- Long Term Vision: Online deployment of deep learning models will be a user-facing application in the future. Any AI developer will face the problem of deploying an online service for his or her trained model.
Paddle Serving is the official open source online deployment framework. The long term goal of Paddle Serving is to provide professional, reliable and easy-to-use online service to the last mile of AI application.
- Easy-To-Use: For algorithmic developers to quickly deploy their models online, Paddle Serving designs APIs that can be used with Paddle's training process seamlessly, most Paddle models can be deployed as a service with one line command.
- Industrial Oriented: To meet industrial deployment requirements, Paddle Serving supports lots of large-scale deployment functions: 1) Distributed Sparse Embedding Indexing. 2) Highly concurrent underlying communications. 3) Model Management, online A/B test, model online loading.
- Extensibility: Paddle Serving supports C++, Python and Golang client, and will support more clients with different languages. It is very easy to extend Paddle Serving to support other machine learning inference library, although currently Paddle inference library is the only official supported inference backend.