diff --git a/doc/Offical_Docs/7-0_Python_Pipeline_Int_CN.md b/doc/Offical_Docs/7-0_Python_Pipeline_Int_CN.md
index 995efa08b3d52655475b1a8868c9b8715ddaebae..98bfb0efe1bd573d8708202c68d15dbcb3144e12 100644
--- a/doc/Offical_Docs/7-0_Python_Pipeline_Int_CN.md
+++ b/doc/Offical_Docs/7-0_Python_Pipeline_Int_CN.md
@@ -6,7 +6,7 @@ Paddle Serving 实现了一套通用的多模型组合服务编程框架 Python
Python Pipeline 使用案例请阅读[Python Pipeline 快速部署案例](./3-2_QuickStart_Pipeline_OCR_CN.md)
-通过阅读以下内容掌握 Python Pipeline 设计方案、高阶用法和优化指南等。
+通过阅读以下内容掌握 Python Pipeline 核心功能和使用方法、高阶功能用法和性能优化指南等。
- [Python Pipeline 框架设计](7-1_Python_Pipeline_Design_CN.md)
- [Python Pipeline 高阶用法](7-2_Python_Pipeline_Senior_CN.md)
- [Python Pipeline 优化指南](7-3_Python_Pipeline_Optimize_CN.md)
diff --git a/doc/Offical_Docs/7-1_Python_Pipeline_Design_CN.md b/doc/Offical_Docs/7-1_Python_Pipeline_Design_CN.md
index 48476592a1401ddcb7f5fedebcea700010703c89..6372ec6af0b7e281a85a4565c1ac3c3108ccce3f 100644
--- a/doc/Offical_Docs/7-1_Python_Pipeline_Design_CN.md
+++ b/doc/Offical_Docs/7-1_Python_Pipeline_Design_CN.md
@@ -42,7 +42,7 @@ Request 是输入结构,`key` 与 `value` 是配对的 string 数组。 `name`
Response 是输出结构,`err_no` 和 `err_msg` 表达处理结果的正确性和错误信息,`key` 和 `value` 为结果。
-Pipeline 服务包装了继承于 WebService 类,以 OCR 示例为例,派生出 OcrService 类,get_pipeline_response 函数内实现 DAG 拓扑关系,默认服务入口为 read_op,函数返回的 Op 为最后一个处理,此处要求最后返回的 Op 必须唯一。
+Pipeline 服务包装了继承于 WebService 类,以 [OCR 示例](https://github.com/PaddlePaddle/Serving/tree/develop/examples/Pipeline/PaddleOCR/ocr)为例,派生出 OcrService 类,get_pipeline_response 函数内实现 DAG 拓扑关系,默认服务入口为 read_op,函数返回的 Op 为最后一个处理,此处要求最后返回的 Op 必须唯一。
所有服务和模型的所有配置信息在 `config.yml` 中记录,URL 的 name 字段由 OcrService 初始化定义;run_service 函数启动服务。
@@ -177,6 +177,8 @@ Pipeline 的日志模块在 `logger.py` 中定义,使用了 `logging.handlers.
```
+**四. 服务超时与重试**
+
## 自定义信息
@@ -297,7 +299,6 @@ def init_op(self):
```
RequestOp 和 ResponseOp 是 Python Pipeline 的中2个特殊 Op,分别是用分解 RPC 数据加入到图执行引擎中,和拿到图执行引擎的预测结果并打包 RPC 数据到客户端。
-
RequestOp 类的设计如下所示,核心是在 unpack_request_package 函数中解析请求数据,因此,当修改 Request 结构后重写此函数实现全新的解包处理。
| 接口 | 说明 |
@@ -334,7 +335,6 @@ class RequestOp(Op):
return dict_data, log_id, None, ""
```
-
ResponseOp 类的设计如下所示,核心是在 pack_response_package 中打包返回结构,因此修改 Response 结构后重写此函数实现全新的打包格式。
| 接口 | 说明 |
@@ -381,3 +381,35 @@ class ProductErrCode(enum.Enum):
"""
pass
```
+
+其使用方法如下所示,定义了一种错误类型 `Product_Error` ,在 `preprocess` 函数返回值中设置错误信息,在 `postprocess` 函数中也可以设置。
+```python
+
+class ProductErrCode(enum.Enum):
+ """
+ ProductErrCode is a base class for recording business error code.
+ product developers inherit this class and extend more error codes.
+ """
+ Product_Error = 100001,
+
+def preprocess(self, input_dicts, data_id, log_id):
+ """
+ In preprocess stage, assembling data for process stage. users can
+ override this function for model feed features.
+ Args:
+ input_dicts: input data to be preprocessed
+ data_id: inner unique id
+ log_id: global unique id for RTT
+ Return:
+ input_dict: data for process stage
+ is_skip_process: skip process stage or not, False default
+ prod_errcode: None default, otherwise, product errores occured.
+ It is handled in the same way as exception.
+ prod_errinfo: "" default
+ """
+ (_, input_dict), = input_dicts.items()
+ if input_dict.get_key("product_error"):
+ return input_dict, False, Product_Error, "Product Error Occured"
+ return input_dict, False, None, ""
+
+```
diff --git a/doc/Offical_Docs/7-2_Python_Pipeline_Senior_CN.md b/doc/Offical_Docs/7-2_Python_Pipeline_Senior_CN.md
index 69910c0df0499a573c05302346cf6c4baa316229..8b611c80398ea8ada3810348f95cc4fb5a0af17e 100644
--- a/doc/Offical_Docs/7-2_Python_Pipeline_Senior_CN.md
+++ b/doc/Offical_Docs/7-2_Python_Pipeline_Senior_CN.md
@@ -10,113 +10,347 @@
- MKLDNN 推理加速
-**一. DAG 结构跳过某个 Op 运行 **
+**一.DAG 结构跳过某个 Op 运行**
此应用场景一般在 Op 前后处理中有 if 条件判断时,不满足条件时,跳过后面处理。实际做法是在跳过此 Op 的 process 阶段,只要在 preprocess 做好判断,跳过 process 阶段,在和 postprocess 后直接返回即可。
preprocess 返回结果列表的第二个结果是 `is_skip_process=True` 表示是否跳过当前 Op 的 process 阶段,直接进入 postprocess 处理。
```python
+## Op::preprocess() 函数实现
def preprocess(self, input_dicts, data_id, log_id):
- """
- In preprocess stage, assembling data for process stage. users can
- override this function for model feed features.
- Args:
- input_dicts: input data to be preprocessed
- data_id: inner unique id
- log_id: global unique id for RTT
- Return:
- input_dict: data for process stage
- is_skip_process: skip process stage or not, False default
- prod_errcode: None default, otherwise, product errores occured.
- It is handled in the same way as exception.
- prod_errinfo: "" default
- """
- # multiple previous Op
- if len(input_dicts) != 1:
- _LOGGER.critical(
- self._log(
- "Failed to run preprocess: this Op has multiple previous "
- "inputs. Please override this func."))
- os._exit(-1)
- (_, input_dict), = input_dicts.items()
- return input_dict, False, None, ""
+ """
+ In preprocess stage, assembling data for process stage. users can
+ override this function for model feed features.
+ Args:
+ input_dicts: input data to be preprocessed
+ data_id: inner unique id
+ log_id: global unique id for RTT
+ Return:
+ input_dict: data for process stage
+ is_skip_process: skip process stage or not, False default
+ prod_errcode: None default, otherwise, product errores occured.
+ It is handled in the same way as exception.
+ prod_errinfo: "" default
+ """
+ # multiple previous Op
+ if len(input_dicts) != 1:
+ _LOGGER.critical(
+ self._log(
+ "Failed to run preprocess: this Op has multiple previous "
+ "inputs. Please override this func."))
+ os._exit(-1)
+ (_, input_dict), = input_dicts.items()
+ return input_dict, False, None, ""
```
+以下示例 Jump::preprocess() 重载了原函数,返回了 True 字段
+```python
+class JumpOp(Op):
+ ## Overload func JumpOp::preprocess
+ def preprocess(self, input_dicts, data_id, log_id):
+ (_, input_dict), = input_dicts.items()
+ if input_dict.has_key("jump"):
+ return input_dict, True, None, ""
+ else
+ return input_dict, False, None, ""
+```
+
-** 二. 批量推理 **
+**二. 批量推理**
Pipeline 支持批量推理,通过增大 batch size 可以提高 GPU 利用率。Python Pipeline 支持3种 batch 形式以及适用的场景如下:
-- 场景1:一个推理请求包含批量数据(batch)
- - 单条数据定长,批量变长,数据转成BCHW格式
- - 单条数据变长,前处理中将单条数据做 padding 转成定长
-- 场景2:一个推理请求的批量数据拆分成多个小块推理(mini-batch)
- - 由于 padding 会按最长对齐,当一批数据中有个"极大"尺寸数据时会导致推理变慢
- - 指定一个块大小,从而缩小"极大"尺寸数据的作用范围
-- 场景3:合并多个请求数据批量推理(auto-batching)
- - 推理耗时明显长于前后处理,合并多个请求数据推理一次会提高吞吐和GPU利用率
- - 要求多个请求数据的 shape 一致
+- 场景1:客户端打包批量数据(Client Batch)
+- 场景2:服务端合并多个请求动态合并批量(Server auto-batching)
+- 场景3:服务端拆分一个批量数据推理请求成为多个小块推理(Server mini-batch)
+
+
+1. 客户端打包批量数据
+
+当输入数据是 numpy 类型,如shape 为[4, 3, 512, 512]的 numpy 数据,即4张图片,可直接作为输入数据。
+当输入数据的 shape 不同时,需要按最大的shape的尺寸 Padding 对齐后发送给服务端
+
+2. 服务端合并多个请求动态合并批量
+有助于提升吞吐和计算资源的利用率,当多个请求的 shape 尺寸不相同时,不支持合并。当前有2种合并策略,分别是:
+
+- 等待时间与最大批量结合(推荐):结合`batch_size`和`auto_batching_timeout`配合使用,实际请求的批量条数超过`batch_size`时会立即执行,不超过时会等待`auto_batching_timeout`时间再执行
+```
+op:
+ bow:
+ # 并发数,is_thread_op=True时,为线程并发;否则为进程并发
+ concurrency: 1
+
+ # client连接类型,brpc, grpc和local_predictor
+ client_type: brpc
+
+ # Serving IPs
+ server_endpoints: ["127.0.0.1:9393"]
+
+ # bow模型client端配置
+ client_config: "imdb_bow_client_conf/serving_client_conf.prototxt"
+
+ # 批量查询Serving的数量, 默认1。batch_size>1要设置auto_batching_timeout,否则不足batch_size时会阻塞
+ batch_size: 2
+
+ # 批量查询超时,与batch_size配合使用
+ auto_batching_timeout: 2000
+```
+- 阻塞式等待:仅设置`batch_size`,不设置`auto_batching_timeout`或`auto_batching_timeout=0`,会一直等待接受 `batch_size` 个请求后再推理。
+
+```
+op:
+ bow:
+ # 并发数,is_thread_op=True时,为线程并发;否则为进程并发
+ concurrency: 1
+
+ # client连接类型,brpc, grpc和local_predictor
+ client_type: brpc
+
+ # Serving IPs
+ server_endpoints: ["127.0.0.1:9393"]
-| 接口 | 说明 |
-| :------------------------------------------: | :-----------------------------------------: |
-| batch | client 发送批量数据,client.predict 的 batch=True |
-| mini-batch | preprocess 按 list 类型返回,参考 OCR 示例 RecOp的preprocess|
-| auto-batching | config.yml 中 Op 级别设置 batch_size 和 auto_batching_timeout |
+ # bow模型client端配置
+ client_config: "imdb_bow_client_conf/serving_client_conf.prototxt"
+ # 批量查询Serving的数量, 默认1。batch_size>1要设置auto_batching_timeout,否则不足batch_size时会阻塞
+ batch_size: 2
+
+ # 批量查询超时,与batch_size配合使用
+ auto_batching_timeout: 2000
+
+```
-** 三. 单机多卡推理 **
-单机多卡推理,M 个 Op 进程与 N 个 GPU 卡绑定,在 `config.yml` 中配置3个参数有关系,首先选择进程模式、并发数即进程数,devices 是 GPU 卡 ID。绑定方法是进程启动时遍历 GPU 卡 ID,例如启动7个 Op 进程 `config.yml` 设置 devices:0,1,2,那么第1,4,7个启动的进程与0卡绑定,第2,4个启动的进程与1卡绑定,3,6进程与卡2绑定。
-- 进程ID: 0 绑定 GPU 卡0
-- 进程ID: 1 绑定 GPU 卡1
-- 进程ID: 2 绑定 GPU 卡2
-- 进程ID: 3 绑定 GPU 卡0
-- 进程ID: 4 绑定 GPU 卡1
-- 进程ID: 5 绑定 GPU 卡2
-- 进程ID: 6 绑定 GPU 卡0
-`config.yml` 中硬件配置:
+3.服务端拆分一个批量数据推理请求成为多个小块推理:会降低批量数据 Padding 对齐的大小,从而提升速度。可参考 [OCR 示例](),核心思路是拆分数据成多个小批量,放入 list 对象 feed_list 并返回
+
```
-#计算硬件 ID,当 devices 为""或不写时为 CPU 预测;当 devices 为"0", "0,1,2"时为 GPU 预测,表示使用的 GPU 卡
-devices: "0,1,2"
+def preprocess(self, input_dicts, data_id, log_id):
+ (_, input_dict), = input_dicts.items()
+ raw_im = input_dict["image"]
+ data = np.frombuffer(raw_im, np.uint8)
+ im = cv2.imdecode(data, cv2.IMREAD_COLOR)
+ dt_boxes = input_dict["dt_boxes"]
+ dt_boxes = self.sorted_boxes(dt_boxes)
+ feed_list = []
+ img_list = []
+ max_wh_ratio = 0
+
+ ## Many mini-batchs, the type of feed_data is list.
+ max_batch_size = len(dt_boxes)
+
+ # If max_batch_size is 0, skipping predict stage
+ if max_batch_size == 0:
+ return {}, True, None, ""
+ boxes_size = len(dt_boxes)
+ batch_size = boxes_size // max_batch_size
+ rem = boxes_size % max_batch_size
+ for bt_idx in range(0, batch_size + 1):
+ imgs = None
+ boxes_num_in_one_batch = 0
+ if bt_idx == batch_size:
+ if rem == 0:
+ continue
+ else:
+ boxes_num_in_one_batch = rem
+ elif bt_idx < batch_size:
+ boxes_num_in_one_batch = max_batch_size
+ else:
+ _LOGGER.error("batch_size error, bt_idx={}, batch_size={}".
+ format(bt_idx, batch_size))
+ break
+
+ start = bt_idx * max_batch_size
+ end = start + boxes_num_in_one_batch
+ img_list = []
+ for box_idx in range(start, end):
+ boximg = self.get_rotate_crop_image(im, dt_boxes[box_idx])
+ img_list.append(boximg)
+ h, w = boximg.shape[0:2]
+ wh_ratio = w * 1.0 / h
+ max_wh_ratio = max(max_wh_ratio, wh_ratio)
+ _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
+ max_wh_ratio).shape
+
+ imgs = np.zeros((boxes_num_in_one_batch, 3, w, h)).astype('float32')
+ for id, img in enumerate(img_list):
+ norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
+ imgs[id] = norm_img
+ feed = {"x": imgs.copy()}
+ feed_list.append(feed)
+
+ return feed_list, False, None, ""
```
-** 四. 多种计算芯片上推理 **
+**三. 单机多卡推理**
+
+单机多卡推理与 `config.yml` 中配置4个参数关系紧密,`is_thread_op`、`concurrency`、`device_type` 和 `devices`,必须在进程模型和 GPU 模式,每张卡上可分配多个进程,即 M 个 Op 进程与 N 个 GPU 卡绑定。
+```
+dag:
+ #op资源类型, True, 为线程模型;False,为进程模型
+ is_thread_op: False
+
+op:
+ det:
+ #并发数,is_thread_op=True时,为线程并发;否则为进程并发
+ concurrency: 6
+
+ #当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
+ local_service_conf:
+
+ client_type: local_predictor
+
+ # device_type, 0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
+ device_type: 0
+
+ # 计算硬件 ID,当 devices 为""或不写时为 CPU 预测;当 devices 为"0", "0,1,2"时为 GPU 预测,表示使用的 GPU 卡
+ devices: "0,1,2"
+```
+以上述案例为例,`concurrency:6`,即启动6个进程,`devices:0,1,2`,根据轮询分配机制,得到如下绑定关系:
+
+- 进程ID: 0 绑定 GPU 卡0
+- 进程ID: 1 绑定 GPU 卡1
+- 进程ID: 2 绑定 GPU 卡2
+- 进程ID: 3 绑定 GPU 卡0
+- 进程ID: 4 绑定 GPU 卡1
+- 进程ID: 5 绑定 GPU 卡2
+- 进程ID: 6 绑定 GPU 卡0
+
+对于更灵活的进程与 GPU 卡绑定方式,会持续开发。
+
-Pipeline 除了支持 CPU、GPU 芯片推理之外,还支持在多种计算硬件推理部署。在 `config.yml` 中由 `device_type` 和 `devices`。优先使用 `device_type` 指定类型,当空缺时根据 `devices` 判断。`device_type` 描述如下:
+**四. 多种计算芯片上推理**
+
+除了支持 CPU、GPU 芯片推理之外,Python Pipeline 还支持在多种计算硬件上推理。根据 `config.yml` 中的 `device_type` 和 `devices`来设置推理硬件和加速库如下:
- CPU(Intel) : 0
-- GPU(Jetson/海光DCU) : 1
+- GPU(GPU / Jetson / 海光 DCU) : 1
- TensorRT : 2
- CPU(Arm) : 3
- XPU : 4
- Ascend310 : 5
- ascend910 : 6
-config.yml中硬件配置:
+当不设置`device_type`时,根据 `devices` 来设置,即当 `device_type` 为 "" 或空缺时为 CPU 推理;当有设定如"0,1,2"时,为 GPU 推理,并指定 GPU 卡。
+
+以使用 GPU 的编号为0和1号卡并开启 TensorRT 为例,TensorRT 要配合 `ir_optim` 一同开启,`config.yml`详细配置如下:
```
-#计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
-device_type: 0
+# 计算硬件类型
+device_type: 2
+
+# 计算硬件ID,优先由device_type决定硬件类型
+devices: "0,1"
+
+# 开启ir优化
+ir_optim: True
-#计算硬件ID,优先由device_type决定硬件类型。devices为""或空缺时为CPU预测;当为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
-devices: "" # "0,1"
```
-** 五. 低精度推理 **
+**五. 低精度推理**
Pipeline Serving支持低精度推理,CPU、GPU和TensoRT支持的精度类型如下图所示:
-- CPU
- - fp32(default)
- - fp16
- - bf16(mkldnn)
-- GPU
- - fp32(default)
- - fp16
- - int8
-- Tensor RT
- - fp32(default)
- - fp16
- - int8
-
-使用int8时,要开启use_calib: True
-
-参考[simple_web_service](../../examples/Pipeline/simple_web_service)示例
+
+
+低精度推理需要有量化模型,配合`config.yml`配置一起使用,以[低精度示例]() 为例
+
+1. CPU 低精度推理配置
+
+通过设置,`device_type` 和 `devices` 字段使用 CPU 推理,通过调整`precision`、`thread_num`和`use_mkldnn`参数选择低精度和性能调优。
+
+```
+op:
+ imagenet:
+ #并发数,is_thread_op=True时,为线程并发;否则为进程并发
+ concurrency: 1
+
+ #当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
+ local_service_conf:
+
+ #uci模型路径
+ model_config: serving_server/
+
+ #计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
+ device_type: 0
+
+ #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
+ devices: ""
+
+ #client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
+ client_type: local_predictor
+
+ #Fetch结果列表,以client_config中fetch_var的alias_name为准
+ fetch_list: ["score"]
+
+ #精度,CPU 支持: "fp32"(default), "bf16"(mkldnn); 不支持: "int8"
+ precision: "bf16"
+
+ #CPU 算数计算线程数,默认4线程
+ thread_num: 10
+
+ #开启 MKLDNN
+ use_mkldnn: True
+```
+
+2. GPU + TensorRT 低精度推理
+
+通过设置,`device_type` 和 `devices` 字段使用原生 GPU 或 TensorRT 推理,通过调整`precision`、`ir_optim`和`use_calib`参数选择低精度和性能调优,如开启 TensorRT,必须一同开启`ir_optim`,`use_calib`仅配合 int8 使用。
+```
+op:
+ imagenet:
+ #并发数,is_thread_op=True时,为线程并发;否则为进程并发
+ concurrency: 1
+
+ #当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
+ local_service_conf:
+
+ #uci模型路径
+ model_config: serving_server/
+
+ #计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
+ device_type: 2
+
+ #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
+ devices: "1" # "0,1"
+
+ #client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
+ client_type: local_predictor
+
+ #Fetch结果列表,以client_config中fetch_var的alias_name为准
+ fetch_list: ["score"]
+
+ #精度,GPU 支持: "fp32"(default), "fp16", "int8"
+ precision: "int8"
+
+ #开启 TensorRT int8 calibration
+ use_calib: True
+
+ #开启 ir_optim
+ ir_optim: True
+```
+
+
+3. 性能测试
+
+测试环境如下:
+- GPU 型号: A100-40GB
+- CPU 型号: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz * 160
+- CUDA: CUDA Version: 11.2
+- CuDNN: 8.0
+
+测试方法:
+- 模型: Resnet50 量化模型
+- 部署方法: Python Pipeline 部署
+- 计时方法: 刨除第一次运行初始化,运行100次计算平均值
+
+在此环境下测试不同精度推理结果,GPU 推理性能较好的配置是
+- GPU + int8 + ir_optim + TensorRT + use_calib : 15.1 ms
+- GPU + fp16 + ir_optim + TensorRT : 17.2 ms
+
+
+CPU 推理性能较好的配置是
+- CPU + bf16 + MKLDNN : 18.2 ms
+- CPU + fp32 + thread_num=10 : 18.4 ms
+
+完整性能指标如下:
+
+

+
log.txt &
+```
+
+## RPC test
+```
+python3 pipeline_rpc_client.py
+```
diff --git a/examples/Pipeline/LowPrecision/ResNet50_Slim/README_CN.md b/examples/Pipeline/LowPrecision/ResNet50_Slim/README_CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..a56e1066c335b4875b72cdf4ec81d50b632a2ca5
--- /dev/null
+++ b/examples/Pipeline/LowPrecision/ResNet50_Slim/README_CN.md
@@ -0,0 +1,20 @@
+# Imagenet Pipeline WebService
+
+这里以 Imagenet 服务为例来介绍 Pipeline WebService 的使用。
+
+## 获取模型
+```
+wget https://paddle-inference-dist.bj.bcebos.com/inference_demo/python/resnet50/ResNet50_quant.tar.gz
+tar zxvf ResNet50_quant.tar.gz
+```
+
+## 启动服务
+
+```
+python3 resnet50_web_service.py &>log.txt &
+```
+
+## 测试
+```
+python3 pipeline_rpc_client.py
+```
diff --git a/examples/Pipeline/LowPrecision/ResNet50_Slim/benchmark.py b/examples/Pipeline/LowPrecision/ResNet50_Slim/benchmark.py
new file mode 100644
index 0000000000000000000000000000000000000000..4b0336f97c2c520a46d596bf5e435c2b9e3094a9
--- /dev/null
+++ b/examples/Pipeline/LowPrecision/ResNet50_Slim/benchmark.py
@@ -0,0 +1,153 @@
+# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import sys
+import os
+import base64
+import yaml
+import requests
+import time
+import json
+
+from paddle_serving_server.pipeline import PipelineClient
+import numpy as np
+from paddle_serving_client.utils import MultiThreadRunner
+from paddle_serving_client.utils import benchmark_args, show_latency
+
+
+def parse_benchmark(filein, fileout):
+ with open(filein, "r") as fin:
+ res = yaml.load(fin, yaml.FullLoader)
+ del_list = []
+ for key in res["DAG"].keys():
+ if "call" in key:
+ del_list.append(key)
+ for key in del_list:
+ del res["DAG"][key]
+ with open(fileout, "w") as fout:
+ yaml.dump(res, fout, default_flow_style=False)
+
+
+def gen_yml(device, gpu_id):
+ fin = open("config.yml", "r")
+ config = yaml.load(fin, yaml.FullLoader)
+ fin.close()
+ config["dag"]["tracer"] = {"interval_s": 10}
+ if device == "gpu":
+ config["op"]["imagenet"]["local_service_conf"]["device_type"] = 1
+ config["op"]["imagenet"]["local_service_conf"]["devices"] = gpu_id
+ else:
+ config["op"]["imagenet"]["local_service_conf"]["device_type"] = 0
+ with open("config2.yml", "w") as fout:
+ yaml.dump(config, fout, default_flow_style=False)
+
+
+def cv2_to_base64(image):
+ return base64.b64encode(image).decode('utf8')
+
+
+def run_http(idx, batch_size):
+ print("start thread ({})".format(idx))
+ url = "http://127.0.0.1:18000/imagenet/prediction"
+ start = time.time()
+
+ with open(os.path.join(".", "daisy.jpg"), 'rb') as file:
+ image_data1 = file.read()
+ image = cv2_to_base64(image_data1)
+ keys, values = [], []
+ for i in range(batch_size):
+ keys.append("image_{}".format(i))
+ values.append(image)
+ data = {"key": keys, "value": values}
+ latency_list = []
+ start_time = time.time()
+ total_num = 0
+ while True:
+ l_start = time.time()
+ r = requests.post(url=url, data=json.dumps(data))
+ print(r.json())
+ l_end = time.time()
+ latency_list.append(l_end * 1000 - l_start * 1000)
+ total_num += 1
+ if time.time() - start_time > 20:
+ break
+ end = time.time()
+ return [[end - start], latency_list, [total_num]]
+
+
+def multithread_http(thread, batch_size):
+ multi_thread_runner = MultiThreadRunner()
+ start = time.time()
+ result = multi_thread_runner.run(run_http, thread, batch_size)
+ end = time.time()
+ total_cost = end - start
+ avg_cost = 0
+ total_number = 0
+ for i in range(thread):
+ avg_cost += result[0][i]
+ total_number += result[2][i]
+ avg_cost = avg_cost / thread
+ print("Total cost: {}s".format(total_cost))
+ print("Each thread cost: {}s. ".format(avg_cost))
+ print("Total count: {}. ".format(total_number))
+ print("AVG QPS: {} samples/s".format(batch_size * total_number /
+ total_cost))
+ show_latency(result[1])
+
+
+def run_rpc(thread, batch_size):
+ client = PipelineClient()
+ client.connect(['127.0.0.1:18080'])
+ start = time.time()
+ test_img_dir = "imgs/"
+ for img_file in os.listdir(test_img_dir):
+ with open(os.path.join(test_img_dir, img_file), 'rb') as file:
+ image_data = file.read()
+ image = cv2_to_base64(image_data)
+ start_time = time.time()
+ while True:
+ ret = client.predict(feed_dict={"image": image}, fetch=["res"])
+ if time.time() - start_time > 10:
+ break
+ end = time.time()
+ return [[end - start]]
+
+
+def multithread_rpc(thraed, batch_size):
+ multi_thread_runner = MultiThreadRunner()
+ result = multi_thread_runner.run(run_rpc, thread, batch_size)
+
+
+if __name__ == "__main__":
+ if sys.argv[1] == "yaml":
+ mode = sys.argv[2] # brpc/ local predictor
+ thread = int(sys.argv[3])
+ device = sys.argv[4]
+ if device == "gpu":
+ gpu_id = sys.argv[5]
+ else:
+ gpu_id = None
+ gen_yml(device, gpu_id)
+ elif sys.argv[1] == "run":
+ mode = sys.argv[2] # http/ rpc
+ thread = int(sys.argv[3])
+ batch_size = int(sys.argv[4])
+ if mode == "http":
+ multithread_http(thread, batch_size)
+ elif mode == "rpc":
+ multithread_rpc(thread, batch_size)
+ elif sys.argv[1] == "dump":
+ filein = sys.argv[2]
+ fileout = sys.argv[3]
+ parse_benchmark(filein, fileout)
diff --git a/examples/Pipeline/LowPrecision/ResNet50_Slim/benchmark.sh b/examples/Pipeline/LowPrecision/ResNet50_Slim/benchmark.sh
new file mode 100644
index 0000000000000000000000000000000000000000..14c82dfcca801bc00bec57ef972f2260dd1d844a
--- /dev/null
+++ b/examples/Pipeline/LowPrecision/ResNet50_Slim/benchmark.sh
@@ -0,0 +1,44 @@
+export FLAGS_profile_pipeline=1
+alias python3="python3.6"
+modelname="clas-ResNet_v2_50"
+
+# HTTP
+#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
+sleep 3
+# Create yaml,If you already have the config.yaml, ignore it.
+#python3 benchmark.py yaml local_predictor 1 gpu
+rm -rf profile_log_$modelname
+
+echo "Starting HTTP Clients..."
+# Start a client in each thread, tesing the case of multiple threads.
+for thread_num in 1 2 4 8 12 16
+do
+ for batch_size in 1
+ do
+ echo "----${modelname} thread num: ${thread_num} batch size: ${batch_size} mode:http ----" >>profile_log_$modelname
+ # Start one web service, If you start the service yourself, you can ignore it here.
+ #python3 web_service.py >web.log 2>&1 &
+ #sleep 3
+
+ # --id is the serial number of the GPU card, Must be the same as the gpu id used by the server.
+ nvidia-smi --id=3 --query-gpu=memory.used --format=csv -lms 1000 > gpu_use.log 2>&1 &
+ nvidia-smi --id=3 --query-gpu=utilization.gpu --format=csv -lms 1000 > gpu_utilization.log 2>&1 &
+ echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py
+ # Start http client
+ python3 benchmark.py run http $thread_num $batch_size > profile 2>&1
+
+ # Collect CPU metrics, Filter data that is zero momentarily, Record the maximum value of GPU memory and the average value of GPU utilization
+ python3 cpu_utilization.py >> profile_log_$modelname
+ grep -av '^0 %' gpu_utilization.log > gpu_utilization.log.tmp
+ awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "MAX_GPU_MEMORY:", max}' gpu_use.log >> profile_log_$modelname
+ awk -F' ' '{sum+=$1} END {print "GPU_UTILIZATION:", sum/NR, sum, NR }' gpu_utilization.log.tmp >> profile_log_$modelname
+
+ # Show profiles
+ python3 ../../../util/show_profile.py profile $thread_num >> profile_log_$modelname
+ tail -n 8 profile >> profile_log_$modelname
+ echo '' >> profile_log_$modelname
+ done
+done
+
+# Kill all nvidia-smi background task.
+pkill nvidia-smi
diff --git a/examples/Pipeline/LowPrecision/ResNet50_Slim/config.yml b/examples/Pipeline/LowPrecision/ResNet50_Slim/config.yml
new file mode 100644
index 0000000000000000000000000000000000000000..e2064bdbfc6cb19039671dbb5084df474fdee210
--- /dev/null
+++ b/examples/Pipeline/LowPrecision/ResNet50_Slim/config.yml
@@ -0,0 +1,44 @@
+#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
+##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
+worker_num: 1
+
+#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
+http_port: 18080
+rpc_port: 9993
+
+dag:
+ #op资源类型, True, 为线程模型;False,为进程模型
+ is_thread_op: False
+op:
+ imagenet:
+ #并发数,is_thread_op=True时,为线程并发;否则为进程并发
+ concurrency: 1
+
+ #当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
+ local_service_conf:
+
+ #uci模型路径
+ model_config: serving_server/
+
+ #计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
+ device_type: 1
+
+ #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
+ devices: "0" # "0,1"
+
+ #client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
+ client_type: local_predictor
+
+ #Fetch结果列表,以client_config中fetch_var的alias_name为准
+ fetch_list: ["score"]
+
+ #precsion, 预测精度,降低预测精度可提升预测速度
+ #GPU 支持: "fp32"(default), "fp16", "int8";
+ #CPU 支持: "fp32"(default), "fp16", "bf16"(mkldnn); 不支持: "int8"
+ precision: "fp32"
+
+ #开启 TensorRT calibration
+ use_calib: True
+
+ #开启 ir_optim
+ ir_optim: True
diff --git a/examples/Pipeline/LowPrecision/ResNet50_Slim/daisy.jpg b/examples/Pipeline/LowPrecision/ResNet50_Slim/daisy.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7edeca63e5f32e68550ef720d81f59df58a8eabc
Binary files /dev/null and b/examples/Pipeline/LowPrecision/ResNet50_Slim/daisy.jpg differ
diff --git a/examples/Pipeline/LowPrecision/ResNet50_Slim/pipeline_http_client.py b/examples/Pipeline/LowPrecision/ResNet50_Slim/pipeline_http_client.py
new file mode 100644
index 0000000000000000000000000000000000000000..119a412113dac95621ef8fcad06398fed40a3da0
--- /dev/null
+++ b/examples/Pipeline/LowPrecision/ResNet50_Slim/pipeline_http_client.py
@@ -0,0 +1,35 @@
+# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+import requests
+import json
+import cv2
+import base64
+import os
+
+
+def cv2_to_base64(image):
+ return base64.b64encode(image).decode('utf8')
+
+
+if __name__ == "__main__":
+ url = "http://127.0.0.1:18080/imagenet/prediction"
+ with open(os.path.join(".", "daisy.jpg"), 'rb') as file:
+ image_data1 = file.read()
+ image = cv2_to_base64(image_data1)
+ data = {"key": ["image"], "value": [image]}
+ for i in range(1):
+ r = requests.post(url=url, data=json.dumps(data))
+ print(r.json())
diff --git a/examples/Pipeline/LowPrecision/ResNet50_Slim/pipeline_rpc_client.py b/examples/Pipeline/LowPrecision/ResNet50_Slim/pipeline_rpc_client.py
new file mode 100644
index 0000000000000000000000000000000000000000..82a570244cecc51061a38b64c25602f8dfbe931d
--- /dev/null
+++ b/examples/Pipeline/LowPrecision/ResNet50_Slim/pipeline_rpc_client.py
@@ -0,0 +1,37 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from paddle_serving_server.pipeline import PipelineClient
+import numpy as np
+import requests
+import json
+import cv2
+import base64
+import os
+
+client = PipelineClient()
+client.connect(['127.0.0.1:9993'])
+
+
+def cv2_to_base64(image):
+ return base64.b64encode(image).decode('utf8')
+
+
+with open("daisy.jpg", 'rb') as file:
+ image_data = file.read()
+image = cv2_to_base64(image_data)
+
+for i in range(1):
+ ret = client.predict(feed_dict={"image": image}, fetch=["label", "prob"])
+ print(ret)
diff --git a/examples/Pipeline/LowPrecision/ResNet50_Slim/resnet50_web_service.py b/examples/Pipeline/LowPrecision/ResNet50_Slim/resnet50_web_service.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a7213b7abd0ddf892f64e81f96601205e5b249c
--- /dev/null
+++ b/examples/Pipeline/LowPrecision/ResNet50_Slim/resnet50_web_service.py
@@ -0,0 +1,71 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import sys
+from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage
+from paddle_serving_server.web_service import WebService, Op
+import logging
+import numpy as np
+import base64, cv2
+
+
+class ImagenetOp(Op):
+ def init_op(self):
+ self.seq = Sequential([
+ Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
+ Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
+ True)
+ ])
+ self.label_dict = {}
+ label_idx = 0
+ with open("imagenet.label") as fin:
+ for line in fin:
+ self.label_dict[label_idx] = line.strip()
+ label_idx += 1
+
+ def preprocess(self, input_dicts, data_id, log_id):
+ (_, input_dict), = input_dicts.items()
+ batch_size = len(input_dict.keys())
+ imgs = []
+ for key in input_dict.keys():
+ data = base64.b64decode(input_dict[key].encode('utf8'))
+ data = np.fromstring(data, np.uint8)
+ im = cv2.imdecode(data, cv2.IMREAD_COLOR)
+ img = self.seq(im)
+ imgs.append(img[np.newaxis, :].copy())
+ input_imgs = np.concatenate(imgs, axis=0)
+ return {"image": input_imgs}, False, None, ""
+
+ def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
+ score_list = fetch_dict["score"]
+ result = {"label": [], "prob": []}
+ for score in score_list:
+ score = score.tolist()
+ max_score = max(score)
+ result["label"].append(self.label_dict[score.index(max_score)]
+ .strip().replace(",", ""))
+ result["prob"].append(max_score)
+ result["label"] = str(result["label"])
+ result["prob"] = str(result["prob"])
+ return result, None, ""
+
+
+class ImageService(WebService):
+ def get_pipeline_response(self, read_op):
+ image_op = ImagenetOp(name="imagenet", input_ops=[read_op])
+ return image_op
+
+
+uci_service = ImageService(name="imagenet")
+uci_service.prepare_pipeline_config("config.yml")
+uci_service.run_service()