeneralDistKVOp"
}
# currently, inputs and outputs are not used
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册