Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
e5bcdbe5
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e5bcdbe5
编写于
4月 11, 2020
作者:
D
dongdaxiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
make predict adaptable to shape
上级
6875e319
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
74 addition
and
21 deletion
+74
-21
core/general-client/include/general_model.h
core/general-client/include/general_model.h
+4
-0
core/general-client/src/general_model.cpp
core/general-client/src/general_model.cpp
+45
-17
core/general-client/src/pybind_general_model.cpp
core/general-client/src/pybind_general_model.cpp
+8
-0
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+17
-4
未找到文件。
core/general-client/include/general_model.h
浏览文件 @
e5bcdbe5
...
...
@@ -85,8 +85,10 @@ class PredictorClient {
int
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>&
float_feed
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>&
float_shape
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
int_feed
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>&
int_shape
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
PredictorRes
&
predict_res
,
// NOLINT
const
int
&
pid
);
...
...
@@ -94,8 +96,10 @@ class PredictorClient {
int
batch_predict
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>&
float_feed_batch
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>&
float_shape
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>&
int_feed_batch
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>&
int_shape
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
PredictorRes
&
predict_res_batch
,
// NOLINT
const
int
&
pid
);
...
...
core/general-client/src/general_model.cpp
浏览文件 @
e5bcdbe5
...
...
@@ -134,8 +134,10 @@ int PredictorClient::create_predictor() {
int
PredictorClient
::
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
float_shape
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res
,
const
int
&
pid
)
{
// NOLINT
...
...
@@ -164,12 +166,18 @@ int PredictorClient::predict(const std::vector<std::vector<float>> &float_feed,
}
int
vec_idx
=
0
;
for
(
auto
&
name
:
float_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
for
(
int
i
=
0
;
i
<
float_feed_name
.
size
();
++
i
)
{
int
idx
=
_feed_name_to_idx
[
float_feed_name
[
i
]
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
if
(
float_shape
.
size
()
==
0
)
{
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
}
}
else
{
for
(
int
j
=
0
;
j
<
float_shape
[
i
].
size
();
++
j
)
{
tensor
->
add_shape
(
float_shape
[
i
][
j
]);
}
}
tensor
->
set_elem_type
(
1
);
for
(
int
j
=
0
;
j
<
float_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_float_data
(
float_feed
[
vec_idx
][
j
]);
...
...
@@ -180,12 +188,18 @@ int PredictorClient::predict(const std::vector<std::vector<float>> &float_feed,
VLOG
(
2
)
<<
"feed float feed var done."
;
vec_idx
=
0
;
for
(
auto
&
name
:
int_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
for
(
int
i
=
0
;
i
<
int_feed_name
.
size
();
++
i
)
{
int
idx
=
_feed_name_to_idx
[
int_feed_name
[
i
]
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
if
(
int_shape
.
size
()
==
0
)
{
for
(
int
j
=
0
;
j
<
int_shape
[
i
].
size
();
++
j
)
{
tensor
->
add_shape
(
int_shape
[
i
][
j
]);
}
}
else
{
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
}
}
tensor
->
set_elem_type
(
0
);
for
(
int
j
=
0
;
j
<
int_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_int64_data
(
int_feed
[
vec_idx
][
j
]);
...
...
@@ -269,8 +283,10 @@ int PredictorClient::predict(const std::vector<std::vector<float>> &float_feed,
int
PredictorClient
::
batch_predict
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
&
float_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
float_shape
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
&
int_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res_batch
,
const
int
&
pid
)
{
...
...
@@ -312,12 +328,18 @@ int PredictorClient::batch_predict(
VLOG
(
2
)
<<
"batch ["
<<
bi
<<
"] int_feed_name and float_feed_name "
<<
"prepared"
;
int
vec_idx
=
0
;
for
(
auto
&
name
:
float_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
for
(
int
i
=
0
;
i
<
float_feed_name
.
size
();
++
i
)
{
int
idx
=
_feed_name_to_idx
[
float_feed_name
[
i
]
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
if
(
float_shape
.
size
()
==
float_feed_name
.
size
())
{
for
(
int
j
=
0
;
j
<
float_shape
[
i
].
size
();
++
j
)
{
tensor
->
add_shape
(
float_shape
[
i
][
j
]);
}
}
else
{
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
}
}
tensor
->
set_elem_type
(
1
);
for
(
int
j
=
0
;
j
<
float_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_float_data
(
float_feed
[
vec_idx
][
j
]);
...
...
@@ -329,14 +351,20 @@ int PredictorClient::batch_predict(
<<
"float feed value prepared"
;
vec_idx
=
0
;
for
(
auto
&
name
:
int_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
for
(
int
i
=
0
;
i
<
int_feed_name
.
size
();
++
i
)
{
int
idx
=
_feed_name_to_idx
[
int_feed_name
[
i
]
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
if
(
int_shape
.
size
()
==
int_feed_name
.
size
())
{
for
(
int
j
=
0
;
j
<
int_shape
[
i
].
size
();
++
j
)
{
tensor
->
add_shape
(
int_shape
[
i
][
j
]);
}
}
else
{
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
}
}
tensor
->
set_elem_type
(
0
);
VLOG
(
3
)
<<
"feed var name "
<<
name
<<
" index "
<<
vec_idx
VLOG
(
3
)
<<
"feed var name "
<<
float_feed_name
[
i
]
<<
" index "
<<
vec_idx
<<
"first data "
<<
int_feed
[
vec_idx
][
0
];
for
(
int
j
=
0
;
j
<
int_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_int64_data
(
int_feed
[
vec_idx
][
j
]);
...
...
core/general-client/src/pybind_general_model.cpp
浏览文件 @
e5bcdbe5
...
...
@@ -71,15 +71,19 @@ PYBIND11_MODULE(serving_client, m) {
[](
PredictorClient
&
self
,
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
float_shape
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res
,
const
int
&
pid
)
{
return
self
.
predict
(
float_feed
,
float_feed_name
,
float_shape
,
int_feed
,
int_feed_name
,
int_shape
,
fetch_name
,
predict_res
,
pid
);
...
...
@@ -89,16 +93,20 @@ PYBIND11_MODULE(serving_client, m) {
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
&
float_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
float_shape
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
&
int_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res_batch
,
const
int
&
pid
)
{
return
self
.
batch_predict
(
float_feed_batch
,
float_feed_name
,
float_shape
,
int_feed_batch
,
int_feed_name
,
int_shape
,
fetch_name
,
predict_res_batch
,
pid
);
...
...
python/paddle_serving_client/__init__.py
浏览文件 @
e5bcdbe5
...
...
@@ -18,6 +18,7 @@ import os
from
.proto
import
sdk_configure_pb2
as
sdk
from
.proto
import
general_model_config_pb2
as
m_config
import
google.protobuf.text_format
import
numpy
as
np
import
time
import
sys
...
...
@@ -205,6 +206,8 @@ class Client(object):
float_slot_batch
=
[]
int_feed_names
=
[]
float_feed_names
=
[]
int_shape
=
[]
float_shape
=
[]
fetch_names
=
[]
counter
=
0
batch_size
=
len
(
feed_batch
)
...
...
@@ -221,6 +224,8 @@ class Client(object):
for
i
,
feed_i
in
enumerate
(
feed_batch
):
int_slot
=
[]
float_slot
=
[]
int_shape
=
[]
float_shape
=
[]
for
key
in
feed_i
:
if
key
not
in
self
.
feed_names_
:
raise
ValueError
(
"Wrong feed name: {}."
.
format
(
key
))
...
...
@@ -228,13 +233,21 @@ class Client(object):
if
self
.
feed_types_
[
key
]
==
int_type
:
if
i
==
0
:
int_feed_names
.
append
(
key
)
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
int_shape
.
append
(
feed_i
[
key
].
shape
)
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
int_slot
.
append
(
feed_i
[
key
].
tolist
())
else
:
int_slot
.
append
(
feed_i
[
key
])
elif
self
.
feed_types_
[
key
]
==
float_type
:
if
i
==
0
:
float_feed_names
.
append
(
key
)
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
float_shape
.
append
(
feed_i
[
key
].
shape
)
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
float_slot
.
append
(
feed_i
[
key
].
tolist
())
else
:
float_slot
.
append
(
feed_i
[
key
])
if
len
(
int_slot
)
+
len
(
float_slot
)
==
0
:
raise
ValueError
(
"No feed data for predict."
)
int_slot_batch
.
append
(
int_slot
)
float_slot_batch
.
append
(
float_slot
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录