From e6b7a4f8c4f5583b3692e43a6024db3521fdb02c Mon Sep 17 00:00:00 2001 From: Jiawei Wang Date: Mon, 23 Mar 2020 11:55:14 +0800 Subject: [PATCH] Update README.md --- .../examples/criteo_ctr_with_cube/README.md | 31 ++++++++++--------- 1 file changed, 17 insertions(+), 14 deletions(-) diff --git a/python/examples/criteo_ctr_with_cube/README.md b/python/examples/criteo_ctr_with_cube/README.md index 7a1740df..bea10248 100755 --- a/python/examples/criteo_ctr_with_cube/README.md +++ b/python/examples/criteo_ctr_with_cube/README.md @@ -1,32 +1,35 @@ -## 带稀疏参数服务器的CTR预测服务 +## Criteo CTR with Sparse Parameter Server + +([简体中文](README_CN.md)|English) + +### Get Sample Dataset -### 获取样例数据 ``` sh get_data.sh ``` -### 保存模型和配置文件 +### Train and Save Model ``` python local_train.py ``` -执行脚本后会在当前目录生成ctr_server_model和ctr_client_config文件夹,以及ctr_server_model_kv, ctr_client_conf_kv。 +the trained model will be in ./ctr_server_model and ./ctr_client_config, and ctr_server_model_kv, ctr_client_conf_kv。 -### 启动稀疏参数服务器 +### Start Sparse Parameter Server ``` cp ../../../build_server/core/predictor/seq_generator seq_generator cp ../../../build_server/output/bin/cube* ./cube/ sh cube_prepare.sh & ``` -此处,模型当中的稀疏参数会被存放在稀疏参数服务器Cube当中,关于稀疏参数服务器Cube的介绍,请阅读[单机版稀疏参数服务器Cube](../../../doc/CUBE_LOCAL_CN.md) +Here, the sparse parameter is loaded by cube sparse parameter server,for more details please read [Cube: Sparse Parameter Server (Local Mode)](../../../doc/CUBE_LOCAL.md) -### 启动RPC预测服务,服务端线程数为4(可在test_server.py配置) +### Start RPC Predictor, the number of serving thread is 4(configurable in test_server.py) ``` python test_server.py ctr_serving_model_kv ``` -### 执行预测 +### Run Prediction ``` python test_client.py ctr_client_conf/serving_client_conf.prototxt ./raw_data @@ -34,17 +37,17 @@ python test_client.py ctr_client_conf/serving_client_conf.prototxt ./raw_data ### Benchmark -设备 :Intel(R) Xeon(R) CPU 6148 @ 2.40GHz +CPU :Intel(R) Xeon(R) CPU 6148 @ 2.40GHz -模型 :[Criteo CTR](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/ctr_criteo_with_cube/network_conf.py) +Model :[Criteo CTR](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/ctr_criteo_with_cube/network_conf.py) server core/thread num : 4/8 -执行 +Run ``` bash benchmark.sh ``` -客户端每个线程会发送1000个batch +1000 batches will be sent by every client | client thread num | prepro | client infer | op0 | op1 | op2 | postpro | avg_latency | qps | | ------------------ | ------ | ------------ | ------ | ----- | ------ | ------- | ----- | ----- | @@ -54,10 +57,10 @@ bash benchmark.sh | 8 | 0.044 | 8.230 | 0.028 | 0.464 | 0.0023 | 0.0034 | 14.191 | 563.8 | | 16 | 0.048 | 21.037 | 0.028 | 0.455 | 0.0025 | 0.0041 | 27.236 | 587.5 | -平均每个线程耗时图如下 +the average latency of threads ![avg cost](../../../doc/criteo-cube-benchmark-avgcost.png) -每个线程QPS耗时如下 +The QPS is ![qps](../../../doc/criteo-cube-benchmark-qps.png) -- GitLab