diff --git a/doc/JAVA_SDK.md b/doc/JAVA_SDK.md
new file mode 100644
index 0000000000000000000000000000000000000000..ffec81c7c0e7435e91faa5aa5b0fe05d3d143837
--- /dev/null
+++ b/doc/JAVA_SDK.md
@@ -0,0 +1,94 @@
+# Paddle Serving Client Java SDK
+
+([简体中文](JAVA_SDK_CN.md)|English)
+
+Paddle Serving provides Java SDK,which supports predict on the Client side with Java language. This document shows how to use the Java SDK.
+
+## Getting started
+
+### Prerequisites
+
+```
+- Java 8 or higher
+- Apache Maven
+```
+
+The following table shows compatibilities between Paddle Serving Server and Java SDK.
+
+| Paddle Serving Server version | Java SDK version |
+| :---------------------------: | :--------------: |
+| 0.3.2 | 0.0.1 |
+
+### Install Java SDK
+
+You can use Apache Maven to download the SDK.
+
+```shell
+
+ io.paddle.serving.client
+ paddle-serving-sdk-java
+ 0.0.1
+
+```
+
+
+
+## Example
+
+Here we will show how to use Java SDK for Boston house price prediction. Please refer to [examples](../java/examples) folder for more examples.
+
+### Get model
+
+```shell
+wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
+tar -xzf uci_housing.tar.gz
+```
+
+### Start Python Server
+
+```shell
+python -m paddle_serving_server.serve --model uci_housing_model --port 9393 --use_multilang
+```
+
+#### Client side code example
+
+```java
+import io.paddle.serving.client.*;
+import org.nd4j.linalg.api.ndarray.INDArray;
+import org.nd4j.linalg.factory.Nd4j;
+import java.util.*;
+
+public class PaddleServingClientExample {
+ public static void main( String[] args ) {
+ float[] data = {0.0137f, -0.1136f, 0.2553f, -0.0692f,
+ 0.0582f, -0.0727f, -0.1583f, -0.0584f,
+ 0.6283f, 0.4919f, 0.1856f, 0.0795f, -0.0332f};
+ INDArray npdata = Nd4j.createFromArray(data);
+ HashMap feed_data
+ = new HashMap() {{
+ put("x", npdata);
+ }};
+ List fetch = Arrays.asList("price");
+
+ Client client = new Client();
+ String target = "localhost:9393";
+ boolean succ = client.connect(target);
+ if (succ != true) {
+ System.out.println("connect failed.");
+ return ;
+ }
+
+ Map fetch_map = client.predict(feed_data, fetch);
+ if (fetch_map == null) {
+ System.out.println("predict failed.");
+ return ;
+ }
+
+ for (Map.Entry e : fetch_map.entrySet()) {
+ System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
+ }
+ return ;
+ }
+}
+```
+
diff --git a/doc/JAVA_SDK_CN.md b/doc/JAVA_SDK_CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..34ff232ebf97c0701226c9d6fac8cbe34e8e9192
--- /dev/null
+++ b/doc/JAVA_SDK_CN.md
@@ -0,0 +1,95 @@
+# Paddle Serving Client Java SDK
+
+(简体中文|[English](JAVA_SDK.md))
+
+Paddle Serving 提供了 Java SDK,支持 Client 端用 Java 语言进行预测,本文档说明了如何使用 Java SDK。
+
+
+
+## 快速开始
+
+### 环境要求
+
+```
+- Java 8 or higher
+- Apache Maven
+```
+
+下表显示了 Paddle Serving Server 和 Java SDK 之间的兼容性
+
+| Paddle Serving Server version | Java SDK version |
+| :---------------------------: | :--------------: |
+| 0.3.2 | 0.0.1 |
+
+### 安装
+
+您可以使用 Apache Maven 下载该 SDK。
+
+```shell
+
+ io.paddle.serving.client
+ paddle-serving-sdk-java
+ 0.0.1
+
+```
+
+
+## 使用样例
+
+这里将展示如何使用 Java SDK 进行房价预测,更多例子详见 [examples](../java/examples) 文件夹。
+
+### 获取房价预测模型
+
+```shell
+wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
+tar -xzf uci_housing.tar.gz
+```
+
+### 启动 Python 端 Server
+
+```shell
+python -m paddle_serving_server.serve --model uci_housing_model --port 9393 --use_multilang
+```
+
+### Client 端代码示例
+
+```java
+import io.paddle.serving.client.*;
+import org.nd4j.linalg.api.ndarray.INDArray;
+import org.nd4j.linalg.factory.Nd4j;
+import java.util.*;
+
+public class PaddleServingClientExample {
+ public static void main( String[] args ) {
+ float[] data = {0.0137f, -0.1136f, 0.2553f, -0.0692f,
+ 0.0582f, -0.0727f, -0.1583f, -0.0584f,
+ 0.6283f, 0.4919f, 0.1856f, 0.0795f, -0.0332f};
+ INDArray npdata = Nd4j.createFromArray(data);
+ HashMap feed_data
+ = new HashMap() {{
+ put("x", npdata);
+ }};
+ List fetch = Arrays.asList("price");
+
+ Client client = new Client();
+ String target = "localhost:9393";
+ boolean succ = client.connect(target);
+ if (succ != true) {
+ System.out.println("connect failed.");
+ return ;
+ }
+
+ Map fetch_map = client.predict(feed_data, fetch);
+ if (fetch_map == null) {
+ System.out.println("predict failed.");
+ return ;
+ }
+
+ for (Map.Entry e : fetch_map.entrySet()) {
+ System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
+ }
+ return ;
+ }
+}
+```
+