提交 c928fcd1 编写于 作者: G guru4elephant

move general infer and general reader into general-server

make general_model_config unified on client side and server side
make general_model_config accessible with Python API
上级 d465b2fe
......@@ -25,4 +25,5 @@ endif()
if (NOT CLIENT_ONLY)
add_subdirectory(predictor)
add_subdirectory(general-server)
endif()
......@@ -29,6 +29,10 @@ FILE(GLOB inc ${CMAKE_CURRENT_BINARY_DIR}/*.pb.h)
install(FILES ${inc}
DESTINATION ${PADDLE_SERVING_INSTALL_DIR}/include/configure)
py_proto_compile(general_model_config_py_proto SRCS proto/general_model_config.proto)
add_custom_target(general_model_config_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(general_model_config_py_proto general_model_config_py_proto_init)
if (CLIENT_ONLY)
py_proto_compile(sdk_configure_py_proto SRCS proto/sdk_configure.proto)
add_custom_target(sdk_configure_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
......@@ -38,6 +42,13 @@ add_custom_command(TARGET sdk_configure_py_proto POST_BUILD
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMENT "Copy generated python proto into directory paddle_serving_client/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET general_model_config_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMENT "Copy generated general_model_config proto file into directory paddle_serving_client/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
if (NOT CLIENT_ONLY)
......@@ -49,4 +60,12 @@ add_custom_command(TARGET server_config_py_proto POST_BUILD
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMENT "Copy generated python proto into directory paddle_serving_server/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINRARY_DIR})
add_custom_command(TARGET general_model_config_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMENT "Copy generated general_model_config proto file into directory paddle_serving_server/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
......@@ -19,11 +19,15 @@
namespace baidu {
namespace paddle_serving {
namespace configure {
int read_proto_conf(const std::string &conf_path,
int read_proto_conf(const std::string &conf_full_path,
google::protobuf::Message *conf);
int read_proto_conf(const std::string &conf_path,
const std::string &conf_file,
google::protobuf::Message *conf);
int write_proto_conf(google::protobuf::Message *message,
int write_proto_conf(google::protobuf::Message *message,
const std::string &output_path,
const std::string &output_file);
......
......@@ -16,14 +16,16 @@ syntax = "proto2";
package baidu.paddle_serving.configure;
message FeedVar {
required string name = 1;
required bool is_lod_tensor = 2;
required int32 feed_type = 3;
repeated int32 shape = 4;
optional string name = 1;
optional string alias_name = 2;
optional bool is_lod_tensor = 3 [ default = false ];
optional int32 feed_type = 4 [ default = 0 ];
repeated int32 shape = 5;
}
message FetchVar {
required string name = 1;
repeated int32 shape = 2;
optional string name = 1;
optional string alias_name = 2;
repeated int32 shape = 3;
}
message GeneralModelConfig {
repeated FeedVar feed_var = 1;
......
......@@ -31,6 +31,24 @@ namespace baidu {
namespace paddle_serving {
namespace configure {
int read_proto_conf(const std::string &conf_file_full_path,
google::protobuf::Message *conf) {
int fd = open(conf_file_full_path.c_str(), O_RDONLY);
if (fd == -1) {
LOG(WARNING) << "File not found: " << conf_file_full_path.c_str();
return -1;
}
google::protobuf::io::FileInputStream input(fd);
bool success = google::protobuf::TextFormat::Parse(&input, conf);
close(fd);
if (!success) {
return -1;
}
return 0;
}
int read_proto_conf(const std::string &conf_path,
const std::string &conf_file,
google::protobuf::Message *conf) {
......
......@@ -45,7 +45,7 @@ class PredictorClient {
PredictorClient() {}
~PredictorClient() {}
void init(const std::string& client_conf);
int init(const std::string& client_conf);
void set_predictor_conf(const std::string& conf_path,
const std::string& conf_file);
......
......@@ -27,45 +27,42 @@ using baidu::paddle_serving::predictor::general_model::FetchInst;
namespace baidu {
namespace paddle_serving {
namespace general_model {
using configure::GeneralModelConfig;
void PredictorClient::init(const std::string &conf_file) {
_conf_file = conf_file;
std::ifstream fin(conf_file);
if (!fin) {
LOG(ERROR) << "Your inference conf file can not be found";
exit(-1);
int PredictorClient::init(const std::string &conf_file) {
try {
GeneralModelConfig model_config;
if (configure::read_proto_conf(conf_file.c_str(),
&model_config) != 0) {
LOG(ERROR) << "Failed to load general model config"
<< ", file path: " << conf_file;
return -1;
}
_feed_name_to_idx.clear();
_fetch_name_to_idx.clear();
_shape.clear();
int feed_var_num = 0;
int fetch_var_num = 0;
fin >> feed_var_num >> fetch_var_num;
std::string name;
std::string fetch_var_name;
int shape_num = 0;
int dim = 0;
int type_value = 0;
int feed_var_num = model_config.feed_var_size();
int fetch_var_num = model_config.fetch_var_size();
for (int i = 0; i < feed_var_num; ++i) {
fin >> name;
_feed_name_to_idx[name] = i;
fin >> shape_num;
_feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
std::vector<int> tmp_feed_shape;
for (int j = 0; j < shape_num; ++j) {
fin >> dim;
tmp_feed_shape.push_back(dim);
for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
}
fin >> type_value;
_type.push_back(type_value);
_type.push_back(model_config.feed_var(i).feed_type());
_shape.push_back(tmp_feed_shape);
}
for (int i = 0; i < fetch_var_num; ++i) {
fin >> name;
fin >> fetch_var_name;
_fetch_name_to_idx[name] = i;
_fetch_name_to_var_name[name] = fetch_var_name;
_fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
_fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
model_config.fetch_var(i).name();
}
} catch (std::exception& e) {
LOG(ERROR) << "Failed load general model config" << e.what();
return -1;
}
return 0;
}
void PredictorClient::set_predictor_conf(const std::string &conf_path,
......
......@@ -33,7 +33,7 @@ PYBIND11_MODULE(serving_client, m) {
.def(py::init())
.def("init",
[](PredictorClient &self, const std::string &conf) {
self.init(conf);
return self.init(conf);
})
.def("set_predictor_conf",
[](PredictorClient &self,
......
include_directories(SYSTEM ${CMAKE_CURRENT_LIST_DIR}/../kvdb/include)
include(op/CMakeLists.txt)
include(proto/CMakeLists.txt)
add_executable(serving ${serving_srcs})
add_dependencies(serving pdcodegen fluid_cpu_engine pdserving paddle_fluid
opencv_imgcodecs cube-api)
if (WITH_GPU)
add_dependencies(serving fluid_gpu_engine)
endif()
target_include_directories(serving PUBLIC
${CMAKE_CURRENT_BINARY_DIR}/../../core/predictor
)
if(WITH_GPU)
target_link_libraries(serving -Wl,--whole-archive fluid_gpu_engine
-Wl,--no-whole-archive)
endif()
target_link_libraries(serving -Wl,--whole-archive fluid_cpu_engine
-Wl,--no-whole-archive)
target_link_libraries(serving paddle_fluid ${paddle_depend_libs})
target_link_libraries(serving pdserving)
target_link_libraries(serving cube-api)
target_link_libraries(serving kvdb rocksdb)
if(WITH_GPU)
target_link_libraries(serving ${CUDA_LIBRARIES})
endif()
if(WITH_MKL)
target_link_libraries(serving -liomp5 -lmklml_intel -lmkldnn -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -lbz2)
else()
target_link_libraries(serving openblas -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -lbz2)
endif()
install(TARGETS serving
RUNTIME DESTINATION
${PADDLE_SERVING_INSTALL_DIR}/demo/serving/bin)
install(DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/conf DESTINATION
${PADDLE_SERVING_INSTALL_DIR}/demo/serving/)
FILE(GLOB inc ${CMAKE_CURRENT_BINARY_DIR}/*.pb.h)
install(FILES ${inc}
DESTINATION ${PADDLE_SERVING_INSTALL_DIR}/include/serving)
if (${WITH_MKL})
install(FILES
${CMAKE_BINARY_DIR}/third_party/install/Paddle/third_party/install/mklml/lib/libmklml_intel.so
${CMAKE_BINARY_DIR}/third_party/install/Paddle/third_party/install/mklml/lib/libiomp5.so
${CMAKE_BINARY_DIR}/third_party/install/Paddle/third_party/install/mkldnn/lib/libmkldnn.so.0
DESTINATION
${PADDLE_SERVING_INSTALL_DIR}/demo/serving/bin)
endif()
FILE(GLOB op_srcs ${CMAKE_CURRENT_LIST_DIR}/*.cpp)
LIST(APPEND serving_srcs ${op_srcs})
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "examples/demo-serving/op/general_infer_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "examples/demo-serving/op/general_reader_op.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
int GeneralInferOp::inference() {
const GeneralReaderOutput *reader_out =
get_depend_argument<GeneralReaderOutput>("general_reader_op");
if (!reader_out) {
LOG(ERROR) << "Failed mutable depended argument, op:"
<< "general_reader_op";
return -1;
}
int reader_status = reader_out->reader_status;
if (reader_status != 0) {
LOG(ERROR) << "Read request wrong.";
return -1;
}
const TensorVector *in = &reader_out->tensor_vector;
TensorVector *out = butil::get_object<TensorVector>();
int batch_size = (*in)[0].shape[0];
// infer
if (InferManager::instance().infer(GENERAL_MODEL_NAME, in, out, batch_size)) {
LOG(ERROR) << "Failed do infer in fluid model: " << GENERAL_MODEL_NAME;
return -1;
}
Response *res = mutable_data<Response>();
for (int i = 0; i < batch_size; ++i) {
FetchInst *fetch_inst = res->add_insts();
for (int j = 0; j < out->size(); ++j) {
Tensor *tensor = fetch_inst->add_tensor_array();
tensor->set_elem_type(1);
if (out->at(j).lod.size() == 1) {
tensor->add_shape(-1);
} else {
for (int k = 1; k < out->at(j).shape.size(); ++k) {
tensor->add_shape(out->at(j).shape[k]);
}
}
}
}
for (int i = 0; i < out->size(); ++i) {
float *data_ptr = static_cast<float *>(out->at(i).data.data());
int cap = 1;
for (int j = 1; j < out->at(i).shape.size(); ++j) {
cap *= out->at(i).shape[j];
}
if (out->at(i).lod.size() == 1) {
for (int j = 0; j < batch_size; ++j) {
for (int k = out->at(i).lod[0][j]; k < out->at(i).lod[0][j + 1]; k++) {
res->mutable_insts(j)->mutable_tensor_array(i)->add_data(
reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
}
}
} else {
for (int j = 0; j < batch_size; ++j) {
for (int k = j * cap; k < (j + 1) * cap; ++k) {
res->mutable_insts(j)->mutable_tensor_array(i)->add_data(
reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
}
}
}
}
/*
for (size_t i = 0; i < in->size(); ++i) {
(*in)[i].shape.clear();
}
in->clear();
butil::return_object<TensorVector>(in);
for (size_t i = 0; i < out->size(); ++i) {
(*out)[i].shape.clear();
}
out->clear();
butil::return_object<TensorVector>(out);
}
*/
return 0;
}
DEFINE_OP(GeneralInferOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "examples/demo-serving/general_model_service.pb.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
static const char* GENERAL_MODEL_NAME = "general_model";
class GeneralInferOp
: public baidu::paddle_serving::predictor::OpWithChannel<
baidu::paddle_serving::predictor::general_model::Response> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralInferOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "examples/demo-serving/op/general_reader_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int conf_check(const Request *req,
const std::shared_ptr<PaddleGeneralModelConfig> &model_config) {
int var_num = req->insts(0).tensor_array_size();
if (var_num != model_config->_feed_type.size()) {
VLOG(2) << "var num: " << var_num;
VLOG(2) << "model config var num: " << model_config->_feed_type.size();
LOG(ERROR) << "feed var number not match.";
return -1;
}
for (int i = 0; i < var_num; ++i) {
if (model_config->_feed_type[i] !=
req->insts(0).tensor_array(i).elem_type()) {
LOG(ERROR) << "feed type not match.";
return -1;
}
if (model_config->_feed_shape[i].size() ==
req->insts(0).tensor_array(i).shape_size()) {
for (int j = 0; j < model_config->_feed_shape[i].size(); ++j) {
req->insts(0).tensor_array(i).shape(j);
if (model_config->_feed_shape[i][j] !=
req->insts(0).tensor_array(i).shape(j)) {
LOG(ERROR) << "feed shape not match.";
return -1;
}
}
} else {
LOG(ERROR) << "feed shape not match.";
return -1;
}
}
return 0;
}
int GeneralReaderOp::inference() {
// reade request from client
const Request *req = dynamic_cast<const Request *>(get_request_message());
int batch_size = req->insts_size();
int input_var_num = 0;
std::vector<int64_t> elem_type;
std::vector<int64_t> elem_size;
std::vector<int64_t> capacity;
GeneralReaderOutput *res = mutable_data<GeneralReaderOutput>();
TensorVector *in = &res->tensor_vector;
if (!res) {
LOG(ERROR) << "Failed get op tls reader object output";
}
if (batch_size <= 0) {
res->reader_status = -1;
return 0;
}
int var_num = req->insts(0).tensor_array_size();
VLOG(2) << "var num: " << var_num;
// read config
LOG(INFO) << "start to call load general model_conf op";
baidu::paddle_serving::predictor::Resource &resource =
baidu::paddle_serving::predictor::Resource::instance();
LOG(INFO) << "get resource pointer done.";
std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config();
LOG(INFO) << "print general model config done.";
// check
res->reader_status = conf_check(req, model_config);
if (res->reader_status != 0) {
LOG(INFO) << "model conf of server:";
resource.print_general_model_config(model_config);
return 0;
}
// package tensor
elem_type.resize(var_num);
elem_size.resize(var_num);
capacity.resize(var_num);
paddle::PaddleTensor lod_tensor;
for (int i = 0; i < var_num; ++i) {
elem_type[i] = req->insts(0).tensor_array(i).elem_type();
VLOG(2) << "var[" << i << "] has elem type: " << elem_type[i];
if (elem_type[i] == 0) { // int64
elem_size[i] = sizeof(int64_t);
lod_tensor.dtype = paddle::PaddleDType::INT64;
} else {
elem_size[i] = sizeof(float);
lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
}
if (req->insts(0).tensor_array(i).shape(0) == -1) {
lod_tensor.lod.resize(1);
lod_tensor.lod[0].push_back(0);
VLOG(2) << "var[" << i << "] is lod_tensor";
} else {
lod_tensor.shape.push_back(batch_size);
capacity[i] = 1;
for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
int dim = req->insts(0).tensor_array(i).shape(k);
VLOG(2) << "shape for var[" << i << "]: " << dim;
capacity[i] *= dim;
lod_tensor.shape.push_back(dim);
}
VLOG(2) << "var[" << i << "] is tensor, capacity: " << capacity[i];
}
if (i == 0) {
lod_tensor.name = "words";
} else {
lod_tensor.name = "label";
}
in->push_back(lod_tensor);
}
for (int i = 0; i < var_num; ++i) {
if (in->at(i).lod.size() == 1) {
for (int j = 0; j < batch_size; ++j) {
const Tensor &tensor = req->insts(j).tensor_array(i);
int data_len = tensor.data_size();
VLOG(2) << "tensor size for var[" << i << "]: " << tensor.data_size();
int cur_len = in->at(i).lod[0].back();
VLOG(2) << "current len: " << cur_len;
in->at(i).lod[0].push_back(cur_len + data_len);
VLOG(2) << "new len: " << cur_len + data_len;
}
in->at(i).data.Resize(in->at(i).lod[0].back() * elem_size[i]);
in->at(i).shape = {in->at(i).lod[0].back(), 1};
VLOG(2) << "var[" << i
<< "] is lod_tensor and len=" << in->at(i).lod[0].back();
} else {
in->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]);
VLOG(2) << "var[" << i
<< "] is tensor and capacity=" << batch_size * capacity[i];
}
}
for (int i = 0; i < var_num; ++i) {
if (elem_type[i] == 0) {
int64_t *dst_ptr = static_cast<int64_t *>(in->at(i).data.data());
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
dst_ptr[offset + k] =
*(const int64_t *)req->insts(j).tensor_array(i).data(k).c_str();
}
if (in->at(i).lod.size() == 1) {
offset = in->at(i).lod[0][j + 1];
} else {
offset += capacity[i];
}
}
} else {
float *dst_ptr = static_cast<float *>(in->at(i).data.data());
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
dst_ptr[offset + k] =
*(const float *)req->insts(j).tensor_array(i).data(k).c_str();
}
if (in->at(i).lod.size() == 1) {
offset = in->at(i).lod[0][j + 1];
} else {
offset += capacity[i];
}
}
}
}
VLOG(2) << "read data from client success";
// print request
std::ostringstream oss;
int64_t *example = reinterpret_cast<int64_t *>((*in)[0].data.data());
for (int i = 0; i < 10; i++) {
oss << *(example + i) << " ";
}
VLOG(2) << "head element of first feed var : " << oss.str();
//
return 0;
}
DEFINE_OP(GeneralReaderOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
#include "core/predictor/framework/resource.h"
#include "examples/demo-serving/general_model_service.pb.h"
#include "examples/demo-serving/load_general_model_service.pb.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
struct GeneralReaderOutput {
std::vector<paddle::PaddleTensor> tensor_vector;
int reader_status = 0;
void Clear() {
size_t tensor_count = tensor_vector.size();
for (size_t ti = 0; ti < tensor_count; ++ti) {
tensor_vector[ti].shape.clear();
}
tensor_vector.clear();
}
std::string ShortDebugString() const { return "Not implemented!"; }
};
class GeneralReaderOp : public baidu::paddle_serving::predictor::OpWithChannel<
GeneralReaderOutput> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralReaderOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
LIST(APPEND protofiles
${CMAKE_CURRENT_LIST_DIR}/load_general_model_service.proto
${CMAKE_CURRENT_LIST_DIR}/general_model_service.proto
)
PROTOBUF_GENERATE_SERVING_CPP(TRUE PROTO_SRCS PROTO_HDRS ${protofiles})
LIST(APPEND serving_srcs ${PROTO_SRCS})
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
import "pds_option.proto";
import "builtin_format.proto";
package baidu.paddle_serving.predictor.general_model;
option cc_generic_services = true;
message Tensor {
repeated bytes data = 1;
optional int32 elem_type = 2;
repeated int32 shape = 3;
};
message FeedInst {
repeated Tensor tensor_array = 1;
};
message FetchInst {
repeated Tensor tensor_array = 1;
};
message Request {
repeated FeedInst insts = 1;
};
message Response {
repeated FetchInst insts = 1;
};
service GeneralModelService {
rpc inference(Request) returns (Response);
rpc debug(Request) returns (Response);
option (pds.options).generate_impl = true;
};
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
import "pds_option.proto";
package baidu.paddle_serving.predictor.load_general_model_service;
option cc_generic_services = true;
message RequestAndResponse {
required int32 a = 1;
required float b = 2;
};
service LoadGeneralModelService {
rpc inference(RequestAndResponse) returns (RequestAndResponse);
rpc debug(RequestAndResponse) returns (RequestAndResponse);
option (pds.options).generate_impl = true;
};
......@@ -38,12 +38,12 @@ DEFINE_int32(
0,
"Number of pthreads that server runs on, not change if this value <= 0");
DEFINE_int32(reload_interval_s, 10, "");
DEFINE_bool(enable_model_toolkit, false, "enable model toolkit");
DEFINE_bool(enable_model_toolkit, true, "enable model toolkit");
DEFINE_string(enable_protocol_list, "baidu_std", "set protocol list");
DEFINE_bool(enable_cube, false, "enable cube");
DEFINE_string(general_model_path, "./conf", "");
DEFINE_string(general_model_file, "general_model.prototxt", "");
DEFINE_bool(enable_general_model, false, "enable general model");
DEFINE_bool(enable_general_model, true, "enable general model");
const char* START_OP_NAME = "startup_op";
} // namespace predictor
......
......@@ -155,8 +155,11 @@ int Resource::initialize(const std::string& path, const std::string& file) {
// model config
int Resource::general_model_initialize(const std::string& path,
const std::string& file) {
VLOG(2) << "general model path: " << path;
VLOG(2) << "general model file: " << file;
if (!FLAGS_enable_general_model) {
return 0;
LOG(ERROR) << "general model is not enabled";
return -1;
}
ResourceConf resource_conf;
if (configure::read_proto_conf(path, file, &resource_conf) != 0) {
......@@ -183,6 +186,8 @@ int Resource::general_model_initialize(const std::string& path,
_config.reset(new PaddleGeneralModelConfig());
int feed_var_num = model_config.feed_var_size();
VLOG(2) << "load general model config";
VLOG(2) << "feed var num: " << feed_var_num;
_config->_feed_name.resize(feed_var_num);
_config->_feed_type.resize(feed_var_num);
_config->_is_lod_feed.resize(feed_var_num);
......@@ -190,15 +195,23 @@ int Resource::general_model_initialize(const std::string& path,
_config->_feed_shape.resize(feed_var_num);
for (int i = 0; i < feed_var_num; ++i) {
_config->_feed_name[i] = model_config.feed_var(i).name();
VLOG(2) << "feed var[" << i << "]: "
<< _config->_feed_name[i];
_config->_feed_type[i] = model_config.feed_var(i).feed_type();
VLOG(2) << "feed type[" << i << "]: "
<< _config->_feed_type[i];
if (model_config.feed_var(i).is_lod_tensor()) {
VLOG(2) << "var[" << i << "] is lod tensor";
_config->_feed_shape[i] = {-1};
_config->_is_lod_feed[i] = true;
} else {
VLOG(2) << "var[" << i << "] is tensor";
_config->_capacity[i] = 1;
_config->_is_lod_feed[i] = false;
for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
int32_t dim = model_config.feed_var(i).shape(j);
VLOG(2) << "var[" << i << "].shape[" << i << "]: " << dim;
_config->_feed_shape[i].push_back(dim);
_config->_capacity[i] *= dim;
}
......
......@@ -126,10 +126,6 @@ int main(int argc, char** argv) {
return 0;
}
if (!FLAGS_g) {
google::SetCommandLineOption("flagfile", "conf/gflags.conf");
}
google::ParseCommandLineFlags(&argc, &argv, true);
g_change_server_port();
......
......@@ -55,6 +55,7 @@
#include "core/configure/include/configure_parser.h"
#include "core/configure/sdk_configure.pb.h"
#include "core/configure/general_model_config.pb.h"
#include "core/sdk-cpp/include/utils.h"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册