diff --git a/core/predictor/framework/prometheus_metric.cpp b/core/predictor/framework/prometheus_metric.cpp
index 5ddd0d1df173ab11338c41644cc11fc6cbaaaf47..db4f2f4551482cdeee4fb2f24083a92f862c50f3 100644
--- a/core/predictor/framework/prometheus_metric.cpp
+++ b/core/predictor/framework/prometheus_metric.cpp
@@ -30,26 +30,26 @@ PrometheusMetric::PrometheusMetric()
serializer_(new prometheus::TextSerializer()),
query_success_family_(
prometheus::BuildCounter()
- .Name("pd_query_request_success")
+ .Name("pd_query_request_success_total")
.Help("Number of successful query requests")
.Register(*registry_)),
query_failure_family_(
prometheus::BuildCounter()
- .Name("pd_query_request_failure")
+ .Name("pd_query_request_failure_total")
.Help("Number of failed query requests")
.Register(*registry_)),
inf_count_family_(prometheus::BuildCounter()
- .Name("pd_inference_count")
+ .Name("pd_inference_count_total")
.Help("Number of inferences performed")
.Register(*registry_)),
query_duration_us_family_(
prometheus::BuildCounter()
- .Name("pd_query_request_duration_us")
+ .Name("pd_query_request_duration_us_total")
.Help("Cummulative query request duration in microseconds")
.Register(*registry_)),
inf_duration_us_family_(
prometheus::BuildCounter()
- .Name("pd_inference_duration_us")
+ .Name("pd_inference_duration_us_total")
.Help("Cummulative inference duration in microseconds")
.Register(*registry_)),
metrics_enabled_(false)
diff --git a/doc/C++_Serving/Performance_Tuning_CN.md b/doc/C++_Serving/Performance_Tuning_CN.md
index d2b2921b71a55624fd58e4ae8eb52eb07a9fd516..90ecc1e6713261897fc2ad08c4e34e43ea1c5209 100755
--- a/doc/C++_Serving/Performance_Tuning_CN.md
+++ b/doc/C++_Serving/Performance_Tuning_CN.md
@@ -58,3 +58,17 @@ Server端**线程数N**的设置需要结合三个因素来综合
## 4.3 示例
请参考[examples/C++/PaddleOCR/ocr/README_CN.md](../../examples/C++/PaddleOCR/ocr/README_CN.md)中`C++ OCR Service服务章节`和[Paddle Serving中的集成预测](./Model_Ensemble_CN.md)中的例子。
+
+# 5.请求缓存
+当**您的业务中有较多重复请求**时,您可以考虑使用C++Serving[Request Cache](./Request_Cache_CN.md)来提升服务性能
+
+## 5.1 优点
+服务可以缓存请求结果,将请求数据与结果以键值对的形式保存。当有重复请求到来时,可以根据请求数据直接从缓存中获取结果并返回,而不需要进行模型预测等处理(耗时与请求数据大小有关,在毫秒量级)。
+
+## 5.2 缺点
+
+1) 需要额外的系统内存用于缓存请求结果,具体缓存大小可以通过启动参数进行配置。
+2) 对于未命中请求,会增加额外的时间用于根据请求数据检索缓存(耗时增加1%左右)。
+
+## 5.3 示例
+请参考[Request Cache](./Request_Cache_CN.md)中的使用方法
\ No newline at end of file
diff --git a/doc/Model_Zoo_CN.md b/doc/Model_Zoo_CN.md
old mode 100644
new mode 100755
index 645523a2d6fbd01ee842dd146bb8bf290ba3ffd0..23472f26c8a60ad1113c3fcebcaeda7dc79d57c3
--- a/doc/Model_Zoo_CN.md
+++ b/doc/Model_Zoo_CN.md
@@ -10,6 +10,7 @@
| 模型 | 类型 | 示例使用的框架 | 下载 |
| --- | --- | --- | ---- |
+| pp_shitu | PaddleClas | [C++ Serving](../examples/C++/PaddleClas/pp_shitu) | [.tar.gz](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/serving/pp_shitu.tar.gz) |
| resnet_v2_50_imagenet | PaddleClas | [C++ Serving](../examples/C++/PaddleClas/resnet_v2_50)[Pipeline Serving](../examples/Pipeline/PaddleClas/ResNet_V2_50) | [.tar.gz](https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/resnet_v2_50_imagenet.tar.gz) | Pipeline Serving, C++ Serving|
| mobilenet_v2_imagenet | PaddleClas | [C++ Serving](../examples/C++/PaddleClas/mobilenet) | [.tar.gz](https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/mobilenet_v2_imagenet.tar.gz) |
| resnet50_vd | PaddleClas | [C++ Serving](../examples/C++/PaddleClas/imagenet)[Pipeline Serving](../examples/Pipeline/PaddleClas/ResNet50_vd) | [.tar.gz](https://paddle-serving.bj.bcebos.com/model/ResNet50_vd.tar) |
@@ -27,6 +28,8 @@
| senta_bilstm | PaddleNLP | [C++ Serving](../examples/C++/PaddleNLP/senta) | [.tar.gz](https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SentimentAnalysis/senta_bilstm.tar.gz) |C++ Serving|
| lac | PaddleNLP | [C++ Serving](../examples/C++/PaddleNLP/lac) | [.tar.gz](https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/LexicalAnalysis/lac.tar.gz) |
| transformer | PaddleNLP | [Pipeline Serving](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/examples/machine_translation/transformer/deploy/serving/README.md) | [model](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/machine_translation/transformer) |
+| ELECTRA | PaddleNLP | [Pipeline Serving](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/examples/language_model/electra/deploy/serving/README.md) | [model](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/electra) |
+| In-batch Negatives | PaddleNLP | [Pipeline Serving](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/applications/neural_search/recall/in_batch_negative) | [model](https://bj.bcebos.com/v1/paddlenlp/models/inbatch_model.zip) |
| criteo_ctr | PaddleRec | [C++ Serving](../examples/C++/PaddleRec/criteo_ctr) | [.tar.gz](https://paddle-serving.bj.bcebos.com/criteo_ctr_example/criteo_ctr_demo_model.tar.gz) |
| criteo_ctr_with_cube | PaddleRec | [C++ Serving](../examples/C++/PaddleRec/criteo_ctr_with_cube) | [.tar.gz](https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz) |
| wide&deep | PaddleRec | [C++ Serving](https://github.com/PaddlePaddle/PaddleRec/blob/release/2.1.0/doc/serving.md) | [model](https://github.com/PaddlePaddle/PaddleRec/blob/release/2.1.0/models/rank/wide_deep/README.md) |
@@ -66,4 +69,3 @@
- [PaddleRec](https://github.com/PaddlePaddle/PaddleRec)
- [PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg)
- [PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN)
-
diff --git a/doc/Model_Zoo_EN.md b/doc/Model_Zoo_EN.md
old mode 100644
new mode 100755
index 67fcaf6dd5c535a7fc7c56336ac8ea9ccb996396..10baea39c3333f295c9be3b15a0f093ef1b5d0af
--- a/doc/Model_Zoo_EN.md
+++ b/doc/Model_Zoo_EN.md
@@ -10,6 +10,7 @@ Special thanks to the [Padddle wholechain](https://www.paddlepaddle.org.cn/whole
| Model | Type | Framework | Download |
| --- | --- | --- | ---- |
+| pp_shitu | PaddleClas | [C++ Serving](../examples/C++/PaddleClas/pp_shitu) | [.tar.gz](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/serving/pp_shitu.tar.gz) |
| resnet_v2_50_imagenet | PaddleClas | [C++ Serving](../examples/C++/PaddleClas/resnet_v2_50)[Pipeline Serving](../examples/Pipeline/PaddleClas/ResNet_V2_50) | [.tar.gz](https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/resnet_v2_50_imagenet.tar.gz) | Pipeline Serving, C++ Serving|
| mobilenet_v2_imagenet | PaddleClas | [C++ Serving](../examples/C++/PaddleClas/mobilenet) | [.tar.gz](https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/mobilenet_v2_imagenet.tar.gz) |
| resnet50_vd | PaddleClas | [C++ Serving](../examples/C++/PaddleClas/imagenet)[Pipeline Serving](../examples/Pipeline/PaddleClas/ResNet50_vd) | [.tar.gz](https://paddle-serving.bj.bcebos.com/model/ResNet50_vd.tar) |
diff --git a/doc/Prometheus_CN.md b/doc/Prometheus_CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..4807d8c7029b0f5252aa632a92511b762002c4ff
--- /dev/null
+++ b/doc/Prometheus_CN.md
@@ -0,0 +1,95 @@
+## Paddle Serving使用普罗米修斯监控
+
+Paddle Serving支持普罗米修斯进行性能数据的监控。默认的访问接口为`http://localhost:19393/metrics`。数据形式为文本格式,您可以使用如下命令直观的看到:
+```
+curl http://localhost:19393/metrics
+```
+
+## 配置使用
+
+### C+ Server
+
+对于 C++ Server 来说,启动服务时请添加如下参数
+
+| 参数 | 参数说明 | 备注 |
+| :------- | :-------------------------- | :--------------------------------------------------------------- |
+| enable_prometheus | 开启Prometheus | 开启Prometheus功能 |
+| prometheus_port | Prometheus数据端口 | 默认为19393 |
+
+### Python Pipeline
+
+对于 Python Pipeline 来说,启动服务时请在配置文件config.yml中添加如下参数
+```
+dag:
+ #开启Prometheus
+ enable_prometheus: True
+ #配置Prometheus数据端口
+ prometheus_port: 19393
+```
+
+### 监控数据类型
+
+监控数据类型如下表
+
+| Metric | Frequency | Description |
+| ---------------------------------------------- | ----------- | ----------------------------------------------------- |
+| `pd_query_request_success_total` | Per request | Number of successful query requests |
+| `pd_query_request_failure_total` | Per request | Number of failed query requests |
+| `pd_inference_count_total` | Per request | Number of inferences performed |
+| `pd_query_request_duration_us_total` | Per request | Cumulative end-to-end query request handling time |
+| `pd_inference_duration_us_total` | Per request | Cumulative time requests spend executing the inference model |
+
+## 监控示例
+
+此处给出一个使用普罗米修斯进行服务监控的简单示例
+
+**1、获取镜像**
+
+```
+docker pull prom/node-exporter
+docker pull prom/prometheus
+```
+
+**2、运行镜像**
+
+```
+docker run -d -p 9100:9100 \
+ -v "/proc:/host/proc:ro" \
+ -v "/sys:/host/sys:ro" \
+ -v "/:/rootfs:ro" \
+ --net="host" \
+ prom/node-exporter
+```
+
+**3、配置**
+
+修改监控服务的配置文件/opt/prometheus/prometheus.yml,添加监控节点信息
+
+```
+global:
+ scrape_interval: 60s
+ evaluation_interval: 60s
+
+scrape_configs:
+ - job_name: prometheus
+ static_configs:
+ - targets: ['localhost:9090']
+ labels:
+ instance: prometheus
+
+ - job_name: linux
+ static_configs:
+ - targets: ['$IP:9100']
+ labels:
+ instance: localhost
+```
+
+**4、启动监控服务**
+
+```
+docker run -d \
+ -p 9090:9090 \
+ -v /opt/prometheus/prometheus.yml:/etc/prometheus/prometheus.yml \
+ prom/prometheus
+```
+访问 `http://serverip:9090/graph` 即可
\ No newline at end of file
diff --git a/doc/Run_On_DCU_CN.md b/doc/Run_On_DCU_CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..fe8a12d5cc901d9a8da6d13326251508ab72f3d1
--- /dev/null
+++ b/doc/Run_On_DCU_CN.md
@@ -0,0 +1,69 @@
+## Paddle Serving使用海光芯片部署
+
+Paddle Serving支持使用海光DCU进行预测部署。目前支持的ROCm版本为4.0.1。
+
+## 安装Docker镜像
+我们推荐使用docker部署Serving服务,可以直接从Paddle的官方镜像库拉取预先装有ROCm4.0.1的docker镜像。
+```
+# 拉取镜像
+docker pull paddlepaddle/paddle:latest-dev-rocm4.0-miopen2.11
+
+# 启动容器,注意这里的参数,例如shm-size, device等都需要配置
+docker run -it --name paddle-rocm-dev --shm-size=128G \
+ --device=/dev/kfd --device=/dev/dri --group-add video \
+ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
+ paddlepaddle/paddle:latest-dev-rocm4.0-miopen2.11 /bin/bash
+
+# 检查容器是否可以正确识别海光DCU设备
+rocm-smi
+
+# 预期得到以下结果:
+======================= ROCm System Management Interface =======================
+================================= Concise Info =================================
+GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%
+0 50.0c 23.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
+1 48.0c 25.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
+2 48.0c 24.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
+3 49.0c 27.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
+================================================================================
+============================= End of ROCm SMI Log ==============================
+```
+
+## 编译、安装
+基本环境配置可参考[该文档](Compile_CN.md)进行配置。
+### 编译
+* 编译server部分
+```
+cd Serving
+mkdir -p server-build-dcu && cd server-build-dcu
+
+cmake -DPYTHON_INCLUDE_DIR=/opt/conda/include/python3.7m/ \
+ -DPYTHON_LIBRARIES=/opt/conda/lib/libpython3.7m.so \
+ -DPYTHON_EXECUTABLE=/opt/conda/bin/python \
+ -DWITH_MKL=ON \
+ -DWITH_ROCM=ON \
+ -DSERVER=ON ..
+make -j10
+```
+
+### 安装wheel包
+编译步骤完成后,会在各自编译目录$build_dir/python/dist生成whl包,分别安装即可。例如server步骤,会在server-build-arm/python/dist目录下生成whl包, 使用命令```pip install -u xxx.whl```进行安装。
+
+
+## 部署使用示例
+以[resnet50](../examples/C++/PaddleClas/resnet_v2_50/README_CN.md)为例
+
+### 启动rpc服务
+
+启动rpc服务,基于1卡部署
+```
+python3 -m paddle_serving_server.serve --model resnet_v2_50_imagenet_model --port 9393 --gpu_ids 1
+```
+
+## 其他说明
+
+### 模型实例及说明
+支持海光芯片部署模型列表见[链接](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/09_hardware_support/rocm_docs/paddle_rocm_cn.html)。不同模型适配上存在差异,可能存在不支持的情况,部署使用存在问题时,欢迎以[Github issue](https://github.com/PaddlePaddle/Serving/issues),我们会实时跟进。
+
+### 昆仑芯片支持相关参考资料
+* [海光芯片运行飞桨](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/09_hardware_support/rocm_docs/paddle_install_cn.html)
\ No newline at end of file
diff --git a/doc/Run_On_JETSON_CN.md b/doc/Run_On_JETSON_CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..b3549ebb2845aa2dd18bd3bca8b0101bfb909b8f
--- /dev/null
+++ b/doc/Run_On_JETSON_CN.md
@@ -0,0 +1,42 @@
+## Paddle Serving使用JETSON部署
+
+Paddle Serving支持使用JETSON进行预测部署。目前仅支持Pipeline模式。
+
+### 安装PaddlePaddle
+
+可以参考[NV Jetson部署示例](https://paddleinference.paddlepaddle.org.cn/demo_tutorial/cuda_jetson_demo.html)安装python版本的paddlepaddle
+
+
+### 安装PaddleServing
+
+安装ARM版本的whl包
+```
+# paddle-serving-server
+https://paddle-serving.bj.bcebos.com/whl/xpu/arm/paddle_serving_server_xpu-0.0.0.post2-py3-none-any.whl
+# paddle-serving-client
+https://paddle-serving.bj.bcebos.com/whl/xpu/arm/paddle_serving_client-0.0.0-cp36-none-any.whl
+# paddle-serving-app
+https://paddle-serving.bj.bcebos.com/whl/xpu/arm/paddle_serving_app-0.0.0-py3-none-any.whl
+```
+
+### 部署使用
+
+以[Uci](../examples/Pipeline/simple_web_service/README_CN.md)为例
+
+启动服务
+```
+python3 web_service.py &>log.txt &
+```
+其中修改config.yml中的对应配置项
+```
+ #计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
+ device_type: 1
+
+ #计算硬件ID,优先由device_type决定硬件类型。devices为""或空缺时为CPU预测;当为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
+ devices: "0,1"
+```
+
+## 其他说明
+
+### Jetson支持相关参考资料
+* [Jetson运行飞桨](https://paddleinference.paddlepaddle.org.cn/demo_tutorial/cuda_jetson_demo.html)
\ No newline at end of file
diff --git a/doc/Run_On_NPU_CN.md b/doc/Run_On_NPU_CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..2919ae7290071b409852634e4274911d8f46992b
--- /dev/null
+++ b/doc/Run_On_NPU_CN.md
@@ -0,0 +1,196 @@
+## Paddle Serving使用昇腾NPU芯片部署
+
+Paddle Serving支持使用昇腾NPU芯片进行预测部署。目前支持在昇腾芯片(910/310)和arm服务器上进行部署,后续完善对其他异构硬件服务器部署能力。
+
+## 昇腾910
+
+### 安装Docker镜像
+我们推荐使用docker部署Serving服务,可以直接从Paddle的官方镜像库拉取预先装有 CANN 社区版 5.0.2.alpha005 的 docker 镜像。
+```
+# 拉取镜像
+docker pull paddlepaddle/paddle:latest-dev-cann5.0.2.alpha005-gcc82-aarch64
+
+# 启动容器,注意这里的参数 --device,容器仅映射设备ID为4到7的4张NPU卡,如需映射其他卡相应增改设备ID号即可
+docker run -it --name paddle-npu-dev -v /home/:/workspace \
+ --pids-limit 409600 --network=host --shm-size=128G \
+ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
+ --device=/dev/davinci4 --device=/dev/davinci5 \
+ --device=/dev/davinci6 --device=/dev/davinci7 \
+ --device=/dev/davinci_manager \
+ --device=/dev/devmm_svm \
+ --device=/dev/hisi_hdc \
+ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
+ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
+ -v /usr/local/dcmi:/usr/local/dcmi \
+ paddlepaddle/paddle:latest-dev-cann5.0.2.alpha005-gcc82-aarch64 /bin/bash
+
+# 检查容器中是否可以正确识别映射的昇腾DCU设备
+npu-smi info
+
+# 预期得到类似如下的结果
++------------------------------------------------------------------------------------+
+| npu-smi 1.9.3 Version: 21.0.rc1 |
++----------------------+---------------+---------------------------------------------+
+| NPU Name | Health | Power(W) Temp(C) |
+| Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) |
++======================+===============+=============================================+
+| 4 910A | OK | 67.2 30 |
+| 0 | 0000:C2:00.0 | 0 303 / 15171 0 / 32768 |
++======================+===============+=============================================+
+| 5 910A | OK | 63.8 25 |
+| 0 | 0000:82:00.0 | 0 2123 / 15171 0 / 32768 |
++======================+===============+=============================================+
+| 6 910A | OK | 67.1 27 |
+| 0 | 0000:42:00.0 | 0 1061 / 15171 0 / 32768 |
++======================+===============+=============================================+
+| 7 910A | OK | 65.5 30 |
+| 0 | 0000:02:00.0 | 0 2563 / 15078 0 / 32768 |
++======================+===============+=============================================+
+```
+
+### 编译、安装
+基本环境配置可参考[该文档](Compile_CN.md)进行配置。
+
+***1、依赖安装***
+
+安装编译所需依赖库,包括patchelf、libcurl等
+```
+apt-get install patchelf libcurl4-openssl-dev libbz2-dev libgeos-dev
+```
+
+***2、GOLANG环境配置***
+
+下载并配置ARM版本的GOLANG-1.17.2
+```
+wget https://golang.org/dl/go1.17.2.linux-arm64.tar.gz
+tar zxvf go1.17.2.linux-arm64.tar.gz -C /usr/local/
+mkdir /root/go /root/go/bin /root/go/src
+echo "GOROOT=/usr/local/go" >> /root/.bashrc
+echo "GOPATH=/root/go" >> /root/.bashrc
+echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
+source /root/.bashrc
+
+go env -w GO111MODULE=on
+go env -w GOPROXY=https://goproxy.cn,direct
+go install github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway@v1.15.2
+go install github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger@v1.15.2
+go install github.com/golang/protobuf/protoc-gen-go@v1.4.3
+go install google.golang.org/grpc@v1.33.0
+go env -w GO111MODULE=auto
+```
+
+***3、PYTHON环境配置***
+
+下载python依赖库并配置环境
+```
+pip3.7 install -r python/requirements.txt -i https://mirror.baidu.com/pypi/simple
+export PYTHONROOT=/opt/conda
+export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.7m
+export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.7m.so
+export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.7
+```
+
+***4、编译server***
+
+```
+mkdir build-server-npu && cd build-server-npu
+cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR/ \
+ -DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
+ -DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
+ -DCMAKE_INSTALL_PREFIX=./output \
+ -DWITH_ASCEND_CL=ON \
+ -DSERVER=ON ..
+make TARGET=ARMV8 -j16
+```
+
+***5、安装编译包***
+
+编译步骤完成后,会在各自编译目录$build_dir/python/dist生成whl包,分别安装即可。例如server步骤,会在server-build-npu/python/dist目录下生成whl包, 使用命令```pip install -u xxx.whl```进行安装。
+
+### 部署使用
+为了支持arm+昇腾910服务部署,启动服务时需使用以下参数。
+| 参数 | 参数说明 | 备注 |
+| :------- | :-------------------------- | :--------------------------------------------------------------- |
+| use_ascend_cl | 使用Ascend CL进行预测 | 使用Ascend预测能力 |
+
+以[Bert](../examples/C++/PaddleNLP/bert/README_CN.md)为例
+
+启动rpc服务,使用Ascend npu优化加速能力
+```
+python3 -m paddle_serving_server.serve --model bert_seq128_model --thread 6 --port 9292 --use_ascend_cl
+```
+
+## 昇腾310
+
+### 安装Docker镜像
+我们推荐使用docker部署Serving服务,可以拉取装有 CANN 3.3.0 docker 镜像。
+```
+# 拉取镜像
+docker pull registry.baidubce.com/paddlepaddle/serving:ascend-aarch64-cann3.3.0-paddlelite-devel
+
+# 启动容器,注意这里的参数 --device,容器仅映射设备ID为4到7的4张NPU卡,如需映射其他卡相应增改设备ID号即可
+docker run -it --name paddle-npu-dev -v /home/:/workspace \
+ --pids-limit 409600 --network=host --shm-size=128G \
+ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
+ --device=/dev/davinci4 --device=/dev/davinci5 \
+ --device=/dev/davinci6 --device=/dev/davinci7 \
+ --device=/dev/davinci_manager \
+ --device=/dev/devmm_svm \
+ --device=/dev/hisi_hdc \
+ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
+ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
+ -v /usr/local/dcmi:/usr/local/dcmi \
+ registry.baidubce.com/paddlepaddle/serving:ascend-aarch64-cann3.3.0-paddlelite-devel /bin/bash
+
+```
+
+### 编译、安装
+基本环境配置可参考[该文档](Compile_CN.md)进行配置。
+
+***1、PYTHON环境配置***
+
+下载python依赖库并配置环境
+```
+pip3.7 install -r python/requirements.txt -i https://mirror.baidu.com/pypi/simple
+export PYTHONROOT=/usr/local/python3.7.5
+export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.7m
+export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.7m.so
+export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.7
+```
+
+***2、编译server***
+
+```
+mkdir build-server-npu && cd build-server-npu
+cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR/ \
+ -DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
+ -DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
+ -DCMAKE_INSTALL_PREFIX=./output \
+ -DWITH_ASCEND_CL=ON \
+ -DWITH_LITE=ON \
+ -DSERVER=ON ..
+make TARGET=ARMV8 -j16
+```
+
+***3、安装编译包***
+
+编译步骤完成后,会在各自编译目录$build_dir/python/dist生成whl包,分别安装即可。例如server步骤,会在server-build-npu/python/dist目录下生成whl包, 使用命令```pip install -u xxx.whl```进行安装。
+
+### 部署使用
+为了支持arm+昇腾310服务部署,启动服务时需使用以下参数。
+| 参数 | 参数说明 | 备注 |
+| :------- | :-------------------------- | :--------------------------------------------------------------- |
+| use_ascend_cl | 使用Ascend CL进行预测 | 使用Ascend预测能力 |
+| use_lite | 使用Paddle-Lite Engine | 使用Paddle-Lite cpu预测能力 |
+
+以[resnet50](../examples/C++/PaddleClas/resnet_v2_50/README_CN.md)为例
+
+启动rpc服务,使用Paddle-Lite npu优化加速能力
+```
+python3 -m paddle_serving_server.serve --model resnet_v2_50_imagenet_model --thread 6 --port 9292 --use_ascend_cl --use_lite
+```
+
+## 其他说明
+
+### NPU芯片支持相关参考资料
+* [昇腾NPU芯片运行飞桨](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/09_hardware_support/npu_docs/paddle_install_cn.html)
\ No newline at end of file
diff --git a/doc/Serving_Configure_CN.md b/doc/Serving_Configure_CN.md
index c84ef9d78ce4960a72e1802869450122a75f95be..5b42221a894de54c4c46e23c254f62d464c9bc4f 100644
--- a/doc/Serving_Configure_CN.md
+++ b/doc/Serving_Configure_CN.md
@@ -364,11 +364,41 @@ dag:
tracer:
interval_s: 10
+ #client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
+ #client_type: local_predictor
+
+ #channel的最大长度,默认为0
+ #channel_size: 0
+
+ #针对大模型分布式场景tensor并行,接收第一个返回结果后其他结果丢弃来提供速度
+ #channel_recv_frist_arrive: False
+
op:
det:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 6
+ #Serving IPs
+ #server_endpoints: ["127.0.0.1:9393"]
+
+ #Fetch结果列表,以client_config中fetch_var的alias_name为准
+ #fetch_list: ["concat_1.tmp_0"]
+
+ #det模型client端配置
+ #client_config: serving_client_conf.prototxt
+
+ #Serving交互超时时间, 单位ms
+ #timeout: 3000
+
+ #Serving交互重试次数,默认不重试
+ #retry: 1
+
+ # 批量查询Serving的数量, 默认1。batch_size>1要设置auto_batching_timeout,否则不足batch_size时会阻塞
+ #batch_size: 2
+
+ # 批量查询超时,与batch_size配合使用
+ #auto_batching_timeout: 2000
+
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf:
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
@@ -392,10 +422,34 @@ op:
#ir_optim, 开启TensorRT时,必须同时设置ir_optim=True,否则无效
ir_optim: True
+ #CPU 计算线程数,在CPU场景开启会降低单次请求响应时长
+ #thread_num: 10
+
#precsion, 预测精度,降低预测精度可提升预测速度
#GPU 支持: "fp32"(default), "fp16", "int8";
#CPU 支持: "fp32"(default), "fp16", "bf16"(mkldnn); 不支持: "int8"
precision: "fp32"
+
+ #mem_optim, memory / graphic memory optimization
+ #mem_optim: True
+
+ #use_calib, Use TRT int8 calibration
+ #use_calib: False
+
+ #use_mkldnn, Use mkldnn for cpu
+ #use_mkldnn: False
+
+ #The cache capacity of different input shapes for mkldnn
+ #mkldnn_cache_capacity: 0
+
+ #mkldnn_op_list, op list accelerated using MKLDNN, None default
+ #mkldnn_op_list: []
+
+ #mkldnn_bf16_op_list,op list accelerated using MKLDNN bf16, None default.
+ #mkldnn_bf16_op_list: []
+
+ #min_subgraph_size,the minimal subgraph size for opening tensorrt to optimize, 3 default
+ #min_subgraph_size: 3
rec:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 3
@@ -430,6 +484,9 @@ op:
#ir_optim, 开启TensorRT时,必须同时设置ir_optim=True,否则无效
ir_optim: True
+ #CPU 计算线程数,在CPU场景开启会降低单次请求响应时长
+ #thread_num: 10
+
#precsion, 预测精度,降低预测精度可提升预测速度
#GPU 支持: "fp32"(default), "fp16", "int8";
#CPU 支持: "fp32"(default), "fp16", "bf16"(mkldnn); 不支持: "int8"
diff --git a/doc/Serving_Configure_EN.md b/doc/Serving_Configure_EN.md
index ddf81ea7652356fd3b7a65af4f1ba1a4c55f6db0..1a3e4bd180c7d2e5c39aca550960c6fb8c551e6e 100644
--- a/doc/Serving_Configure_EN.md
+++ b/doc/Serving_Configure_EN.md
@@ -369,11 +369,41 @@ dag:
tracer:
interval_s: 10
+ #client type,include brpc, grpc and local_predictor.
+ #client_type: local_predictor
+
+ # max channel size, default 0
+ #channel_size: 0
+
+ #For distributed large model scenario with tensor parallelism, the first result is received and the other results are discarded to provide speed
+ #channel_recv_frist_arrive: False
+
op:
det:
#concurrency,is_thread_op=True,thread otherwise process
concurrency: 6
+ #Serving IPs
+ #server_endpoints: ["127.0.0.1:9393"]
+
+ #Fetch data list
+ #fetch_list: ["concat_1.tmp_0"]
+
+ #det client config
+ #client_config: serving_client_conf.prototxt
+
+ #Serving timeout, ms
+ #timeout: 3000
+
+ #Serving retry times
+ #retry: 1
+
+ #Default 1。batch_size>1 should set auto_batching_timeout
+ #batch_size: 2
+
+ #Batching timeout,used with batch_size
+ #auto_batching_timeout: 2000
+
#Loading local server configuration without server_endpoints.
local_service_conf:
#client type,include brpc, grpc and local_predictor.
@@ -397,10 +427,34 @@ op:
#ir_optim, When running on TensorRT,must set ir_optim=True
ir_optim: True
+ #CPU 计算线程数,在CPU场景开启会降低单次请求响应时长
+ #thread_num: 10
+
#precsion, Decrease accuracy can increase speed
#GPU 支持: "fp32"(default), "fp16", "int8";
#CPU 支持: "fp32"(default), "fp16", "bf16"(mkldnn); 不支持: "int8"
precision: "fp32"
+
+ #mem_optim, memory / graphic memory optimization
+ #mem_optim: True
+
+ #use_calib, Use TRT int8 calibration
+ #use_calib: False
+
+ #use_mkldnn, Use mkldnn for cpu
+ #use_mkldnn: False
+
+ #The cache capacity of different input shapes for mkldnn
+ #mkldnn_cache_capacity: 0
+
+ #mkldnn_op_list, op list accelerated using MKLDNN, None default
+ #mkldnn_op_list: []
+
+ #mkldnn_bf16_op_list,op list accelerated using MKLDNN bf16, None default.
+ #mkldnn_bf16_op_list: []
+
+ #min_subgraph_size,the minimal subgraph size for opening tensorrt to optimize, 3 default
+ #min_subgraph_size: 3
rec:
#concurrency,is_thread_op=True,thread otherwise process
concurrency: 3
@@ -435,6 +489,9 @@ op:
#ir_optim, When running on TensorRT,must set ir_optim=True
ir_optim: True
+ #CPU 计算线程数,在CPU场景开启会降低单次请求响应时长
+ #thread_num: 10
+
#precsion, Decrease accuracy can increase speed
#GPU 支持: "fp32"(default), "fp16", "int8";
#CPU 支持: "fp32"(default), "fp16", "bf16"(mkldnn); 不支持: "int8"
diff --git a/doc/images/wechat_group_1.jpeg b/doc/images/wechat_group_1.jpeg
index cf7428a9ae3e0892ab696dbbe86ebf45c5b204d0..daa619adaea3c86e7e43180ef92551cb992332af 100644
Binary files a/doc/images/wechat_group_1.jpeg and b/doc/images/wechat_group_1.jpeg differ
diff --git a/examples/C++/PaddleNLP/bert/README.md b/examples/C++/PaddleNLP/bert/README.md
index 5d3242837f6d8be08f321d68890587e4bba725e8..64f6441f28776114346f99fc16b363aa18276f4c 100755
--- a/examples/C++/PaddleNLP/bert/README.md
+++ b/examples/C++/PaddleNLP/bert/README.md
@@ -1,4 +1,4 @@
-Http## Bert as service
+## Bert as service
([简体中文](./README_CN.md)|English)
diff --git a/python/paddle_serving_server/serve.py b/python/paddle_serving_server/serve.py
index 0bdfe7490d52433f5bd5f68c4454822c17675580..f9a50ea37d4cc75b92cf2d62954c3c0de88e8094 100755
--- a/python/paddle_serving_server/serve.py
+++ b/python/paddle_serving_server/serve.py
@@ -37,6 +37,11 @@ from paddle_serving_server.util import *
from paddle_serving_server.env_check.run import check_env
import cmd
+def signal_handler(signal, frame):
+ print('Process stopped')
+ sys.exit(0)
+
+signal.signal(signal.SIGINT, signal_handler)
# web_service.py is still used by Pipeline.
def port_is_available(port):
diff --git a/python/pipeline/dag.py b/python/pipeline/dag.py
index 1275bc704884f6d497da446d03914e24f62fd8ea..d7020ae7e937380fa03e4dac3b68559a2fbca745 100644
--- a/python/pipeline/dag.py
+++ b/python/pipeline/dag.py
@@ -62,6 +62,13 @@ class DAGExecutor(object):
self._retry = dag_conf["retry"]
self._server_use_profile = dag_conf["use_profile"]
+ self._enable_prometheus = False
+ if "enable_prometheus" in dag_conf:
+ self._enable_prometheus = dag_conf["enable_prometheus"]
+ if "prometheus_port" in dag_conf and self._enable_prometheus:
+ self._prometheus_port = dag_conf["prometheus_port"]
+ else:
+ self._prometheus_port = None
channel_size = dag_conf["channel_size"]
channel_recv_frist_arrive = dag_conf["channel_recv_frist_arrive"]
self._is_thread_op = dag_conf["is_thread_op"]
@@ -77,8 +84,10 @@ class DAGExecutor(object):
if tracer_interval_s >= 1:
self._tracer = PerformanceTracer(
self._is_thread_op, tracer_interval_s, server_worker_num)
+ if self._enable_prometheus:
+ self._tracer.set_enable_dict(True)
- self._dag = DAG(self.name, response_op, self._server_use_profile,
+ self._dag = DAG(self.name, response_op, self._server_use_profile, self._prometheus_port,
self._is_thread_op, channel_size, build_dag_each_worker,
self._tracer, channel_recv_frist_arrive)
(in_channel, out_channel, pack_rpc_func,
@@ -480,10 +489,10 @@ class DAG(object):
"""
Directed Acyclic Graph(DAG) engine, builds one DAG topology.
"""
- def __init__(self, request_name, response_op, use_profile, is_thread_op,
+ def __init__(self, request_name, response_op, use_profile, prometheus_port, is_thread_op,
channel_size, build_dag_each_worker, tracer,
channel_recv_frist_arrive):
- _LOGGER.info("{}, {}, {}, {}, {} ,{} ,{} ,{}".format(request_name, response_op, use_profile, is_thread_op,
+ _LOGGER.info("{}, {}, {}, {}, {}, {} ,{} ,{} ,{}".format(request_name, response_op, use_profile, prometheus_port, is_thread_op,
channel_size, build_dag_each_worker, tracer,
channel_recv_frist_arrive))
@ErrorCatch
@@ -491,6 +500,7 @@ class DAG(object):
def init_helper(self, request_name: str,
response_op,
use_profile: [bool, None],
+ prometheus_port: [int, None],
is_thread_op: bool,
channel_size,
build_dag_each_worker: [bool, None],
@@ -499,6 +509,8 @@ class DAG(object):
self._request_name = request_name
self._response_op = response_op
self._use_profile = use_profile
+ self._prometheus_port = prometheus_port
+ self._use_prometheus = (self._prometheus_port is not None)
self._is_thread_op = is_thread_op
self._channel_size = channel_size
self._build_dag_each_worker = build_dag_each_worker
@@ -506,7 +518,7 @@ class DAG(object):
self._channel_recv_frist_arrive = channel_recv_frist_arrive
if not self._is_thread_op:
self._manager = PipelineProcSyncManager()
- init_helper(self, request_name, response_op, use_profile, is_thread_op,
+ init_helper(self, request_name, response_op, use_profile, prometheus_port, is_thread_op,
channel_size, build_dag_each_worker, tracer,
channel_recv_frist_arrive)
print("[DAG] Succ init")
@@ -828,6 +840,56 @@ class DAG(object):
return self._input_channel, self._output_channel, self._pack_func, self._unpack_func
+ def start_prom(self, prometheus_port):
+ import prometheus_client
+ from prometheus_client import Counter
+ from prometheus_client.core import CollectorRegistry
+
+ from flask import Response, Flask
+ from .prometheus_metrics import registry
+ from .prometheus_metrics import metric_query_success, metric_query_failure, metric_inf_count, metric_query_duration_us, metric_inf_duration_us
+ app = Flask(__name__)
+ # requests_total = Counter('c1','A counter')
+
+ @app.route("/metrics")
+ def requests_count():
+ item = self._tracer.profile_dict
+ _LOGGER.info("metrics: {}".format(item))
+ # {'uci': {'in': 727.443, 'prep': 0.5525833333333333, 'midp': 2.21375, 'postp': 1.32375, 'out': 0.9396666666666667}, 'DAG': {'call_0': 29.479, 'call_1': 8.176, 'call_2': 8.045, 'call_3': 7.988, 'call_4': 7.609, 'call_5': 7.629, 'call_6': 7.625, 'call_7': 8.32, 'call_8': 8.57, 'call_9': 8.055, 'call_10': 7.915, 'call_11': 7.873, 'query_count': 12, 'qps': 1.2, 'succ': 1.0, 'avg': 9.773666666666667, '50': 8.045, '60': 8.055, '70': 8.176, '80': 8.32, '90': 8.57, '95': 29.479, '99': 29.479}}
+ if "DAG" in item:
+ total = item["DAG"]["query_count"]
+ succ = total * item["DAG"]["succ"]
+ fail = total * (1 - item["DAG"]["succ"])
+ query_duration = total *item["DAG"]["avg"]
+ metric_query_success.inc(succ)
+ metric_query_failure._value.inc(fail)
+ metric_query_duration_us._value.inc(query_duration)
+
+ inf_cnt = 0
+ infer_duration = 0.0
+ for name in item:
+ if name != "DAG":
+ if "count" in item[name]:
+ inf_cnt += item[name]["count"]
+ if "midp" in item[name]:
+ infer_duration += item[name]["count"]*item[name]["midp"]
+ metric_inf_count._value.inc(inf_cnt)
+ metric_inf_duration_us._value.inc(infer_duration)
+
+ #return str(item)
+ self._tracer.profile_dict = {}
+ return Response(prometheus_client.generate_latest(registry),mimetype="text/plain")
+
+ def prom_run():
+ app.run(host="0.0.0.0",port=prometheus_port)
+
+ p = threading.Thread(
+ target=prom_run,
+ args=())
+ _LOGGER.info("Prometheus Start 2")
+ p.daemon = True
+ p.start()
+
def start(self):
"""
Each OP starts a thread or process by _is_thread_op
@@ -842,12 +904,16 @@ class DAG(object):
for op in self._actual_ops:
op.use_profiler(self._use_profile)
op.set_tracer(self._tracer)
+ op.set_use_prometheus(self._use_prometheus)
if self._is_thread_op:
self._threads_or_proces.extend(op.start_with_thread())
else:
self._threads_or_proces.extend(op.start_with_process())
_LOGGER.info("[DAG] start")
-
+ if self._use_prometheus:
+ _LOGGER.info("Prometheus Start 1")
+ self.start_prom(self._prometheus_port)
+
# not join yet
return self._threads_or_proces
diff --git a/python/pipeline/operator.py b/python/pipeline/operator.py
index 9407717a49f54efc982b098ca9dc9008f9713c53..5c8acc1e9fdf0b468eb3822d467c680757f46b5a 100644
--- a/python/pipeline/operator.py
+++ b/python/pipeline/operator.py
@@ -371,6 +371,9 @@ class Op(object):
def set_tracer(self, tracer):
self._tracer = tracer
+ def set_use_prometheus(self, use_prometheus):
+ self._use_prometheus = use_prometheus
+
def init_client(self, client_config, server_endpoints):
"""
Initialize the client object. There are three types of clients, brpc,
@@ -1448,6 +1451,7 @@ class Op(object):
midped_data_dict, err_channeldata_dict \
= self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
end = profiler.record("midp#{}_1".format(op_info_prefix))
+ _LOGGER.info("prometheus inf count +1")
midp_time = end - start
_LOGGER.debug("op:{} process_end:{}, cost:{}".format(
op_info_prefix, time.time(), midp_time))
diff --git a/python/pipeline/profiler.py b/python/pipeline/profiler.py
index 6e38cb313d20962883cda192504e146ee31b1c95..2318e4e8fc8f5820197ce752263ed6f4fe45d1e8 100644
--- a/python/pipeline/profiler.py
+++ b/python/pipeline/profiler.py
@@ -49,13 +49,18 @@ class PerformanceTracer(object):
self._channels = []
# The size of data in Channel will not exceed server_worker_num
self._server_worker_num = server_worker_num
- if _is_profile:
- self.profile_dict = {}
+ self.profile_dict = {}
+ self._enable_dict = False
def data_buffer(self):
return self._data_buffer
def start(self):
+ self._thrd = threading.Thread(
+ target=self._trace_func, args=(self._channels, ))
+ self._thrd.daemon = True
+ self._thrd.start()
+ """
if self._is_thread_mode:
self._thrd = threading.Thread(
target=self._trace_func, args=(self._channels, ))
@@ -66,10 +71,14 @@ class PerformanceTracer(object):
target=self._trace_func, args=(self._channels, ))
self._proc.daemon = True
self._proc.start()
+ """
def set_channels(self, channels):
self._channels = channels
+ def set_enable_dict(self, enable):
+ self._enable_dict = enable
+
def _trace_func(self, channels):
all_actions = ["in", "prep", "midp", "postp", "out"]
calcu_actions = ["prep", "midp", "postp"]
@@ -106,9 +115,14 @@ class PerformanceTracer(object):
if len(op_cost) != 0:
for name in op_cost:
tot_cost, calcu_cost = 0.0, 0.0
+ count = 0
for action, costs in op_cost[name].items():
op_cost[name][action] = sum(costs) / (1e3 * len(costs))
tot_cost += op_cost[name][action]
+ if action == "midp":
+ count = len(costs)
+ if "midp" in op_cost[name].keys():
+ op_cost[name]['count'] = count
if name != "DAG":
_LOGGER.info("Op({}):".format(name))
@@ -121,8 +135,7 @@ class PerformanceTracer(object):
calcu_cost += op_cost[name][action]
_LOGGER.info("\tidle[{}]".format(1 - 1.0 * calcu_cost /
tot_cost))
- if _is_profile:
- self.profile_dict = copy.deepcopy(op_cost)
+ self.profile_dict = copy.deepcopy(op_cost)
if "DAG" in op_cost:
calls = list(op_cost["DAG"].values())
@@ -142,7 +155,7 @@ class PerformanceTracer(object):
for latency in latencys:
_LOGGER.info("\t\t.{}[{} ms]".format(latency, calls[int(
tot * latency / 100.0)]))
- if _is_profile:
+ if _is_profile or self._enable_dict:
self.profile_dict["DAG"]["query_count"] = tot
self.profile_dict["DAG"]["qps"] = qps
self.profile_dict["DAG"]["succ"] = 1 - 1.0 * err_count / tot
diff --git a/python/pipeline/prometheus_metrics.py b/python/pipeline/prometheus_metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..728153749600bb7ad8b3e97e5c4569a661f39454
--- /dev/null
+++ b/python/pipeline/prometheus_metrics.py
@@ -0,0 +1,8 @@
+from prometheus_client import Counter, generate_latest, CollectorRegistry, Gauge
+
+registry = CollectorRegistry()
+metric_query_success = Counter("pd_query_request_success_total", "metric_query_success", registry=registry)
+metric_query_failure = Counter("pd_query_request_failure_total", "metric_query_failure", registry=registry)
+metric_inf_count = Counter("pd_inference_count_total", "metric_inf_count", registry=registry)
+metric_query_duration_us = Counter("pd_query_request_duration_us_total", "metric_query_duration_us", registry=registry)
+metric_inf_duration_us = Counter("pd_inference_duration_us_total", "metric_inf_duration_us", registry=registry)
diff --git a/python/requirements.txt b/python/requirements.txt
index ddb2e1360527f0b8adb88ff3d347df31ec47af28..094d2f98213a747783461e5c6050e525d3bfdb7f 100644
--- a/python/requirements.txt
+++ b/python/requirements.txt
@@ -1,5 +1,5 @@
numpy>=1.12, <=1.16.4 ; python_version<"3.5"
-shapely==1.7.0
+shapely==1.8.0
wheel>=0.34.0, <0.35.0
setuptools>=44.1.0
google>=2.0.3
@@ -16,8 +16,9 @@ pyclipper==1.2.1
MarkupSafe==1.1.1
Werkzeug==1.0.1
ujson>=2.0.3
-sentencepiece==0.1.92; platform_machine != "aarch64"
+sentencepiece==0.1.96; platform_machine != "aarch64"
sentencepiece; platform_machine == "aarch64"
-opencv-python==4.2.0.32; platform_machine != "aarch64"
+opencv-python==4.3.0.38; platform_machine != "aarch64"
opencv-python; platform_machine == "aarch64"
pytest
+prometheus-client==0.12.0
\ No newline at end of file
diff --git a/python/setup.py.app.in b/python/setup.py.app.in
index 0d4763dfd448f12d23d26671a568f625d42ab7e7..79ddca2744bc014efe98f6040365079405c5fd07 100644
--- a/python/setup.py.app.in
+++ b/python/setup.py.app.in
@@ -44,9 +44,9 @@ REQUIRED_PACKAGES = [
'six >= 1.10.0',
'pillow',
'pyclipper', 'shapely',
- 'sentencepiece<=0.1.92; platform_machine != "aarch64"',
+ 'sentencepiece<=0.1.96; platform_machine != "aarch64"',
'sentencepiece; platform_machine == "aarch64"',
- 'opencv-python<=4.2.0.32; platform_machine != "aarch64"',
+ 'opencv-python<=4.3.0.38; platform_machine != "aarch64"',
'opencv-python; platform_machine == "aarch64"',
]