Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
f2e35fae
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f2e35fae
编写于
7月 10, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Serving
into develop
上级
256baca1
6b482837
变更
18
显示空白变更内容
内联
并排
Showing
18 changed file
with
275 addition
and
125 deletion
+275
-125
core/cube/cube-api/src/cube_cli.cpp
core/cube/cube-api/src/cube_cli.cpp
+24
-57
core/general-server/op/general_dist_kv_infer_op.cpp
core/general-server/op/general_dist_kv_infer_op.cpp
+6
-3
python/examples/bert/benchmark.sh
python/examples/bert/benchmark.sh
+27
-16
python/examples/criteo_ctr_with_cube/benchmark.py
python/examples/criteo_ctr_with_cube/benchmark.py
+9
-2
python/examples/criteo_ctr_with_cube/benchmark.sh
python/examples/criteo_ctr_with_cube/benchmark.sh
+19
-3
python/examples/criteo_ctr_with_cube/benchmark_cube.sh
python/examples/criteo_ctr_with_cube/benchmark_cube.sh
+33
-0
python/examples/criteo_ctr_with_cube/gen_key.py
python/examples/criteo_ctr_with_cube/gen_key.py
+20
-0
python/examples/criteo_ctr_with_cube/test_server.py
python/examples/criteo_ctr_with_cube/test_server.py
+5
-1
python/examples/criteo_ctr_with_cube/test_server_gpu.py
python/examples/criteo_ctr_with_cube/test_server_gpu.py
+5
-1
python/examples/grpc_impl_example/criteo_ctr_with_cube/test_server.py
...les/grpc_impl_example/criteo_ctr_with_cube/test_server.py
+5
-1
python/examples/grpc_impl_example/criteo_ctr_with_cube/test_server_gpu.py
...grpc_impl_example/criteo_ctr_with_cube/test_server_gpu.py
+5
-1
python/examples/imagenet/benchmark.py
python/examples/imagenet/benchmark.py
+25
-5
python/examples/imagenet/benchmark.sh
python/examples/imagenet/benchmark.sh
+26
-4
python/examples/imdb/benchmark.sh
python/examples/imdb/benchmark.sh
+21
-13
python/paddle_serving_app/reader/image_reader.py
python/paddle_serving_app/reader/image_reader.py
+1
-1
python/paddle_serving_server/__init__.py
python/paddle_serving_server/__init__.py
+22
-5
python/paddle_serving_server_gpu/__init__.py
python/paddle_serving_server_gpu/__init__.py
+22
-6
tools/serving_build.sh
tools/serving_build.sh
+0
-6
未找到文件。
core/cube/cube-api/src/cube_cli.cpp
浏览文件 @
f2e35fae
...
...
@@ -31,8 +31,9 @@ DEFINE_bool(print_output, false, "print output flag");
DEFINE_int32
(
thread_num
,
1
,
"thread num"
);
std
::
atomic
<
int
>
g_concurrency
(
0
);
std
::
vector
<
uint64_t
>
time_list
;
std
::
vector
<
std
::
vector
<
uint64_t
>
>
time_list
;
std
::
vector
<
uint64_t
>
request_list
;
int
turns
=
1000000
/
FLAGS_batch
;
namespace
{
inline
uint64_t
time_diff
(
const
struct
timeval
&
start_time
,
...
...
@@ -97,7 +98,7 @@ int run(int argc, char** argv, int thread_id) {
while
(
g_concurrency
.
load
()
>=
FLAGS_thread_num
)
{
}
g_concurrency
++
;
time_list
[
thread_id
].
resize
(
turns
);
while
(
index
<
file_size
)
{
// uint64_t key = strtoul(buffer, NULL, 10);
...
...
@@ -121,47 +122,12 @@ int run(int argc, char** argv, int thread_id) {
}
++
seek_counter
;
uint64_t
seek_cost
=
time_diff
(
seek_start
,
seek_end
);
seek_cost_total
+=
seek_cost
;
if
(
seek_cost
>
seek_cost_max
)
{
seek_cost_max
=
seek_cost
;
}
if
(
seek_cost
<
seek_cost_min
)
{
seek_cost_min
=
seek_cost
;
}
time_list
[
thread_id
][
request
-
1
]
=
seek_cost
;
keys
.
clear
();
values
.
clear
();
}
}
/*
if (keys.size() > 0) {
int ret = 0;
values.resize(keys.size());
TIME_FLAG(seek_start);
ret = cube->seek(FLAGS_dict, keys, &values);
TIME_FLAG(seek_end);
if (ret != 0) {
LOG(WARNING) << "cube seek failed";
} else if (FLAGS_print_output) {
for (size_t i = 0; i < keys.size(); ++i) {
fprintf(stdout,
"key:%lu value:%s\n",
keys[i],
string_to_hex(values[i].buff).c_str());
}
}
++seek_counter;
uint64_t seek_cost = time_diff(seek_start, seek_end);
seek_cost_total += seek_cost;
if (seek_cost > seek_cost_max) {
seek_cost_max = seek_cost;
}
if (seek_cost < seek_cost_min) {
seek_cost_min = seek_cost;
}
}
*/
g_concurrency
--
;
// fclose(key_file);
...
...
@@ -171,12 +137,6 @@ int run(int argc, char** argv, int thread_id) {
LOG
(
WARNING
)
<<
"destroy cube api failed err="
<<
ret
;
}
uint64_t
seek_cost_avg
=
seek_cost_total
/
seek_counter
;
LOG
(
INFO
)
<<
"seek cost avg = "
<<
seek_cost_avg
;
LOG
(
INFO
)
<<
"seek cost max = "
<<
seek_cost_max
;
LOG
(
INFO
)
<<
"seek cost min = "
<<
seek_cost_min
;
time_list
[
thread_id
]
=
seek_cost_avg
;
request_list
[
thread_id
]
=
request
;
return
0
;
...
...
@@ -188,6 +148,7 @@ int run_m(int argc, char** argv) {
request_list
.
resize
(
thread_num
);
time_list
.
resize
(
thread_num
);
std
::
vector
<
std
::
thread
*>
thread_pool
;
TIME_FLAG
(
main_start
);
for
(
int
i
=
0
;
i
<
thread_num
;
i
++
)
{
thread_pool
.
push_back
(
new
std
::
thread
(
run
,
argc
,
argv
,
i
));
}
...
...
@@ -195,27 +156,33 @@ int run_m(int argc, char** argv) {
thread_pool
[
i
]
->
join
();
delete
thread_pool
[
i
];
}
TIME_FLAG
(
main_end
);
uint64_t
sum_time
=
0
;
uint64_t
max_time
=
0
;
uint64_t
min_time
=
1000000
;
uint64_t
request_num
=
0
;
for
(
int
i
=
0
;
i
<
thread_num
;
i
++
)
{
sum_time
+=
time_list
[
i
];
if
(
time_list
[
i
]
>
max_time
)
{
max_time
=
time_list
[
i
];
for
(
int
j
=
0
;
j
<
request_list
[
i
];
j
++
)
{
sum_time
+=
time_list
[
i
][
j
];
if
(
time_list
[
i
][
j
]
>
max_time
)
{
max_time
=
time_list
[
i
][
j
];
}
if
(
time_list
[
i
][
j
]
<
min_time
)
{
min_time
=
time_list
[
i
][
j
];
}
if
(
time_list
[
i
]
<
min_time
)
{
min_time
=
time_list
[
i
];
}
request_num
+=
request_list
[
i
];
}
uint64_t
mean_time
=
sum_time
/
thread_num
;
LOG
(
INFO
)
<<
thread_num
<<
" thread seek cost"
<<
" avg = "
<<
std
::
to_string
(
mean_time
)
<<
" max = "
<<
std
::
to_string
(
max_time
)
<<
" min = "
<<
std
::
to_string
(
min_time
);
LOG
(
INFO
)
<<
" total_request = "
<<
std
::
to_string
(
request_num
)
<<
" speed = "
<<
std
::
to_string
(
1000000
*
thread_num
/
mean_time
)
// mean_time us
uint64_t
mean_time
=
sum_time
/
(
thread_num
*
turns
);
uint64_t
main_time
=
time_diff
(
main_start
,
main_end
);
LOG
(
INFO
)
<<
"
\n
"
<<
thread_num
<<
" thread seek cost"
<<
"
\n
avg = "
<<
std
::
to_string
(
mean_time
)
<<
"
\n
max = "
<<
std
::
to_string
(
max_time
)
<<
"
\n
min = "
<<
std
::
to_string
(
min_time
);
LOG
(
INFO
)
<<
"
\n
total_request = "
<<
std
::
to_string
(
request_num
)
<<
"
\n
speed = "
<<
std
::
to_string
(
request_num
*
1000000
/
main_time
)
// mean_time us
<<
" query per second"
;
return
0
;
}
...
...
core/general-server/op/general_dist_kv_infer_op.cpp
浏览文件 @
f2e35fae
...
...
@@ -90,6 +90,9 @@ int GeneralDistKVInferOp::inference() {
keys
.
begin
()
+
key_idx
);
key_idx
+=
dataptr_size_pairs
[
i
].
second
;
}
Timer
timeline
;
int64_t
cube_start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
rec
::
mcube
::
CubeAPI
*
cube
=
rec
::
mcube
::
CubeAPI
::
instance
();
std
::
vector
<
std
::
string
>
table_names
=
cube
->
get_table_names
();
if
(
table_names
.
size
()
==
0
)
{
...
...
@@ -97,7 +100,7 @@ int GeneralDistKVInferOp::inference() {
return
-
1
;
}
int
ret
=
cube
->
seek
(
table_names
[
0
],
keys
,
&
values
);
int64_t
cube_end
=
timeline
.
TimeStampUS
();
if
(
values
.
size
()
!=
keys
.
size
()
||
values
[
0
].
buff
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"cube value return null"
;
}
...
...
@@ -153,9 +156,7 @@ int GeneralDistKVInferOp::inference() {
VLOG
(
2
)
<<
"infer batch size: "
<<
batch_size
;
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
if
(
InferManager
::
instance
().
infer
(
engine_name
().
c_str
(),
&
infer_in
,
out
,
batch_size
))
{
...
...
@@ -165,6 +166,8 @@ int GeneralDistKVInferOp::inference() {
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
cube_start
);
AddBlobInfo
(
output_blob
,
cube_end
);
AddBlobInfo
(
output_blob
,
start
);
AddBlobInfo
(
output_blob
,
end
);
return
0
;
...
...
python/examples/bert/benchmark.sh
浏览文件 @
f2e35fae
rm
profile_log
rm
profile_log
*
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
export
FLAGS_profile_server
=
1
export
FLAGS_profile_client
=
1
export
FLAGS_serving_latency
=
1
python3
-m
paddle_serving_server_gpu.serve
--model
$1
--port
9292
--thread
4
--gpu_ids
0,1,2,3
--mem_optim
False
--ir_optim
True 2> elog
>
stdlog &
hostname
=
`
echo
$(
hostname
)
|awk
-F
'.baidu.com'
'{print $1}'
`
sleep
5
gpu_id
=
0
#save cpu and gpu utilization log
if
[
-d
utilization
]
;
then
rm
-rf
utilization
else
mkdir
utilization
fi
#start server
$PYTHONROOT
/bin/python3
-m
paddle_serving_server_gpu.serve
--model
$1
--port
9292
--thread
4
--gpu_ids
0,1,2,3
--mem_optim
--ir_optim
>
elog 2>&1 &
sleep
5
#warm up
python3 benchmark.py
--thread
8
--batch_size
1
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
for
thread_num
in
4 8 16
$PYTHONROOT
/bin/python3 benchmark.py
--thread
4
--batch_size
1
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
-e
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
for
thread_num
in
1
4 8 16
do
for
batch_size
in
1 4 16 64
256
for
batch_size
in
1 4 16 64
do
job_bt
=
`
date
'+%Y%m%d%H%M%S'
`
nvidia-smi
--id
=
$gpu_id
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
0
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
0
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
gpu_memory_pid
=
$!
python3 benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
$PYTHONROOT
/bin/
python3 benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
kill
${
gpu_memory_pid
}
kill
`
ps
-ef
|grep used_memory|awk
'{print $2}'
`
echo
"model_name:"
$1
echo
"thread_num:"
$thread_num
echo
"batch_size:"
$batch_size
echo
"=================Done===================="
echo
"model_name:
$1
"
>>
profile_log_
$1
echo
"batch_size:
$batch_size
"
>>
profile_log_
$1
$PYTHONROOT
/bin/python3 cpu_utilization.py
>>
profile_log_
$1
job_et
=
`
date
'+%Y%m%d%H%M%S'
`
awk
'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY_USE:", max}'
gpu_use.log
>>
profile_log_
$1
monquery
-n
${
hostname
}
-i
GPU_AVERAGE_UTILIZATION
-s
$job_bt
-e
$job_et
-d
10
>
gpu_log_file_
${
job_bt
}
monquery
-n
${
hostname
}
-i
CPU_USER
-s
$job_bt
-e
$job_et
-d
10
>
cpu_log_file_
${
job_bt
}
cpu_num
=
$(
cat
/proc/cpuinfo |
grep
processor |
wc
-l
)
gpu_num
=
$(
nvidia-smi
-L
|wc
-l
)
python ../util/show_profile.py profile
$thread_num
>>
profile_log_
$1
awk
'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}'
gpu_use.log
>>
profile_log_
$1
awk
'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "GPU_UTILIZATION:", max}'
gpu_utilization.log
>>
profile_log_
$1
rm
-rf
gpu_use.log gpu_utilization.log
$PYTHONROOT
/bin/python3 ../util/show_profile.py profile
$thread_num
>>
profile_log_
$1
tail
-n
8 profile
>>
profile_log_
$1
echo
""
>>
profile_log_
$1
done
done
#Divided log
awk
'BEGIN{RS="\n\n"}{i++}{print > "bert_log_"i}'
profile_log_
$1
mkdir
bert_log
&&
mv
bert_log_
*
bert_log
ps
-ef
|grep
'serving'
|grep
-v
grep
|cut
-c
9-15 | xargs
kill
-9
python/examples/criteo_ctr_with_cube/benchmark.py
浏览文件 @
f2e35fae
...
...
@@ -24,6 +24,7 @@ from paddle_serving_client.utils import MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
from
paddle_serving_client.metric
import
auc
py_version
=
sys
.
version_info
[
0
]
args
=
benchmark_args
()
...
...
@@ -49,7 +50,10 @@ def single_func(idx, resource):
if
args
.
batch_size
>
0
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
if
py_version
==
2
:
data
=
reader
().
next
()
else
:
data
=
reader
().
__next__
()
feed_dict
=
{}
feed_dict
[
'dense_input'
]
=
data
[
0
][
0
]
for
i
in
range
(
1
,
27
):
...
...
@@ -71,14 +75,17 @@ if __name__ == '__main__':
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:9292"
]
#result = single_func(0, {"endpoint": endpoint_list})
start
=
time
.
time
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
print
(
result
)
end
=
time
.
time
()
total_cost
=
end
-
start
avg_cost
=
0
qps
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
*
2
+
0
]
qps
+=
result
[
0
][
i
*
2
+
1
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"total cost: {}"
.
format
(
total_cost
))
print
(
"average total cost {} s."
.
format
(
avg_cost
))
print
(
"qps {} ins/s"
.
format
(
qps
))
python/examples/criteo_ctr_with_cube/benchmark.sh
浏览文件 @
f2e35fae
rm
profile_log
export
FLAGS_profile_client
=
1
export
FLAGS_profile_server
=
1
for
thread_num
in
1 2 4 8 16
wget https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz
--no-check-certificate
tar
xf ctr_cube_unittest.tar.gz
mv
models/ctr_client_conf ./
mv
models/ctr_serving_model_kv ./
mv
models/data ./cube/
wget https://paddle-serving.bj.bcebos.com/others/cube_app.tar.gz
--no-check-certificate
tar
xf cube_app.tar.gz
mv
cube_app/cube
*
./cube/
sh cube_prepare.sh &
python test_server.py ctr_serving_model_kv
>
serving_log 2>&1 &
for
thread_num
in
1 4 16
do
for
batch_size
in
1 4 16 64
256
for
batch_size
in
1 4 16 64
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
serving_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"batch size :
$batch_size
"
...
...
@@ -11,6 +25,8 @@ do
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
2
profile
>>
profile_log
tail
-n
3
profile
>>
profile_log
done
done
ps
-ef
|grep
'serving'
|grep
-v
grep
|cut
-c
9-15 | xargs
kill
-9
python/examples/criteo_ctr_with_cube/benchmark_cube.sh
0 → 100755
浏览文件 @
f2e35fae
rm
profile_log
wget https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz
--no-check-certificate
tar
xf ctr_cube_unittest.tar.gz
mv
models/ctr_client_conf ./
mv
models/ctr_serving_model_kv ./
mv
models/data ./cube/
wget https://paddle-serving.bj.bcebos.com/others/cube_app.tar.gz
--no-check-certificate
tar
xf cube_app.tar.gz
mv
cube_app/cube
*
./cube/
sh cube_prepare.sh &
cp
../../../build_server/core/cube/cube-api/cube-cli
.
python gen_key.py
for
thread_num
in
1 4 16 32
do
for
batch_size
in
1000
do
./cube-cli
-config_file
./cube/conf/cube.conf
-keys
key
-dict
test_dict
-thread_num
$thread_num
--batch
$batch_size
>
profile 2>&1
echo
"batch size :
$batch_size
"
echo
"thread num :
$thread_num
"
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
echo
"thread num :
$thread_num
"
>>
profile_log
tail
-n
7 profile |
head
-n
4
>>
profile_log
tail
-n
2 profile
>>
profile_log
done
done
ps
-ef
|grep
'cube'
|grep
-v
grep
|cut
-c
9-15 | xargs
kill
-9
python/examples/criteo_ctr_with_cube/gen_key.py
0 → 100644
浏览文件 @
f2e35fae
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
random
with
open
(
"key"
,
"w"
)
as
f
:
for
i
in
range
(
1000000
):
f
.
write
(
"{}
\n
"
.
format
(
random
.
randint
(
0
,
999999
)))
python/examples/criteo_ctr_with_cube/test_server.py
浏览文件 @
f2e35fae
...
...
@@ -33,5 +33,9 @@ server = Server()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
server
.
set_num_threads
(
4
)
server
.
load_model_config
(
sys
.
argv
[
1
])
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
9292
,
device
=
"cpu"
)
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
9292
,
device
=
"cpu"
,
cube_conf
=
"./cube/conf/cube.conf"
)
server
.
run_server
()
python/examples/criteo_ctr_with_cube/test_server_gpu.py
浏览文件 @
f2e35fae
...
...
@@ -33,5 +33,9 @@ server = Server()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
server
.
set_num_threads
(
4
)
server
.
load_model_config
(
sys
.
argv
[
1
])
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
9292
,
device
=
"cpu"
)
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
9292
,
device
=
"cpu"
,
cube_conf
=
"./cube/conf/cube.conf"
)
server
.
run_server
()
python/examples/grpc_impl_example/criteo_ctr_with_cube/test_server.py
浏览文件 @
f2e35fae
...
...
@@ -33,5 +33,9 @@ server = Server()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
server
.
set_num_threads
(
4
)
server
.
load_model_config
(
sys
.
argv
[
1
],
sys
.
argv
[
2
])
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
9292
,
device
=
"cpu"
)
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
9292
,
device
=
"cpu"
,
cube_conf
=
"./cube/conf/cube.conf"
)
server
.
run_server
()
python/examples/grpc_impl_example/criteo_ctr_with_cube/test_server_gpu.py
浏览文件 @
f2e35fae
...
...
@@ -33,5 +33,9 @@ server = Server()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
server
.
set_num_threads
(
4
)
server
.
load_model_config
(
sys
.
argv
[
1
],
sys
.
argv
[
2
])
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
9292
,
device
=
"cpu"
)
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
9292
,
device
=
"cpu"
,
cube_conf
=
"./cube/conf/cube.conf"
)
server
.
run_server
()
python/examples/imagenet/benchmark.py
浏览文件 @
f2e35fae
...
...
@@ -24,7 +24,7 @@ import json
import
base64
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
from
paddle_serving_client.utils
import
benchmark_args
,
show_latency
from
paddle_serving_app.reader
import
Sequential
,
File2Image
,
Resize
from
paddle_serving_app.reader
import
CenterCrop
,
RGB2BGR
,
Transpose
,
Div
,
Normalize
...
...
@@ -38,7 +38,11 @@ seq_preprocess = Sequential([
def
single_func
(
idx
,
resource
):
file_list
=
[]
turns
=
10
turns
=
resource
[
"turns"
]
latency_flags
=
False
if
os
.
getenv
(
"FLAGS_serving_latency"
):
latency_flags
=
True
latency_list
=
[]
for
file_name
in
os
.
listdir
(
"./image_data/n01440764"
):
file_list
.
append
(
file_name
)
img_list
=
[]
...
...
@@ -56,6 +60,7 @@ def single_func(idx, resource):
start
=
time
.
time
()
for
i
in
range
(
turns
):
if
args
.
batch_size
>=
1
:
l_start
=
time
.
time
()
feed_batch
=
[]
i_start
=
time
.
time
()
for
bi
in
range
(
args
.
batch_size
):
...
...
@@ -69,6 +74,9 @@ def single_func(idx, resource):
int
(
round
(
i_end
*
1000000
))))
result
=
client
.
predict
(
feed
=
feed_batch
,
fetch
=
fetch
)
l_end
=
time
.
time
()
if
latency_flags
:
latency_list
.
append
(
l_end
*
1000
-
l_start
*
1000
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
...
...
@@ -88,6 +96,8 @@ def single_func(idx, resource):
r
=
requests
.
post
(
server
,
data
=
req
,
headers
=
{
"Content-Type"
:
"application/json"
})
end
=
time
.
time
()
if
latency_flags
:
return
[[
end
-
start
],
latency_list
]
return
[[
end
-
start
]]
...
...
@@ -96,11 +106,21 @@ if __name__ == '__main__':
endpoint_list
=
[
"127.0.0.1:9292"
,
"127.0.0.1:9293"
,
"127.0.0.1:9294"
,
"127.0.0.1:9295"
]
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
turns
=
100
start
=
time
.
time
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
,
"turns"
:
turns
})
#result = single_func(0, {"endpoint": endpoint_list})
end
=
time
.
time
()
total_cost
=
end
-
start
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"average total cost {} s."
.
format
(
avg_cost
))
print
(
"total cost: {}s"
.
format
(
end
-
start
))
print
(
"each thread cost: {}s."
.
format
(
avg_cost
))
print
(
"qps: {}samples/s"
.
format
(
args
.
batch_size
*
args
.
thread
*
turns
/
total_cost
))
if
os
.
getenv
(
"FLAGS_serving_latency"
):
show_latency
(
result
[
1
])
python/examples/imagenet/benchmark.sh
浏览文件 @
f2e35fae
rm
profile_log
rm
profile_log
*
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
export
FLAGS_profile_server
=
1
export
FLAGS_profile_client
=
1
python
-m
paddle_serving_server_gpu.serve
--model
$1
--port
9292
--thread
4
--gpu_ids
0,1,2,3 2> elog
>
stdlog &
python
-m
paddle_serving_server_gpu.serve
--model
$1
--port
9292
--thread
4
--gpu_ids
0,1,2,3
--mem_optim
--ir_optim
2> elog
>
stdlog &
sleep
5
gpu_id
=
0
#save cpu and gpu utilization log
if
[
-d
utilization
]
;
then
rm
-rf
utilization
else
mkdir
utilization
fi
#warm up
$PYTHONROOT
/bin/python benchmark.py
--thread
8
--batch_size
1
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
$PYTHONROOT
/bin/python3 benchmark.py
--thread
4
--batch_size
1
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
-e
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
for
thread_num
in
4 8 16
for
thread_num
in
1
4 8 16
do
for
batch_size
in
1 4 16 64
do
job_bt
=
`
date
'+%Y%m%d%H%M%S'
`
nvidia-smi
--id
=
0
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
0
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
gpu_memory_pid
=
$!
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
kill
${
gpu_memory_pid
}
kill
`
ps
-ef
|grep used_memory|awk
'{print $2}'
`
echo
"model name :"
$1
echo
"thread num :"
$thread_num
echo
"batch size :"
$batch_size
echo
"=================Done===================="
echo
"model name :
$1
"
>>
profile_log
echo
"batch size :
$batch_size
"
>>
profile_log
job_et
=
`
date
'+%Y%m%d%H%M%S'
`
awk
'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}'
gpu_use.log
>>
profile_log_
$1
awk
'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "GPU_UTILIZATION:", max}'
gpu_utilization.log
>>
profile_log_
$1
rm
-rf
gpu_use.log gpu_utilization.log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
8 profile
>>
profile_log
echo
""
>>
profile_log_
$1
done
done
#Divided log
awk
'BEGIN{RS="\n\n"}{i++}{print > "ResNet_log_"i}'
profile_log_
$1
mkdir
$1_log
&&
mv
ResNet_log_
*
$1_log
ps
-ef
|grep
'serving'
|grep
-v
grep
|cut
-c
9-15 | xargs
kill
-9
python/examples/imdb/benchmark.sh
浏览文件 @
f2e35fae
rm
profile_log
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
rm
profile_log
*
export
FLAGS_profile_server
=
1
export
FLAGS_profile_client
=
1
export
FLAGS_serving_latency
=
1
python
-m
paddle_serving_server_gpu.serve
--model
$1
--port
9292
--thread
4
--gpu_ids
0,1,2,3
--mem_optim
--ir_optim
2> elog
>
stdlog &
$PYTHONROOT
/bin/python3
-m
paddle_serving_server.serve
--model
$1
--port
9292
--thread
4
--mem_optim
--ir_optim
2> elog
>
stdlog &
hostname
=
`
echo
$(
hostname
)
|awk
-F
'.baidu.com'
'{print $1}'
`
#save cpu and gpu utilization log
if
[
-d
utilization
]
;
then
rm
-rf
utilization
else
mkdir
utilization
fi
sleep
5
for
thread_num
in
4 8 16
#warm up
$PYTHONROOT
/bin/python3 benchmark.py
--thread
4
--batch_size
1
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
-e
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
for
thread_num
in
1 4 8 16
do
for
batch_size
in
1 4 16 64
256
for
batch_size
in
1 4 16 64
do
job_bt
=
`
date
'+%Y%m%d%H%M%S'
`
python
benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
$PYTHONROOT
/bin/python3
benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"model_name:"
$1
echo
"thread_num:"
$thread_num
echo
"batch_size:"
$batch_size
...
...
@@ -21,15 +30,14 @@ do
echo
"model_name:
$1
"
>>
profile_log_
$1
echo
"batch_size:
$batch_size
"
>>
profile_log_
$1
job_et
=
`
date
'+%Y%m%d%H%M%S'
`
awk
'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY_USE:", max}'
gpu_use.log
>>
profile_log_
$1
monquery
-n
${
hostname
}
-i
GPU_AVERAGE_UTILIZATION
-s
$job_bt
-e
$job_et
-d
10
>
gpu_log_file_
${
job_bt
}
monquery
-n
${
hostname
}
-i
CPU_USER
-s
$job_bt
-e
$job_et
-d
10
>
cpu_log_file_
${
job_bt
}
cpu_num
=
$(
cat
/proc/cpuinfo |
grep
processor |
wc
-l
)
gpu_num
=
$(
nvidia-smi
-L
|wc
-l
)
python ../util/show_profile.py profile
$thread_num
>>
profile_log_
$1
$PYTHONROOT
/bin/python3 ../util/show_profile.py profile
$thread_num
>>
profile_log_
$1
$PYTHONROOT
/bin/python3 cpu_utilization.py
>>
profile_log_
$1
tail
-n
8 profile
>>
profile_log_
$1
echo
""
>>
profile_log_
$1
done
done
#Divided log
awk
'BEGIN{RS="\n\n"}{i++}{print > "imdb_log_"i}'
profile_log_
$1
mkdir
$1_log
&&
mv
imdb_log_
*
$1_log
ps
-ef
|grep
'serving'
|grep
-v
grep
|cut
-c
9-15 | xargs
kill
-9
python/paddle_serving_app/reader/image_reader.py
浏览文件 @
f2e35fae
...
...
@@ -677,7 +677,7 @@ class Resize(object):
Args:
size (sequence or int): Desired output size. If size is a sequence like
(
h, w
), output size will be matched to this. If size is an int,
(
w, h
), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
...
...
python/paddle_serving_server/__init__.py
浏览文件 @
f2e35fae
...
...
@@ -25,6 +25,7 @@ from contextlib import closing
import
collections
import
fcntl
import
shutil
import
numpy
as
np
import
grpc
from
.proto
import
multi_lang_general_model_service_pb2
...
...
@@ -230,7 +231,7 @@ class Server(object):
infer_service
.
workflows
.
extend
([
"workflow1"
])
self
.
infer_service_conf
.
services
.
extend
([
infer_service
])
def
_prepare_resource
(
self
,
workdir
):
def
_prepare_resource
(
self
,
workdir
,
cube_conf
):
self
.
workdir
=
workdir
if
self
.
resource_conf
==
None
:
with
open
(
"{}/{}"
.
format
(
workdir
,
self
.
general_model_config_fn
),
...
...
@@ -242,6 +243,11 @@ class Server(object):
if
"dist_kv"
in
node
.
name
:
self
.
resource_conf
.
cube_config_path
=
workdir
self
.
resource_conf
.
cube_config_file
=
self
.
cube_config_fn
if
cube_conf
==
None
:
raise
ValueError
(
"Please set the path of cube.conf while use dist_kv op."
)
shutil
.
copy
(
cube_conf
,
workdir
)
if
"quant"
in
node
.
name
:
self
.
resource_conf
.
cube_quant_bits
=
8
self
.
resource_conf
.
model_toolkit_path
=
workdir
...
...
@@ -366,7 +372,11 @@ class Server(object):
os
.
chdir
(
self
.
cur_path
)
self
.
bin_path
=
self
.
server_path
+
"/serving"
def
prepare_server
(
self
,
workdir
=
None
,
port
=
9292
,
device
=
"cpu"
):
def
prepare_server
(
self
,
workdir
=
None
,
port
=
9292
,
device
=
"cpu"
,
cube_conf
=
None
):
if
workdir
==
None
:
workdir
=
"./tmp"
os
.
system
(
"mkdir {}"
.
format
(
workdir
))
...
...
@@ -377,7 +387,7 @@ class Server(object):
if
not
self
.
port_is_available
(
port
):
raise
SystemExit
(
"Port {} is already used"
.
format
(
port
))
self
.
set_port
(
port
)
self
.
_prepare_resource
(
workdir
)
self
.
_prepare_resource
(
workdir
,
cube_conf
)
self
.
_prepare_engine
(
self
.
model_config_paths
,
device
)
self
.
_prepare_infer_service
(
port
)
self
.
workdir
=
workdir
...
...
@@ -645,7 +655,11 @@ class MultiLangServer(object):
server_config_paths
)
self
.
bclient_config_path_
=
client_config_path
def
prepare_server
(
self
,
workdir
=
None
,
port
=
9292
,
device
=
"cpu"
):
def
prepare_server
(
self
,
workdir
=
None
,
port
=
9292
,
device
=
"cpu"
,
cube_conf
=
None
):
if
not
self
.
_port_is_available
(
port
):
raise
SystemExit
(
"Prot {} is already used"
.
format
(
port
))
default_port
=
12000
...
...
@@ -656,7 +670,10 @@ class MultiLangServer(object):
self
.
port_list_
.
append
(
default_port
+
i
)
break
self
.
bserver_
.
prepare_server
(
workdir
=
workdir
,
port
=
self
.
port_list_
[
0
],
device
=
device
)
workdir
=
workdir
,
port
=
self
.
port_list_
[
0
],
device
=
device
,
cube_conf
=
cube_conf
)
self
.
set_port
(
port
)
def
_launch_brpc_service
(
self
,
bserver
):
...
...
python/paddle_serving_server_gpu/__init__.py
浏览文件 @
f2e35fae
...
...
@@ -26,7 +26,7 @@ from contextlib import closing
import
argparse
import
collections
import
fcntl
import
shutil
import
numpy
as
np
import
grpc
from
.proto
import
multi_lang_general_model_service_pb2
...
...
@@ -285,7 +285,7 @@ class Server(object):
infer_service
.
workflows
.
extend
([
"workflow1"
])
self
.
infer_service_conf
.
services
.
extend
([
infer_service
])
def
_prepare_resource
(
self
,
workdir
):
def
_prepare_resource
(
self
,
workdir
,
cube_conf
):
self
.
workdir
=
workdir
if
self
.
resource_conf
==
None
:
with
open
(
"{}/{}"
.
format
(
workdir
,
self
.
general_model_config_fn
),
...
...
@@ -297,6 +297,11 @@ class Server(object):
if
"dist_kv"
in
node
.
name
:
self
.
resource_conf
.
cube_config_path
=
workdir
self
.
resource_conf
.
cube_config_file
=
self
.
cube_config_fn
if
cube_conf
==
None
:
raise
ValueError
(
"Please set the path of cube.conf while use dist_kv op."
)
shutil
.
copy
(
cube_conf
,
workdir
)
self
.
resource_conf
.
model_toolkit_path
=
workdir
self
.
resource_conf
.
model_toolkit_file
=
self
.
model_toolkit_fn
self
.
resource_conf
.
general_model_path
=
workdir
...
...
@@ -406,7 +411,11 @@ class Server(object):
os
.
chdir
(
self
.
cur_path
)
self
.
bin_path
=
self
.
server_path
+
"/serving"
def
prepare_server
(
self
,
workdir
=
None
,
port
=
9292
,
device
=
"cpu"
):
def
prepare_server
(
self
,
workdir
=
None
,
port
=
9292
,
device
=
"cpu"
,
cube_conf
=
None
):
if
workdir
==
None
:
workdir
=
"./tmp"
os
.
system
(
"mkdir {}"
.
format
(
workdir
))
...
...
@@ -418,7 +427,7 @@ class Server(object):
raise
SystemExit
(
"Port {} is already used"
.
format
(
port
))
self
.
set_port
(
port
)
self
.
_prepare_resource
(
workdir
)
self
.
_prepare_resource
(
workdir
,
cube_conf
)
self
.
_prepare_engine
(
self
.
model_config_paths
,
device
)
self
.
_prepare_infer_service
(
port
)
self
.
workdir
=
workdir
...
...
@@ -690,7 +699,11 @@ class MultiLangServer(object):
server_config_paths
)
self
.
bclient_config_path_
=
client_config_path
def
prepare_server
(
self
,
workdir
=
None
,
port
=
9292
,
device
=
"cpu"
):
def
prepare_server
(
self
,
workdir
=
None
,
port
=
9292
,
device
=
"cpu"
,
cube_conf
=
None
):
if
not
self
.
_port_is_available
(
port
):
raise
SystemExit
(
"Prot {} is already used"
.
format
(
port
))
default_port
=
12000
...
...
@@ -701,7 +714,10 @@ class MultiLangServer(object):
self
.
port_list_
.
append
(
default_port
+
i
)
break
self
.
bserver_
.
prepare_server
(
workdir
=
workdir
,
port
=
self
.
port_list_
[
0
],
device
=
device
)
workdir
=
workdir
,
port
=
self
.
port_list_
[
0
],
device
=
device
,
cube_conf
=
cube_conf
)
self
.
set_port
(
port
)
def
_launch_brpc_service
(
self
,
bserver
):
...
...
tools/serving_build.sh
浏览文件 @
f2e35fae
...
...
@@ -229,10 +229,7 @@ function python_run_criteo_ctr_with_cube() {
check_cmd
"mv models/data ./cube/"
check_cmd
"mv models/ut_data ./"
cp
../../../build-server-
$TYPE
/output/bin/cube
*
./cube/
mkdir
-p
$PYTHONROOT
/lib/python2.7/site-packages/paddle_serving_server/serving-cpu-avx-openblas-0.1.3/
yes
|
cp
../../../build-server-
$TYPE
/output/demo/serving/bin/serving
$PYTHONROOT
/lib/python2.7/site-packages/paddle_serving_server/serving-cpu-avx-openblas-0.1.3/
sh cube_prepare.sh &
check_cmd
"mkdir work_dir1 && cp cube/conf/cube.conf ./work_dir1/"
python test_server.py ctr_serving_model_kv &
sleep
5
check_cmd
"python test_client.py ctr_client_conf/serving_client_conf.prototxt ./ut_data >score"
...
...
@@ -257,10 +254,7 @@ function python_run_criteo_ctr_with_cube() {
check_cmd
"mv models/data ./cube/"
check_cmd
"mv models/ut_data ./"
cp
../../../build-server-
$TYPE
/output/bin/cube
*
./cube/
mkdir
-p
$PYTHONROOT
/lib/python2.7/site-packages/paddle_serving_server_gpu/serving-gpu-0.1.3/
yes
|
cp
../../../build-server-
$TYPE
/output/demo/serving/bin/serving
$PYTHONROOT
/lib/python2.7/site-packages/paddle_serving_server_gpu/serving-gpu-0.1.3/
sh cube_prepare.sh &
check_cmd
"mkdir work_dir1 && cp cube/conf/cube.conf ./work_dir1/"
python test_server_gpu.py ctr_serving_model_kv &
sleep
5
# for warm up
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录