提交 d78b235e 编写于 作者: B barrierye

test int32 for java sdk && fix test_server_quant.py

上级 dfd43e26
......@@ -50,6 +50,7 @@
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<nd4j.backend>nd4j-native</nd4j.backend>
<nd4j.version>1.0.0-beta7</nd4j.version>
<datavec.version>1.0.0-beta7</datavec.version>
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>
</properties>
......@@ -91,6 +92,11 @@
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.datavec</groupId>
<artifactId>datavec-data-image</artifactId>
<version>${datavec.version}</version>
</dependency>
</dependencies>
</project>
import io.paddle.serving.client.*;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.io.File;
import java.io.IOException;
import java.net.URL;
import org.nd4j.linalg.api.iter.NdIndexIterator;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.datavec.image.loader.NativeImageLoader;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.factory.Nd4j;
import java.util.*;
......@@ -14,7 +20,63 @@ public class PaddleServingClientExample {
= new HashMap<String, INDArray>() {{
put("x", npdata);
}};
List<String> fetch = Arrays.asList("price");
List<String> fetch = Arrays.asList("save_infer_model/scale_0.tmp_0");
Client client = new Client();
String target = "localhost:9393";
boolean succ = client.connect(target);
if (succ != true) {
System.out.println("connect failed.");
return false;
}
Map<String, INDArray> fetch_map = client.predict(feed_data, fetch);
if (fetch_map == null) {
return false;
}
for (Map.Entry<String, INDArray> e : fetch_map.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
return true;
}
boolean yolov4(String filename) {
// https://deeplearning4j.konduit.ai/
int height = 608;
int width = 608;
int channels = 3;
NativeImageLoader loader = new NativeImageLoader(height, width, channels);
INDArray BGRimage = null;
try {
BGRimage = loader.asMatrix(new File(filename));
} catch (java.io.IOException e) {
System.out.println("load image fail.");
return false;
}
// shape: (channels, height, width)
BGRimage = BGRimage.reshape(channels, height, width);
INDArray RGBimage = Nd4j.create(BGRimage.shape());
// BGR2RGB
CustomOp op = DynamicCustomOp.builder("reverse")
.addInputs(BGRimage)
.addOutputs(RGBimage)
.addIntegerArguments(0)
.build();
Nd4j.getExecutioner().exec(op);
// Div(255.0)
INDArray image = RGBimage.divi(255.0);
INDArray im_size = Nd4j.createFromArray(new int[]{height, width});
HashMap<String, INDArray> feed_data
= new HashMap<String, INDArray>() {{
put("image", image);
put("im_size", im_size);
}};
List<String> fetch = Arrays.asList("save_infer_model/scale_0.tmp_0");
Client client = new Client();
String target = "localhost:9393";
......@@ -255,26 +317,36 @@ public class PaddleServingClientExample {
PaddleServingClientExample e = new PaddleServingClientExample();
boolean succ = false;
for (String arg : args) {
System.out.format("[Example] %s\n", arg);
if ("fit_a_line".equals(arg)) {
if (args.length < 1) {
System.out.println("Usage: java -cp <jar> PaddleServingClientExample <test-type>.");
System.out.println("<test-type>: fit_a_line bert model_ensemble asyn_predict batch_predict cube_local cube_quant yolov4");
return;
}
String testType = args[0];
System.out.format("[Example] %s\n", testType);
if ("fit_a_line".equals(testType)) {
succ = e.fit_a_line();
} else if ("bert".equals(arg)) {
} else if ("bert".equals(testType)) {
succ = e.bert();
} else if ("model_ensemble".equals(arg)) {
} else if ("model_ensemble".equals(testType)) {
succ = e.model_ensemble();
} else if ("asyn_predict".equals(arg)) {
} else if ("asyn_predict".equals(testType)) {
succ = e.asyn_predict();
} else if ("batch_predict".equals(arg)) {
} else if ("batch_predict".equals(testType)) {
succ = e.batch_predict();
} else if ("cube_local".equals(arg)) {
} else if ("cube_local".equals(testType)) {
succ = e.cube_local();
} else if ("cube_quant".equals(arg)) {
} else if ("cube_quant".equals(testType)) {
succ = e.cube_local();
} else {
System.out.format("%s not match: java -cp <jar> PaddleServingClientExample <exp>.\n", arg);
System.out.println("<exp>: fit_a_line bert model_ensemble asyn_predict batch_predict cube_local cube_quant.");
} else if ("yolov4".equals(testType)) {
if (args.length < 2) {
System.out.println("Usage: java -cp <jar> PaddleServingClientExample yolov4 <image-filepath>.");
return;
}
succ = e.yolov4(args[1]);
} else {
System.out.format("test-type(%s) not match.\n", testType);
return;
}
if (succ == true) {
......
......@@ -22,35 +22,21 @@
</license>
</licenses>
<!--
<developers>
<developer>
<name>Zhiru Zhu</name>
<email>zhiru.zhu@zilliz.com</email>
<organization>Milvus</organization>
<organizationUrl>http://www.milvus.io</organizationUrl>
</developer>
<developer>
<name>Xiaohai Xu</name>
<email>xiaohai.xu@zilliz.com</email>
<organization>Milvus</organization>
<organizationUrl>http://www.milvus.io</organizationUrl>
<name>PaddlePaddle Author</name>
<email>guru4elephant@gmail.com</email>
<organization>PaddlePaddle</organization>
<organizationUrl>https://github.com/PaddlePaddle/Serving</organizationUrl>
</developer>
</developers>
<scm>
<connection>scm:git:https://github.com/milvus-io/milvus-sdk-java.git</connection>
<developerConnection>scm:git:https://github.com/milvus-io/milvus-sdk-java.git</developerConnection>
<url>https://github.com/milvus-io/milvus-sdk-java</url>
<connection>scm:git:https://github.com/PaddlePaddle/Serving.git</connection>
<developerConnection>scm:git:https://github.com/PaddlePaddle/Serving.git</developerConnection>
<url>https://github.com/PaddlePaddle/Serving</url>
</scm>
<distributionManagement>
<snapshotRepository>
<id>ossrh</id>
<url>https://oss.sonatype.org/content/repositories/snapshots</url>
</snapshotRepository>
</distributionManagement>
-->
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<grpc.version>1.27.2</grpc.version>
......
......@@ -324,7 +324,7 @@ public class Client {
multi_result_map.put(engine_name, result_map);
}
// TODO: tag
// TODO: tag(ABtest not support now)
return multi_result_map;
}
......@@ -414,7 +414,7 @@ public class Client {
= new ArrayList<Map.Entry<String, HashMap<String, INDArray>>>(
ensemble_result.entrySet());
if (list.size() != 1) {
System.out.format("grpc failed: please use ensemble_predict impl.\n");
System.out.format("predict failed: please use ensemble_predict impl.\n");
return null;
}
profiler_.record("java_postpro_1");
......@@ -422,7 +422,7 @@ public class Client {
return list.get(0).getValue();
} catch (StatusRuntimeException e) {
System.out.format("grpc failed: %s\n", e.toString());
System.out.format("predict failed: %s\n", e.toString());
return null;
}
}
......@@ -448,7 +448,7 @@ public class Client {
return ensemble_result;
} catch (StatusRuntimeException e) {
System.out.format("grpc failed: %s\n", e.toString());
System.out.format("predict failed: %s\n", e.toString());
return null;
}
}
......
......@@ -33,5 +33,9 @@ server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(4)
server.load_model_config(sys.argv[1])
server.prepare_server(workdir="work_dir1", port=9292, device="cpu")
server.prepare_server(
workdir="work_dir1",
port=9292,
device="cpu",
cube_conf="./cube/conf/cube.conf")
server.run_server()
......@@ -33,5 +33,9 @@ server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(4)
server.load_model_config(sys.argv[1], sys.argv[2])
server.prepare_server(workdir="work_dir1", port=9292, device="cpu")
server.prepare_server(
workdir="work_dir1",
port=9292,
device="cpu",
cube_conf="./cube/conf/cube.conf")
server.run_server()
# Yolov4 Detection Service
([简体中文](README_CN.md)|English)
## Get Model
```
python -m paddle_serving_app.package --get_model yolov4
tar -xzvf yolov4.tar.gz
```
## Start RPC Service
```
python -m paddle_serving_server_gpu.serve --model yolov4_model --port 9393 --gpu_ids 0 --use_multilang
```
## Prediction
```
python test_client.py 000000570688.jpg
```
After the prediction is completed, a json file to save the prediction result and a picture with the detection result box will be generated in the `./outpu folder.
# Yolov4 检测服务
(简体中文|[English](README.md))
## 获取模型
```
python -m paddle_serving_app.package --get_model yolov4
tar -xzvf yolov4.tar.gz
```
## 启动RPC服务
```
python -m paddle_serving_server_gpu.serve --model yolov4_model --port 9393 --gpu_ids 0 --use_multilang
```
## 预测
```
python test_client.py 000000570688.jpg
```
预测完成会在`./output`文件夹下生成保存预测结果的json文件以及标出检测结果框的图片。
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
......@@ -11,27 +11,31 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient
from imdb_reader import IMDBDataset
import sys
import numpy as np
from paddle_serving_client import MultiLangClient as Client
from paddle_serving_app.reader import *
import cv2
client = MultiLangClient()
# If you have more than one model, make sure that the input
# and output of more than one model are the same.
client.connect(["127.0.0.1:9393"])
preprocess = Sequential([
File2Image(), BGR2RGB(), Resize(
(608, 608), interpolation=cv2.INTER_LINEAR), Div(255.0), Transpose(
(2, 0, 1))
])
# you can define any english sentence or dataset here
# This example reuses imdb reader in training, you
# can define your own data preprocessing easily.
imdb_dataset = IMDBDataset()
imdb_dataset.load_resource('imdb.vocab')
postprocess = RCNNPostprocess("label_list.txt", "output", [608, 608])
client = Client()
client.connect(['127.0.0.1:9393'])
# client.set_rpc_timeout_ms(10000)
for i in range(3):
line = 'i am very sad | 0'
word_ids, label = imdb_dataset.get_words_and_label(line)
feed = {"words": word_ids}
fetch = ["prediction"]
fetch_maps = client.predict(feed=feed, fetch=fetch)
for model, fetch_map in fetch_maps.items():
print("step: {}, model: {}, res: {}".format(i, model, fetch_map))
im = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_size": np.array(list(im.shape[1:])),
},
fetch=["save_infer_model/scale_0.tmp_0"])
fetch_map.pop("serving_status_code")
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_server import OpMaker
from paddle_serving_server import OpGraphMaker
from paddle_serving_server import MultiLangServer
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
cnn_infer_op = op_maker.create(
'general_infer', engine_name='cnn', inputs=[read_op])
bow_infer_op = op_maker.create(
'general_infer', engine_name='bow', inputs=[read_op])
response_op = op_maker.create(
'general_response', inputs=[cnn_infer_op, bow_infer_op])
op_graph_maker = OpGraphMaker()
op_graph_maker.add_op(read_op)
op_graph_maker.add_op(cnn_infer_op)
op_graph_maker.add_op(bow_infer_op)
op_graph_maker.add_op(response_op)
server = MultiLangServer()
server.set_op_graph(op_graph_maker.get_op_graph())
model_config = {cnn_infer_op: 'imdb_cnn_model', bow_infer_op: 'imdb_bow_model'}
server.load_model_config(model_config)
server.prepare_server(workdir="work_dir1", port=9393, device="cpu")
server.run_server()
......@@ -522,7 +522,7 @@ class MultiLangClient(object):
tensor.float_data.extend(
var.reshape(-1).astype('float32').tolist())
elif v_type == 2:
tensor.int32_data.extend(
tensor.int_data.extend(
var.reshape(-1).astype('int32').tolist())
else:
raise Exception("error tensor value type.")
......@@ -532,7 +532,7 @@ class MultiLangClient(object):
elif v_type == 1:
tensor.float_data.extend(self._flatten_list(var))
elif v_type == 2:
tensor.int32_data.extend(self._flatten_list(var))
tensor.int_data.extend(self._flatten_list(var))
else:
raise Exception("error tensor value type.")
else:
......
......@@ -524,7 +524,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
elif v_type == 1: # float32
data = np.array(list(var.float_data), dtype="float32")
elif v_type == 2: # int32
data = np.array(list(var.int32_data), dtype="int32")
data = np.array(list(var.int_data), dtype="int32")
else:
raise Exception("error type.")
data.shape = list(feed_inst.tensor_array[idx].shape)
......@@ -559,7 +559,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
tensor.float_data.extend(model_result[name].reshape(-1)
.tolist())
elif v_type == 2: # int32
tensor.int32_data.extend(model_result[name].reshape(-1)
tensor.int_data.extend(model_result[name].reshape(-1)
.tolist())
else:
raise Exception("error type.")
......
......@@ -571,7 +571,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
elif v_type == 1: # float32
data = np.array(list(var.float_data), dtype="float32")
elif v_type == 2:
data = np.array(list(var.int32_data), dtype="int32")
data = np.array(list(var.int_data), dtype="int32")
else:
raise Exception("error type.")
data.shape = list(feed_inst.tensor_array[idx].shape)
......@@ -606,7 +606,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
tensor.float_data.extend(model_result[name].reshape(-1)
.tolist())
elif v_type == 2: # int32
tensor.int32_data.extend(model_result[name].reshape(-1)
tensor.int_data.extend(model_result[name].reshape(-1)
.tolist())
else:
raise Exception("error type.")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册