提交 b3acf1d3 编写于 作者: B barrierye

merge code

...@@ -143,7 +143,6 @@ function(grpc_protobuf_generate_python SRCS) ...@@ -143,7 +143,6 @@ function(grpc_protobuf_generate_python SRCS)
set(${SRCS} ${${SRCS}} PARENT_SCOPE) set(${SRCS} ${${SRCS}} PARENT_SCOPE)
endfunction() endfunction()
# Print and set the protobuf library information, # Print and set the protobuf library information,
# finish this cmake process and exit from this file. # finish this cmake process and exit from this file.
macro(PROMPT_PROTOBUF_LIB) macro(PROMPT_PROTOBUF_LIB)
......
...@@ -39,27 +39,37 @@ py_grpc_proto_compile(multi_lang_general_model_service_py_proto SRCS proto/multi ...@@ -39,27 +39,37 @@ py_grpc_proto_compile(multi_lang_general_model_service_py_proto SRCS proto/multi
add_custom_target(multi_lang_general_model_service_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(multi_lang_general_model_service_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(multi_lang_general_model_service_py_proto multi_lang_general_model_service_py_proto_init) add_dependencies(multi_lang_general_model_service_py_proto multi_lang_general_model_service_py_proto_init)
py_grpc_proto_compile(general_python_service_py_proto SRCS proto/general_python_service.proto)
add_custom_target(general_python_service_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(general_python_service_py_proto general_python_service_py_proto_init)
if (CLIENT) if (CLIENT)
py_proto_compile(sdk_configure_py_proto SRCS proto/sdk_configure.proto) py_proto_compile(sdk_configure_py_proto SRCS proto/sdk_configure.proto)
add_custom_target(sdk_configure_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(sdk_configure_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(sdk_configure_py_proto sdk_configure_py_proto_init) add_dependencies(sdk_configure_py_proto sdk_configure_py_proto_init)
add_custom_command(TARGET sdk_configure_py_proto POST_BUILD add_custom_command(TARGET sdk_configure_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto COMMAND cp __init__.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMAND cp sdk_configure*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMENT "Copy generated python proto into directory paddle_serving_client/proto." COMMENT "Copy generated python proto into directory paddle_serving_client/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET general_model_config_py_proto POST_BUILD add_custom_command(TARGET general_model_config_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto COMMAND cp general_model_config*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMENT "Copy generated general_model_config proto file into directory paddle_serving_client/proto." COMMENT "Copy generated general_model_config proto file into directory paddle_serving_client/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET multi_lang_general_model_service_py_proto POST_BUILD add_custom_command(TARGET multi_lang_general_model_service_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto COMMAND cp multi_lang_general_model_service*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMENT "Copy generated multi_lang_general_model_service proto file into directory paddle_serving_client/proto." COMMENT "Copy generated multi_lang_general_model_service proto file into directory paddle_serving_client/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET general_python_service_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMAND cp general_python_service*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMENT "Copy generated general_python_service proto file into directory paddle_serving_client/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif() endif()
if (APP) if (APP)
...@@ -74,28 +84,49 @@ if (SERVER) ...@@ -74,28 +84,49 @@ if (SERVER)
py_proto_compile(server_config_py_proto SRCS proto/server_configure.proto) py_proto_compile(server_config_py_proto SRCS proto/server_configure.proto)
add_custom_target(server_config_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(server_config_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(server_config_py_proto server_config_py_proto_init) add_dependencies(server_config_py_proto server_config_py_proto_init)
py_proto_compile(pyserving_channel_py_proto SRCS proto/pyserving_channel.proto)
add_custom_target(pyserving_channel_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(pyserving_channel_py_proto pyserving_channel_py_proto_init)
if (NOT WITH_GPU) if (NOT WITH_GPU)
add_custom_command(TARGET server_config_py_proto POST_BUILD add_custom_command(TARGET server_config_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto COMMAND cp __init__.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMAND cp server_config*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMENT "Copy generated python proto into directory paddle_serving_server/proto." COMMENT "Copy generated python proto into directory paddle_serving_server/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINRARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINRARY_DIR})
add_custom_command(TARGET general_model_config_py_proto POST_BUILD add_custom_command(TARGET general_model_config_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto COMMAND cp general_model_config*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMENT "Copy generated general_model_config proto file into directory paddle_serving_server/proto." COMMENT "Copy generated general_model_config proto file into directory paddle_serving_server/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET general_python_service_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMAND cp general_python_service*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMENT "Copy generated general_python_service proto file into directory paddle_serving_server/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET pyserving_channel_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMAND cp pyserving_channel*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMENT "Copy generated pyserving_channel proto file into directory paddle_serving_server/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET multi_lang_general_model_service_py_proto POST_BUILD add_custom_command(TARGET multi_lang_general_model_service_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto COMMAND cp multi_lang_general_model_service*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMENT "Copy generated multi_lang_general_model_service proto file into directory paddle_serving_server/proto." COMMENT "Copy generated multi_lang_general_model_service proto file into directory paddle_serving_server/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
else() else()
add_custom_command(TARGET server_config_py_proto POST_BUILD add_custom_command(TARGET server_config_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory COMMAND ${CMAKE_COMMAND} -E make_directory
${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMAND cp *.py COMMAND cp __init__.py
${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMAND cp server_config*.py
${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMENT "Copy generated python proto into directory COMMENT "Copy generated python proto into directory
paddle_serving_server_gpu/proto." paddle_serving_server_gpu/proto."
...@@ -104,15 +135,27 @@ add_custom_command(TARGET server_config_py_proto POST_BUILD ...@@ -104,15 +135,27 @@ add_custom_command(TARGET server_config_py_proto POST_BUILD
add_custom_command(TARGET general_model_config_py_proto POST_BUILD add_custom_command(TARGET general_model_config_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory COMMAND ${CMAKE_COMMAND} -E make_directory
${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMAND cp *.py COMMAND cp general_model_config*.py
${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMENT "Copy generated general_model_config proto file into directory COMMENT "Copy generated general_model_config proto file into directory
paddle_serving_server_gpu/proto." paddle_serving_server_gpu/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET general_python_service_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMAND cp general_python_service*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMENT "Copy generated general_python_service proto file into directory paddle_serving_server_gpu/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET pyserving_channel_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMAND cp pyserving_channel*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMENT "Copy generated pyserving_channel proto file into directory paddle_serving_server_gpu/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET multi_lang_general_model_service_py_proto POST_BUILD add_custom_command(TARGET multi_lang_general_model_service_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto COMMAND cp multi_lang_general_model_service*.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu/proto
COMMENT "Copy generated multi_lang_general_model_service proto file into directory paddle_serving_server_gpu/proto." COMMENT "Copy generated multi_lang_general_model_service proto file into directory paddle_serving_server_gpu/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif() endif()
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
package baidu.paddle_serving.pyserving;
service GeneralPythonService {
rpc inference(Request) returns (Response) {}
}
message Request {
repeated bytes feed_insts = 1;
repeated string feed_var_names = 2;
repeated bytes shape = 3;
repeated string type = 4;
}
message Response {
repeated bytes fetch_insts = 1;
repeated string fetch_var_names = 2;
required int32 ecode = 3;
optional string error_info = 4;
repeated bytes shape = 5;
repeated string type = 6;
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
package baidu.paddle_serving.pyserving;
message ChannelData {
repeated Inst insts = 1;
required int32 id = 2;
required int32 ecode = 4;
optional string error_info = 5;
}
message Inst {
required bytes data = 1;
required string name = 2;
required bytes shape = 3;
required string type = 4;
}
...@@ -7,8 +7,10 @@ endif() ...@@ -7,8 +7,10 @@ endif()
if (SERVER) if (SERVER)
if (NOT WITH_GPU) if (NOT WITH_GPU)
file(INSTALL pipeline DESTINATION paddle_serving_server)
file(GLOB_RECURSE SERVING_SERVER_PY_FILES paddle_serving_server/*.py) file(GLOB_RECURSE SERVING_SERVER_PY_FILES paddle_serving_server/*.py)
else() else()
file(INSTALL pipeline DESTINATION paddle_serving_server_gpu)
file(GLOB_RECURSE SERVING_SERVER_PY_FILES paddle_serving_server_gpu/*.py) file(GLOB_RECURSE SERVING_SERVER_PY_FILES paddle_serving_server_gpu/*.py)
endif() endif()
set(PY_FILES ${SERVING_SERVER_PY_FILES}) set(PY_FILES ${SERVING_SERVER_PY_FILES})
......
wget --no-check-certificate https://fleet.bj.bcebos.com/text_classification_data.tar.gz
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imdb-demo/imdb_model.tar.gz
tar -zxvf text_classification_data.tar.gz
tar -zxvf imdb_model.tar.gz
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client.pipeline import PipelineClient
import numpy as np
from paddle_serving_app.reader import IMDBDataset
from line_profiler import LineProfiler
client = PipelineClient()
client.connect('localhost:8080')
lp = LineProfiler()
lp_wrapper = lp(client.predict)
words = 'i am very sad | 0'
imdb_dataset = IMDBDataset()
imdb_dataset.load_resource('imdb.vocab')
for i in range(1):
word_ids, label = imdb_dataset.get_words_and_label(words)
fetch_map = lp_wrapper(feed={"words": word_ids}, fetch=["prediction"])
print(fetch_map)
#lp.print_stats()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_server.pipeline import Op
from paddle_serving_server.pipeline import PipelineServer
import numpy as np
import logging
logging.basicConfig(
format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d %H:%M',
#level=logging.DEBUG)
level=logging.INFO)
class CombineOp(Op):
def preprocess(self, input_data):
combined_prediction = 0
for op_name, channeldata in input_data.items():
data = channeldata.parse()
logging.info("{}: {}".format(op_name, data["prediction"]))
combined_prediction += data["prediction"]
data = {"prediction": combined_prediction / 2}
return data
read_op = Op(name="read", inputs=None)
bow_op = Op(name="bow",
inputs=[read_op],
server_model="imdb_bow_model",
server_port="9393",
device="cpu",
client_config="imdb_bow_client_conf/serving_client_conf.prototxt",
server_name="127.0.0.1:9393",
fetch_names=["prediction"],
concurrency=1,
timeout=0.1,
retry=2)
cnn_op = Op(name="cnn",
inputs=[read_op],
server_model="imdb_cnn_model",
server_port="9292",
device="cpu",
client_config="imdb_cnn_client_conf/serving_client_conf.prototxt",
server_name="127.0.0.1:9292",
fetch_names=["prediction"],
concurrency=1,
timeout=-1,
retry=1)
combine_op = CombineOp(
name="combine", inputs=[bow_op, cnn_op], concurrency=1, timeout=-1, retry=1)
pyserver = PipelineServer(
use_multithread=True,
client_type='grpc',
use_future=False,
profile=False,
retry=1)
pyserver.add_ops([read_op, bow_op, cnn_op, combine_op])
pyserver.prepare_server(port=8080, worker_num=2)
pyserver.run_server()
...@@ -16,10 +16,16 @@ def prase(pid_str, time_str, counter): ...@@ -16,10 +16,16 @@ def prase(pid_str, time_str, counter):
if len(name_list) == 2: if len(name_list) == 2:
name = name_list[0] name = name_list[0]
else: else:
name = name_list[0] + "_" + name_list[1] name = "_".join(name_list[:-1])
name_list = name.split("#")
if len(name_list) > 1:
tid = name_list[-1]
name = "#".join(name_list[:-1])
else:
tid = 0
event_dict = {} event_dict = {}
event_dict["name"] = name event_dict["name"] = name
event_dict["tid"] = 0 event_dict["tid"] = tid
event_dict["pid"] = pid event_dict["pid"] = pid
event_dict["ts"] = ts event_dict["ts"] = ts
event_dict["ph"] = ph event_dict["ph"] = ph
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import grpc
from .proto import general_python_service_pb2
from .proto import general_python_service_pb2_grpc
import numpy as np
class PipelineClient(object):
def __init__(self):
self._channel = None
def connect(self, endpoint):
self._channel = grpc.insecure_channel(endpoint)
self._stub = general_python_service_pb2_grpc.GeneralPythonServiceStub(
self._channel)
def _pack_data_for_infer(self, feed_data):
req = general_python_service_pb2.Request()
for name, data in feed_data.items():
if isinstance(data, list):
data = np.array(data)
elif not isinstance(data, np.ndarray):
raise TypeError("only list and numpy array type is supported.")
req.feed_var_names.append(name)
req.feed_insts.append(data.tobytes())
req.shape.append(np.array(data.shape, dtype="int32").tobytes())
req.type.append(str(data.dtype))
return req
def predict(self, feed, fetch):
if not isinstance(feed, dict):
raise TypeError(
"feed must be dict type with format: {name: value}.")
if not isinstance(fetch, list):
raise TypeError(
"fetch_with_type must be list type with format: [name].")
req = self._pack_data_for_infer(feed)
resp = self._stub.inference(req)
if resp.ecode != 0:
return {"ecode": resp.ecode, "error_info": resp.error_info}
fetch_map = {"ecode": resp.ecode}
for idx, name in enumerate(resp.fetch_var_names):
if name not in fetch:
continue
fetch_map[name] = np.frombuffer(
resp.fetch_insts[idx], dtype=resp.type[idx])
fetch_map[name].shape = np.frombuffer(
resp.shape[idx], dtype="int32")
return fetch_map
...@@ -53,6 +53,10 @@ def parse_args(): # pylint: disable=doc-string-missing ...@@ -53,6 +53,10 @@ def parse_args(): # pylint: disable=doc-string-missing
type=int, type=int,
default=512 * 1024 * 1024, default=512 * 1024 * 1024,
help="Limit sizes of messages") help="Limit sizes of messages")
parser.add_argument(
"--use_multilang",
action='store_true',
help="Use Multi-language-service")
return parser.parse_args() return parser.parse_args()
...@@ -67,6 +71,7 @@ def start_standard_model(): # pylint: disable=doc-string-missing ...@@ -67,6 +71,7 @@ def start_standard_model(): # pylint: disable=doc-string-missing
ir_optim = args.ir_optim ir_optim = args.ir_optim
max_body_size = args.max_body_size max_body_size = args.max_body_size
use_mkl = args.use_mkl use_mkl = args.use_mkl
use_multilang = args.use_multilang
if model == "": if model == "":
print("You must specify your serving model") print("You must specify your serving model")
...@@ -83,14 +88,19 @@ def start_standard_model(): # pylint: disable=doc-string-missing ...@@ -83,14 +88,19 @@ def start_standard_model(): # pylint: disable=doc-string-missing
op_seq_maker.add_op(general_infer_op) op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(general_response_op) op_seq_maker.add_op(general_response_op)
server = serving.Server() server = None
server.set_op_sequence(op_seq_maker.get_op_sequence()) if use_multilang:
server.set_num_threads(thread_num) server = serving.MultiLangServer()
server.set_memory_optimize(mem_optim) server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_ir_optimize(ir_optim) else:
server.use_mkl(use_mkl) server = serving.Server()
server.set_max_body_size(max_body_size) server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_port(port) server.set_num_threads(thread_num)
server.set_memory_optimize(mem_optim)
server.set_ir_optimize(ir_optim)
server.use_mkl(use_mkl)
server.set_max_body_size(max_body_size)
server.set_port(port)
server.load_model_config(model) server.load_model_config(model)
server.prepare_server(workdir=workdir, port=port, device=device) server.prepare_server(workdir=workdir, port=port, device=device)
......
...@@ -68,6 +68,10 @@ def serve_args(): ...@@ -68,6 +68,10 @@ def serve_args():
type=int, type=int,
default=512 * 1024 * 1024, default=512 * 1024 * 1024,
help="Limit sizes of messages") help="Limit sizes of messages")
parser.add_argument(
"--use_multilang",
action='store_true',
help="Use Multi-language-service")
return parser.parse_args() return parser.parse_args()
......
...@@ -54,17 +54,26 @@ def start_gpu_card_model(index, gpuid, args): # pylint: disable=doc-string-miss ...@@ -54,17 +54,26 @@ def start_gpu_card_model(index, gpuid, args): # pylint: disable=doc-string-miss
op_seq_maker.add_op(general_infer_op) op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(general_response_op) op_seq_maker.add_op(general_response_op)
server = serving.Server() use_multilang = args.use_multilang
server.set_op_sequence(op_seq_maker.get_op_sequence()) if use_multilang:
server.set_num_threads(thread_num) server = serving.MultiLangServer()
server.set_memory_optimize(mem_optim) server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_ir_optimize(ir_optim) server.load_model_config(model)
server.set_max_body_size(max_body_size) server.prepare_server(workdir=workdir, port=port, device=device)
if gpuid >= 0:
server.load_model_config(model) raise ValueError("gpuid can not >= 0 in MultiLangServer")
server.prepare_server(workdir=workdir, port=port, device=device) else:
if gpuid >= 0: server = serving.Server()
server.set_gpuid(gpuid) server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(thread_num)
server.set_memory_optimize(mem_optim)
server.set_ir_optimize(ir_optim)
server.set_max_body_size(max_body_size)
server.load_model_config(model)
server.prepare_server(workdir=workdir, port=port, device=device)
if gpuid >= 0:
server.set_gpuid(gpuid)
server.run_server() server.run_server()
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from operator import Op
from pipeline_server import PipelineServer
...@@ -22,6 +22,15 @@ elif sys.version_info.major == 3: ...@@ -22,6 +22,15 @@ elif sys.version_info.major == 3:
import queue as Queue import queue as Queue
else: else:
raise Exception("Error Python version") raise Exception("Error Python version")
<<<<<<< HEAD
=======
from concurrent import futures
import numpy as np
from ..proto import pyserving_channel_pb2 as channel_pb2
import logging
import enum
import copy
>>>>>>> d84910a1180061b57c51824e35e3ca5c857eb3b5
class ChannelDataEcode(enum.Enum): class ChannelDataEcode(enum.Enum):
...@@ -34,6 +43,7 @@ class ChannelDataEcode(enum.Enum): ...@@ -34,6 +43,7 @@ class ChannelDataEcode(enum.Enum):
class ChannelDataType(enum.Enum): class ChannelDataType(enum.Enum):
<<<<<<< HEAD
DICT = 0 DICT = 0
CHANNEL_NPDATA = 1 CHANNEL_NPDATA = 1
ERROR = 2 ERROR = 2
...@@ -49,3 +59,554 @@ class ThreadChannel(Queue.Queue): ...@@ -49,3 +59,554 @@ class ThreadChannel(Queue.Queue):
class ProcessChannel(multiprocessing.queues.Queue): class ProcessChannel(multiprocessing.queues.Queue):
pass pass
=======
CHANNEL_PBDATA = 0
CHANNEL_FUTURE = 1
CHANNEL_NPDATA = 2
ERROR = 3
class ChannelData(object):
def __init__(self,
datatype=None,
future=None,
pbdata=None,
npdata=None,
data_id=None,
callback_func=None,
ecode=None,
error_info=None):
'''
There are several ways to use it:
1. ChannelData(ChannelDataType.CHANNEL_FUTURE.value, future, pbdata[, callback_func])
2. ChannelData(ChannelDataType.CHANNEL_FUTURE.value, future, data_id[, callback_func])
3. ChannelData(ChannelDataType.CHANNEL_PBDATA.value, pbdata)
4. ChannelData(ChannelDataType.CHANNEL_PBDATA.value, npdata, data_id)
5. ChannelData(ChannelDataType.CHANNEL_NPDATA.value, npdata, data_id)
6. ChannelData(ecode, error_info, data_id)
Protobufs are not pickle-able:
https://stackoverflow.com/questions/55344376/how-to-import-protobuf-module
'''
if ecode is not None:
if data_id is None or error_info is None:
raise ValueError("data_id and error_info cannot be None")
datatype = ChannelDataType.ERROR.value
else:
if datatype == ChannelDataType.CHANNEL_FUTURE.value:
if data_id is None:
raise ValueError("data_id cannot be None")
ecode = ChannelDataEcode.OK.value
elif datatype == ChannelDataType.CHANNEL_PBDATA.value:
if pbdata is None:
if data_id is None:
raise ValueError("data_id cannot be None")
pbdata = channel_pb2.ChannelData()
ecode, error_info = self._check_npdata(npdata)
if ecode != ChannelDataEcode.OK.value:
logging.error(error_info)
else:
for name, value in npdata.items():
inst = channel_pb2.Inst()
inst.data = value.tobytes()
inst.name = name
inst.shape = np.array(
value.shape, dtype="int32").tobytes()
inst.type = str(value.dtype)
pbdata.insts.append(inst)
elif datatype == ChannelDataType.CHANNEL_NPDATA.value:
ecode, error_info = self._check_npdata(npdata)
if ecode != ChannelDataEcode.OK.value:
logging.error(error_info)
else:
raise ValueError("datatype not match")
self.future = future
self.pbdata = pbdata
self.npdata = npdata
self.datatype = datatype
self.id = data_id
self.ecode = ecode
self.error_info = error_info
self.callback_func = callback_func
def _check_npdata(self, npdata):
ecode = ChannelDataEcode.OK.value
error_info = None
for _, value in npdata.items():
if not isinstance(value, np.ndarray):
ecode = ChannelDataEcode.TYPE_ERROR.value
error_info = log("the value of postped_data must " \
"be np.ndarray, but get {}".format(type(value)))
break
return ecode, error_info
def parse(self):
# return narray
feed = None
if self.datatype == ChannelDataType.CHANNEL_PBDATA.value:
feed = {}
for inst in self.pbdata.insts:
feed[inst.name] = np.frombuffer(inst.data, dtype=inst.type)
feed[inst.name].shape = np.frombuffer(inst.shape, dtype="int32")
elif self.datatype == ChannelDataType.CHANNEL_FUTURE.value:
feed = self.future.result()
if self.callback_func is not None:
feed = self.callback_func(feed)
elif self.datatype == ChannelDataType.CHANNEL_NPDATA.value:
feed = self.npdata
else:
raise TypeError("Error type({}) in datatype.".format(self.datatype))
return feed
def __str__(self):
return "type[{}], ecode[{}], id[{}]".format(
ChannelDataType(self.datatype).name, self.ecode, self.id)
class ProcessChannel(multiprocessing.queues.Queue):
"""
(Process version) The channel used for communication between Ops.
1. Support multiple different Op feed data (multiple producer)
Different types of data will be packaged through the data ID
2. Support multiple different Op fetch data (multiple consumer)
Only when all types of Ops get the data of the same ID,
the data will be poped; The Op of the same type will not
get the data of the same ID.
3. (TODO) Timeout and BatchSize are not fully supported.
Note:
1. The ID of the data in the channel must be different.
2. The function add_producer() and add_consumer() are not thread safe,
and can only be called during initialization.
"""
def __init__(self, manager, name=None, maxsize=0, timeout=None):
# https://stackoverflow.com/questions/39496554/cannot-subclass-multiprocessing-queue-in-python-3-5/
if sys.version_info.major == 2:
super(ProcessChannel, self).__init__(maxsize=maxsize)
elif sys.version_info.major == 3:
super(ProcessChannel, self).__init__(
maxsize=maxsize, ctx=multiprocessing.get_context())
else:
raise Exception("Error Python version")
self._maxsize = maxsize
self._timeout = timeout
self.name = name
self._stop = False
self._cv = multiprocessing.Condition()
self._producers = []
self._producer_res_count = manager.dict() # {data_id: count}
self._push_res = manager.dict() # {data_id: {op_name: data}}
self._consumers = manager.dict() # {op_name: idx}
self._idx_consumer_num = manager.dict() # {idx: num}
self._consumer_base_idx = manager.Value('i', 0)
self._front_res = manager.list()
def get_producers(self):
return self._producers
def get_consumers(self):
return self._consumers.keys()
def _log(self, info_str):
return "[{}] {}".format(self.name, info_str)
def debug(self):
return self._log("p: {}, c: {}".format(self.get_producers(),
self.get_consumers()))
def add_producer(self, op_name):
""" not thread safe, and can only be called during initialization. """
if op_name in self._producers:
raise ValueError(
self._log("producer({}) is already in channel".format(op_name)))
self._producers.append(op_name)
def add_consumer(self, op_name):
""" not thread safe, and can only be called during initialization. """
if op_name in self._consumers:
raise ValueError(
self._log("consumer({}) is already in channel".format(op_name)))
self._consumers[op_name] = 0
if self._idx_consumer_num.get(0) is None:
self._idx_consumer_num[0] = 0
self._idx_consumer_num[0] += 1
def push(self, channeldata, op_name=None):
logging.debug(
self._log("{} try to push data: {}".format(op_name,
channeldata.__str__())))
if len(self._producers) == 0:
raise Exception(
self._log(
"expected number of producers to be greater than 0, but the it is 0."
))
elif len(self._producers) == 1:
with self._cv:
while self._stop is False:
try:
self.put(channeldata, timeout=0)
break
except Queue.Full:
self._cv.wait()
logging.debug(
self._log("{} channel size: {}".format(op_name,
self.qsize())))
self._cv.notify_all()
logging.debug(self._log("{} notify all".format(op_name)))
logging.debug(self._log("{} push data succ!".format(op_name)))
return True
elif op_name is None:
raise Exception(
self._log(
"There are multiple producers, so op_name cannot be None."))
producer_num = len(self._producers)
data_id = channeldata.id
put_data = None
with self._cv:
logging.debug(self._log("{} get lock".format(op_name)))
if data_id not in self._push_res:
self._push_res[data_id] = {
name: None
for name in self._producers
}
self._producer_res_count[data_id] = 0
# see: https://docs.python.org/3.6/library/multiprocessing.html?highlight=multiprocess#proxy-objects
# self._push_res[data_id][op_name] = channeldata
tmp_push_res = self._push_res[data_id]
tmp_push_res[op_name] = channeldata
self._push_res[data_id] = tmp_push_res
if self._producer_res_count[data_id] + 1 == producer_num:
put_data = self._push_res[data_id]
self._push_res.pop(data_id)
self._producer_res_count.pop(data_id)
else:
self._producer_res_count[data_id] += 1
if put_data is None:
logging.debug(
self._log("{} push data succ, but not push to queue.".
format(op_name)))
else:
while self._stop is False:
try:
logging.debug(
self._log("{} push data succ: {}".format(
op_name, put_data.__str__())))
self.put(put_data, timeout=0)
break
except Queue.Empty:
self._cv.wait()
logging.debug(
self._log("multi | {} push data succ!".format(op_name)))
self._cv.notify_all()
return True
def front(self, op_name=None):
logging.debug(self._log("{} try to get data...".format(op_name)))
if len(self._consumers) == 0:
raise Exception(
self._log(
"expected number of consumers to be greater than 0, but the it is 0."
))
elif len(self._consumers) == 1:
resp = None
with self._cv:
while self._stop is False and resp is None:
try:
logging.debug(
self._log("{} try to get(with channel empty: {})".
format(op_name, self.empty())))
# For queue multiprocess: after putting an object on
# an empty queue there may be an infinitessimal delay
# before the queue's :meth:`~Queue.empty`
# see more:
# - https://bugs.python.org/issue18277
# - https://hg.python.org/cpython/rev/860fc6a2bd21
resp = self.get(timeout=1e-3)
break
except Queue.Empty:
logging.debug(
self._log(
"{} wait for empty queue(with channel empty: {})".
format(op_name, self.empty())))
self._cv.wait()
logging.debug(
self._log("{} get data succ: {}".format(op_name, resp.__str__(
))))
return resp
elif op_name is None:
raise Exception(
self._log(
"There are multiple consumers, so op_name cannot be None."))
with self._cv:
# data_idx = consumer_idx - base_idx
while self._stop is False and self._consumers[
op_name] - self._consumer_base_idx.value >= len(
self._front_res):
logging.debug(
self._log(
"({}) B self._consumers: {}, self._consumer_base_idx: {}, len(self._front_res): {}".
format(op_name, self._consumers, self.
_consumer_base_idx.value, len(self._front_res))))
try:
logging.debug(
self._log("{} try to get(with channel size: {})".format(
op_name, self.qsize())))
# For queue multiprocess: after putting an object on
# an empty queue there may be an infinitessimal delay
# before the queue's :meth:`~Queue.empty`
# see more:
# - https://bugs.python.org/issue18277
# - https://hg.python.org/cpython/rev/860fc6a2bd21
channeldata = self.get(timeout=1e-3)
self._front_res.append(channeldata)
break
except Queue.Empty:
logging.debug(
self._log(
"{} wait for empty queue(with channel size: {})".
format(op_name, self.qsize())))
self._cv.wait()
consumer_idx = self._consumers[op_name]
base_idx = self._consumer_base_idx.value
data_idx = consumer_idx - base_idx
resp = self._front_res[data_idx]
logging.debug(self._log("{} get data: {}".format(op_name, resp)))
self._idx_consumer_num[consumer_idx] -= 1
if consumer_idx == base_idx and self._idx_consumer_num[
consumer_idx] == 0:
self._idx_consumer_num.pop(consumer_idx)
self._front_res.pop(0)
self._consumer_base_idx.value += 1
self._consumers[op_name] += 1
new_consumer_idx = self._consumers[op_name]
if self._idx_consumer_num.get(new_consumer_idx) is None:
self._idx_consumer_num[new_consumer_idx] = 0
self._idx_consumer_num[new_consumer_idx] += 1
logging.debug(
self._log(
"({}) A self._consumers: {}, self._consumer_base_idx: {}, len(self._front_res): {}".
format(op_name, self._consumers, self._consumer_base_idx.
value, len(self._front_res))))
logging.debug(self._log("{} notify all".format(op_name)))
self._cv.notify_all()
logging.debug(self._log("multi | {} get data succ!".format(op_name)))
return resp # reference, read only
def stop(self):
#TODO
self.close()
self._stop = True
self._cv.notify_all()
class ThreadChannel(Queue.Queue):
"""
(Thread version)The channel used for communication between Ops.
1. Support multiple different Op feed data (multiple producer)
Different types of data will be packaged through the data ID
2. Support multiple different Op fetch data (multiple consumer)
Only when all types of Ops get the data of the same ID,
the data will be poped; The Op of the same type will not
get the data of the same ID.
3. (TODO) Timeout and BatchSize are not fully supported.
Note:
1. The ID of the data in the channel must be different.
2. The function add_producer() and add_consumer() are not thread safe,
and can only be called during initialization.
"""
def __init__(self, name=None, maxsize=-1, timeout=None):
Queue.Queue.__init__(self, maxsize=maxsize)
self._maxsize = maxsize
self._timeout = timeout
self.name = name
self._stop = False
self._cv = threading.Condition()
self._producers = []
self._producer_res_count = {} # {data_id: count}
self._push_res = {} # {data_id: {op_name: data}}
self._consumers = {} # {op_name: idx}
self._idx_consumer_num = {} # {idx: num}
self._consumer_base_idx = 0
self._front_res = []
def get_producers(self):
return self._producers
def get_consumers(self):
return self._consumers.keys()
def _log(self, info_str):
return "[{}] {}".format(self.name, info_str)
def debug(self):
return self._log("p: {}, c: {}".format(self.get_producers(),
self.get_consumers()))
def add_producer(self, op_name):
""" not thread safe, and can only be called during initialization. """
if op_name in self._producers:
raise ValueError(
self._log("producer({}) is already in channel".format(op_name)))
self._producers.append(op_name)
def add_consumer(self, op_name):
""" not thread safe, and can only be called during initialization. """
if op_name in self._consumers:
raise ValueError(
self._log("consumer({}) is already in channel".format(op_name)))
self._consumers[op_name] = 0
if self._idx_consumer_num.get(0) is None:
self._idx_consumer_num[0] = 0
self._idx_consumer_num[0] += 1
def push(self, channeldata, op_name=None):
logging.debug(
self._log("{} try to push data: {}".format(op_name,
channeldata.__str__())))
if len(self._producers) == 0:
raise Exception(
self._log(
"expected number of producers to be greater than 0, but the it is 0."
))
elif len(self._producers) == 1:
with self._cv:
while self._stop is False:
try:
self.put(channeldata, timeout=0)
break
except Queue.Full:
self._cv.wait()
self._cv.notify_all()
logging.debug(self._log("{} push data succ!".format(op_name)))
return True
elif op_name is None:
raise Exception(
self._log(
"There are multiple producers, so op_name cannot be None."))
producer_num = len(self._producers)
data_id = channeldata.id
put_data = None
with self._cv:
logging.debug(self._log("{} get lock".format(op_name)))
if data_id not in self._push_res:
self._push_res[data_id] = {
name: None
for name in self._producers
}
self._producer_res_count[data_id] = 0
self._push_res[data_id][op_name] = channeldata
if self._producer_res_count[data_id] + 1 == producer_num:
put_data = self._push_res[data_id]
self._push_res.pop(data_id)
self._producer_res_count.pop(data_id)
else:
self._producer_res_count[data_id] += 1
if put_data is None:
logging.debug(
self._log("{} push data succ, but not push to queue.".
format(op_name)))
else:
while self._stop is False:
try:
self.put(put_data, timeout=0)
break
except Queue.Empty:
self._cv.wait()
logging.debug(
self._log("multi | {} push data succ!".format(op_name)))
self._cv.notify_all()
return True
def front(self, op_name=None):
logging.debug(self._log("{} try to get data".format(op_name)))
if len(self._consumers) == 0:
raise Exception(
self._log(
"expected number of consumers to be greater than 0, but the it is 0."
))
elif len(self._consumers) == 1:
resp = None
with self._cv:
while self._stop is False and resp is None:
try:
resp = self.get(timeout=0)
break
except Queue.Empty:
self._cv.wait()
logging.debug(
self._log("{} get data succ: {}".format(op_name, resp.__str__(
))))
return resp
elif op_name is None:
raise Exception(
self._log(
"There are multiple consumers, so op_name cannot be None."))
with self._cv:
# data_idx = consumer_idx - base_idx
while self._stop is False and self._consumers[
op_name] - self._consumer_base_idx >= len(self._front_res):
try:
channeldata = self.get(timeout=0)
self._front_res.append(channeldata)
break
except Queue.Empty:
self._cv.wait()
consumer_idx = self._consumers[op_name]
base_idx = self._consumer_base_idx
data_idx = consumer_idx - base_idx
resp = self._front_res[data_idx]
logging.debug(self._log("{} get data: {}".format(op_name, resp)))
self._idx_consumer_num[consumer_idx] -= 1
if consumer_idx == base_idx and self._idx_consumer_num[
consumer_idx] == 0:
self._idx_consumer_num.pop(consumer_idx)
self._front_res.pop(0)
self._consumer_base_idx += 1
self._consumers[op_name] += 1
new_consumer_idx = self._consumers[op_name]
if self._idx_consumer_num.get(new_consumer_idx) is None:
self._idx_consumer_num[new_consumer_idx] = 0
self._idx_consumer_num[new_consumer_idx] += 1
self._cv.notify_all()
logging.debug(self._log("multi | {} get data succ!".format(op_name)))
# return resp # reference, read only
return copy.deepcopy(resp)
def stop(self):
#TODO
self.close()
self._stop = True
self._cv.notify_all()
>>>>>>> d84910a1180061b57c51824e35e3ca5c857eb3b5
...@@ -13,37 +13,398 @@ ...@@ -13,37 +13,398 @@
# limitations under the License. # limitations under the License.
# pylint: disable=doc-string-missing # pylint: disable=doc-string-missing
import threading
import multiprocessing
from paddle_serving_client import MultiLangClient, Client
from concurrent import futures
import logging
import func_timeout
from .channel import ThreadChannel, ProcessChannel, ChannelDataEcode, ChannelData, ChannelDataType
from .util import NameGenerator
_name_gen = NameGenerator("Op")
class Op(object): class Op(object):
def __init__(self, def __init__(self,
name="", name=None,
input_ops=[], input_ops=[],
server_endpoints=[], server_endpoints=[],
concurrency=1, concurrency=1,
timeout=-1, timeout=-1,
retry=1): retry=1):
pass if name is None:
name = _name_gen.next()
self._is_run = False
self.name = name # to identify the type of OP, it must be globally unique
self._concurrency = concurrency # amount of concurrency
self.set_input_ops(input_ops)
self.with_serving = False
'''
self._client_config = client_config
self._server_name = server_name
self._fetch_names = fetch_names
self._server_model = server_model
self._server_port = server_port
self._device = device
if self._client_config is not None and \
self._server_name is not None and \
self._fetch_names is not None:
self.with_serving = True
'''
self._timeout = timeout
self._retry = max(1, retry)
self._input = None
self._outputs = []
self._profiler = None
def init_profiler(self, profiler):
self._profiler = profiler
def _profiler_record(self, string):
if self._profiler is None:
return
self._profiler.record(string)
def init_client(self, client_type, client_config, server_name, fetch_names):
if self.with_serving == False:
logging.debug("{} no client".format(self.name))
return
logging.debug("{} client_config: {}".format(self.name, client_config))
logging.debug("{} server_name: {}".format(self.name, server_name))
logging.debug("{} fetch_names: {}".format(self.name, fetch_names))
if client_type == 'brpc':
self._client = Client()
elif client_type == 'grpc':
self._client = MultiLangClient()
else:
raise ValueError("unknow client type: {}".format(client_type))
self._client.load_client_config(client_config)
self._client.connect([server_name])
self._fetch_names = fetch_names
def get_input_channel(self):
return self._input
def get_input_ops(self):
return self._input_ops
def set_input_ops(self, ops):
if not isinstance(ops, list):
ops = [] if ops is None else [ops]
self._input_ops = []
for op in ops:
if not isinstance(op, Op):
raise TypeError(
self._log('input op must be Op type, not {}'.format(
type(op))))
self._input_ops.append(op)
def _get_input_channel(self): def add_input_channel(self, channel):
pass if not isinstance(channel, (ThreadChannel, ProcessChannel)):
raise TypeError(
self._log('input channel must be Channel type, not {}'.format(
type(channel))))
channel.add_consumer(self.name)
self._input = channel
def _get_output_channel(self): def get_output_channels(self):
pass return self._outputs
def preprocess(self, input_dict): def add_output_channel(self, channel):
pass if not isinstance(channel, (ThreadChannel, ProcessChannel)):
raise TypeError(
self._log('output channel must be Channel type, not {}'.format(
type(channel))))
channel.add_producer(self.name)
self._outputs.append(channel)
def process(self, feed_dict): def preprocess(self, channeldata):
pass if isinstance(channeldata, dict):
raise NotImplementedError(
'this Op has multiple previous inputs. Please override this method'
)
feed = channeldata.parse()
return feed
def postprocess(self, fetch_dict): def midprocess(self, data, use_future=True):
pass if not isinstance(data, dict):
raise Exception(
self._log(
'data must be dict type(the output of preprocess()), but get {}'.
format(type(data))))
logging.debug(self._log('data: {}'.format(data)))
logging.debug(self._log('fetch: {}'.format(self._fetch_names)))
if isinstance(self._client, MultiLangClient):
call_result = self._client.predict(
feed=data, fetch=self._fetch_names, asyn=use_future)
else:
call_result = self._client.predict(
feed=data, fetch=self._fetch_names)
logging.debug(self._log("get call_result"))
return call_result
def postprocess(self, output_data):
return output_data
def stop(self): def stop(self):
pass self._input.stop()
for channel in self._outputs:
channel.stop()
self._is_run = False
def _parse_channeldata(self, channeldata):
data_id, error_channeldata = None, None
if isinstance(channeldata, dict):
parsed_data = {}
key = list(channeldata.keys())[0]
data_id = channeldata[key].id
for _, data in channeldata.items():
if data.ecode != ChannelDataEcode.OK.value:
error_channeldata = data
break
else:
data_id = channeldata.id
if channeldata.ecode != ChannelDataEcode.OK.value:
error_channeldata = channeldata
return data_id, error_channeldata
def _push_to_output_channels(self, data, channels, name=None):
if name is None:
name = self.name
for channel in channels:
channel.push(data, name)
def start_with_process(self, client_type, use_future):
proces = []
for concurrency_idx in range(self._concurrency):
p = multiprocessing.Process(
target=self._run,
args=(concurrency_idx, self.get_input_channel(),
self.get_output_channels(), client_type, use_future))
p.start()
proces.append(p)
return proces
def start_with_thread(self, client_type, use_future):
threads = []
for concurrency_idx in range(self._concurrency):
t = threading.Thread(
target=self._run,
args=(concurrency_idx, self.get_input_channel(),
self.get_output_channels(), client_type, use_future))
t.start()
threads.append(t)
return threads
def _run(self, concurrency_idx, input_channel, output_channels, client_type,
use_future):
# create client based on client_type
self.init_client(client_type, self._client_config, self._server_name,
self._fetch_names)
op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
log = self._get_log_func(op_info_prefix)
self._is_run = True
tid = threading.current_thread().ident
while self._is_run:
self._profiler_record("{}-get#{}_0".format(op_info_prefix, tid))
channeldata = input_channel.front(self.name)
self._profiler_record("{}-get#{}_1".format(op_info_prefix, tid))
logging.debug(log("input_data: {}".format(channeldata)))
data_id, error_channeldata = self._parse_channeldata(channeldata)
# error data in predecessor Op
if error_channeldata is not None:
self._push_to_output_channels(error_channeldata,
output_channels)
continue
# preprecess
try:
self._profiler_record("{}-prep#{}_0".format(op_info_prefix,
tid))
preped_data = self.preprocess(channeldata)
self._profiler_record("{}-prep#{}_1".format(op_info_prefix,
tid))
except NotImplementedError as e:
# preprocess function not implemented
error_info = log(e)
logging.error(error_info)
self._push_to_output_channels(
ChannelData(
ecode=ChannelDataEcode.NOT_IMPLEMENTED.value,
error_info=error_info,
data_id=data_id),
output_channels)
continue
except TypeError as e:
# Error type in channeldata.datatype
error_info = log(e)
logging.error(error_info)
self._push_to_output_channels(
ChannelData(
ecode=ChannelDataEcode.TYPE_ERROR.value,
error_info=error_info,
data_id=data_id),
output_channels)
continue
except Exception as e:
error_info = log(e)
logging.error(error_info)
self._push_to_output_channels(
ChannelData(
ecode=ChannelDataEcode.UNKNOW.value,
error_info=error_info,
data_id=data_id),
output_channels)
continue
# midprocess
midped_data = None
if self.with_serving:
ecode = ChannelDataEcode.OK.value
self._profiler_record("{}-midp#{}_0".format(op_info_prefix,
tid))
if self._timeout <= 0:
try:
midped_data = self.midprocess(preped_data, use_future)
except Exception as e:
ecode = ChannelDataEcode.UNKNOW.value
error_info = log(e)
logging.error(error_info)
else:
for i in range(self._retry):
try:
midped_data = func_timeout.func_timeout(
self._timeout,
self.midprocess,
args=(preped_data, use_future))
except func_timeout.FunctionTimedOut as e:
if i + 1 >= self._retry:
ecode = ChannelDataEcode.TIMEOUT.value
error_info = log(e)
logging.error(error_info)
else:
logging.warn(
log("timeout, retry({})".format(i + 1)))
except Exception as e:
ecode = ChannelDataEcode.UNKNOW.value
error_info = log(e)
logging.error(error_info)
break
else:
break
if ecode != ChannelDataEcode.OK.value:
self._push_to_output_channels(
ChannelData(
ecode=ecode, error_info=error_info,
data_id=data_id),
output_channels)
continue
self._profiler_record("{}-midp#{}_1".format(op_info_prefix,
tid))
else:
midped_data = preped_data
# postprocess
output_data = None
self._profiler_record("{}-postp#{}_0".format(op_info_prefix, tid))
if self.with_serving and client_type == 'grpc' and use_future:
# use call_future
output_data = ChannelData(
datatype=ChannelDataType.CHANNEL_FUTURE.value,
future=midped_data,
data_id=data_id,
callback_func=self.postprocess)
else:
try:
postped_data = self.postprocess(midped_data)
except Exception as e:
ecode = ChannelDataEcode.UNKNOW.value
error_info = log(e)
logging.error(error_info)
self._push_to_output_channels(
ChannelData(
ecode=ecode, error_info=error_info,
data_id=data_id),
output_channels)
continue
if not isinstance(postped_data, dict):
ecode = ChannelDataEcode.TYPE_ERROR.value
error_info = log("output of postprocess funticon must be " \
"dict type, but get {}".format(type(postped_data)))
logging.error(error_info)
self._push_to_output_channels(
ChannelData(
ecode=ecode, error_info=error_info,
data_id=data_id),
output_channels)
continue
output_data = ChannelData(
ChannelDataType.CHANNEL_NPDATA.value,
npdata=postped_data,
data_id=data_id)
self._profiler_record("{}-postp#{}_1".format(op_info_prefix, tid))
# push data to channel (if run succ)
self._profiler_record("{}-push#{}_0".format(op_info_prefix, tid))
self._push_to_output_channels(output_data, output_channels)
self._profiler_record("{}-push#{}_1".format(op_info_prefix, tid))
def _log(self, info):
return "{} {}".format(self.name, info)
def _get_log_func(self, op_info_prefix):
def log_func(info_str):
return "{} {}".format(op_info_prefix, info_str)
return log_func
def get_concurrency(self):
return self._concurrency
class VirtualOp(Op):
''' For connecting two channels. '''
def __init__(self, name, concurrency=1):
super(VirtualOp, self).__init__(
name=name, inputs=None, concurrency=concurrency)
self._virtual_pred_ops = []
def add_virtual_pred_op(self, op):
self._virtual_pred_ops.append(op)
def add_output_channel(self, channel):
if not isinstance(channel, (ThreadChannel, ProcessChannel)):
raise TypeError(
self._log('output channel must be Channel type, not {}'.format(
type(channel))))
for op in self._virtual_pred_ops:
channel.add_producer(op.name)
self._outputs.append(channel)
def start_with_process(self): def _run(self, concurrency_idx, input_channel, output_channels, client_type,
pass use_future):
op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
log = self._get_log_func(op_info_prefix)
self._is_run = True
while self._is_run:
self._profiler_record("{}-get#{}_0".format(op_info_prefix, tid))
channeldata = input_channel.front(self.name)
self._profiler_record("{}-get#{}_1".format(op_info_prefix, tid))
def start_with_thread(self): self._profiler_record("{}-push#{}_0".format(op_info_prefix, tid))
pass if isinstance(channeldata, dict):
for name, data in channeldata.items():
self._push_to_output_channels(
data, channels=output_channels, name=name)
else:
self._push_to_output_channels(
channeldata,
channels=output_channels,
name=self._virtual_pred_ops[0].name)
self._profiler_record("{}-push#{}_1".format(op_info_prefix, tid))
>>>>>>> d84910a1180061b57c51824e35e3ca5c857eb3b5
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# pylint: disable=doc-string-missing # pylint: disable=doc-string-missing
<<<<<<< HEAD
class PipelineService(pipeline_service_pb2_grpc.PipelineServiceServicer): class PipelineService(pipeline_service_pb2_grpc.PipelineServiceServicer):
...@@ -32,3 +33,469 @@ class PipelineServer(object): ...@@ -32,3 +33,469 @@ class PipelineServer(object):
def run_server(self): def run_server(self):
pass pass
=======
import threading
import multiprocessing
import multiprocessing.queues
import sys
if sys.version_info.major == 2:
import Queue
elif sys.version_info.major == 3:
import queue as Queue
else:
raise Exception("Error Python version")
import os
from paddle_serving_client import MultiLangClient, Client
from concurrent import futures
import numpy as np
import grpc
from ..proto import general_python_service_pb2 as pyservice_pb2
from ..proto import pyserving_channel_pb2 as channel_pb2
from ..proto import general_python_service_pb2_grpc
import logging
import random
import time
import func_timeout
import enum
import collections
import copy
from .operator import Op, VirtualOp
from .channel import ThreadChannel, ProcessChannel, ChannelData, ChannelDataEcode, ChannelDataType
from .profiler import TimeProfiler
_profiler = TimeProfiler()
class GeneralPythonService(
general_python_service_pb2_grpc.GeneralPythonServiceServicer):
def __init__(self, in_channel, out_channel, retry=2):
super(GeneralPythonService, self).__init__()
self.name = "#G"
self.set_in_channel(in_channel)
self.set_out_channel(out_channel)
logging.debug(self._log(in_channel.debug()))
logging.debug(self._log(out_channel.debug()))
#TODO:
# multi-lock for different clients
# diffenert lock for server and client
self._id_lock = threading.Lock()
self._cv = threading.Condition()
self._globel_resp_dict = {}
self._id_counter = 0
self._retry = retry
self._recive_func = threading.Thread(
target=GeneralPythonService._recive_out_channel_func, args=(self, ))
self._recive_func.start()
def _log(self, info_str):
return "[{}] {}".format(self.name, info_str)
def set_in_channel(self, in_channel):
if not isinstance(in_channel, (ThreadChannel, ProcessChannel)):
raise TypeError(
self._log('in_channel must be Channel type, but get {}'.format(
type(in_channel))))
in_channel.add_producer(self.name)
self._in_channel = in_channel
def set_out_channel(self, out_channel):
if not isinstance(out_channel, (ThreadChannel, ProcessChannel)):
raise TypeError(
self._log('out_channel must be Channel type, but get {}'.format(
type(out_channel))))
out_channel.add_consumer(self.name)
self._out_channel = out_channel
def _recive_out_channel_func(self):
while True:
channeldata = self._out_channel.front(self.name)
if not isinstance(channeldata, ChannelData):
raise TypeError(
self._log('data must be ChannelData type, but get {}'.
format(type(channeldata))))
with self._cv:
data_id = channeldata.id
self._globel_resp_dict[data_id] = channeldata
self._cv.notify_all()
def _get_next_id(self):
with self._id_lock:
self._id_counter += 1
return self._id_counter - 1
def _get_data_in_globel_resp_dict(self, data_id):
resp = None
with self._cv:
while data_id not in self._globel_resp_dict:
self._cv.wait()
resp = self._globel_resp_dict.pop(data_id)
self._cv.notify_all()
return resp
def _pack_data_for_infer(self, request):
logging.debug(self._log('start inferce'))
data_id = self._get_next_id()
npdata = {}
try:
for idx, name in enumerate(request.feed_var_names):
logging.debug(
self._log('name: {}'.format(request.feed_var_names[idx])))
logging.debug(
self._log('data: {}'.format(request.feed_insts[idx])))
npdata[name] = np.frombuffer(
request.feed_insts[idx], dtype=request.type[idx])
npdata[name].shape = np.frombuffer(
request.shape[idx], dtype="int32")
except Exception as e:
return ChannelData(
ecode=ChannelDataEcode.RPC_PACKAGE_ERROR.value,
error_info="rpc package error",
data_id=data_id), data_id
else:
return ChannelData(
datatype=ChannelDataType.CHANNEL_NPDATA.value,
npdata=npdata,
data_id=data_id), data_id
def _pack_data_for_resp(self, channeldata):
logging.debug(self._log('get channeldata'))
resp = pyservice_pb2.Response()
resp.ecode = channeldata.ecode
if resp.ecode == ChannelDataEcode.OK.value:
if channeldata.datatype == ChannelDataType.CHANNEL_PBDATA.value:
for inst in channeldata.pbdata.insts:
resp.fetch_insts.append(inst.data)
resp.fetch_var_names.append(inst.name)
resp.shape.append(inst.shape)
resp.type.append(inst.type)
elif channeldata.datatype in (ChannelDataType.CHANNEL_FUTURE.value,
ChannelDataType.CHANNEL_NPDATA.value):
feed = channeldata.parse()
for name, var in feed.items():
resp.fetch_insts.append(var.tobytes())
resp.fetch_var_names.append(name)
resp.shape.append(
np.array(
var.shape, dtype="int32").tobytes())
resp.type.append(str(var.dtype))
else:
raise TypeError(
self._log("Error type({}) in datatype.".format(
channeldata.datatype)))
else:
resp.error_info = channeldata.error_info
return resp
def inference(self, request, context):
_profiler.record("{}-prepack_0".format(self.name))
data, data_id = self._pack_data_for_infer(request)
_profiler.record("{}-prepack_1".format(self.name))
resp_channeldata = None
for i in range(self._retry):
logging.debug(self._log('push data'))
_profiler.record("{}-push_0".format(self.name))
self._in_channel.push(data, self.name)
_profiler.record("{}-push_1".format(self.name))
logging.debug(self._log('wait for infer'))
_profiler.record("{}-fetch_0".format(self.name))
resp_channeldata = self._get_data_in_globel_resp_dict(data_id)
_profiler.record("{}-fetch_1".format(self.name))
if resp_channeldata.ecode == ChannelDataEcode.OK.value:
break
if i + 1 < self._retry:
logging.warn("retry({}): {}".format(
i + 1, resp_channeldata.error_info))
_profiler.record("{}-postpack_0".format(self.name))
resp = self._pack_data_for_resp(resp_channeldata)
_profiler.record("{}-postpack_1".format(self.name))
_profiler.print_profile()
return resp
class PipelineServer(object):
def __init__(self,
use_multithread=True,
client_type='brpc',
use_future=False,
retry=2,
profile=False):
self._channels = []
self._user_ops = []
self._actual_ops = []
self._port = None
self._worker_num = None
self._in_channel = None
self._out_channel = None
self._retry = retry
self._use_multithread = use_multithread
self._client_type = client_type
self._use_future = use_future
if not self._use_multithread:
self._manager = multiprocessing.Manager()
if profile:
raise Exception(
"profile cannot be used in multiprocess version temporarily")
if self._use_future:
raise Exception("cannot use future in multiprocess")
if self._client_type == 'brpc' and self._use_future:
logging.warn("brpc impl cannot use future")
_profiler.enable(profile)
def add_channel(self, channel):
self._channels.append(channel)
def add_op(self, op):
self._user_ops.append(op)
def add_ops(self, ops):
self._user_ops.extend(ops)
def gen_desc(self):
logging.info('here will generate desc for PAAS')
pass
def _topo_sort(self):
indeg_num = {}
que_idx = 0 # scroll queue
ques = [Queue.Queue() for _ in range(2)]
for op in self._user_ops:
if len(op.get_input_ops()) == 0:
op.name = "#G" # update read_op.name
break
outdegs = {op.name: [] for op in self._user_ops}
zero_indeg_num, zero_outdeg_num = 0, 0
for idx, op in enumerate(self._user_ops):
# check the name of op is globally unique
if op.name in indeg_num:
raise Exception("the name of Op must be unique")
indeg_num[op.name] = len(op.get_input_ops())
if indeg_num[op.name] == 0:
ques[que_idx].put(op)
zero_indeg_num += 1
for pred_op in op.get_input_ops():
outdegs[pred_op.name].append(op)
if zero_indeg_num != 1:
raise Exception("DAG contains multiple input Ops")
for _, succ_list in outdegs.items():
if len(succ_list) == 0:
zero_outdeg_num += 1
if zero_outdeg_num != 1:
raise Exception("DAG contains multiple output Ops")
# topo sort to get dag_views
dag_views = []
sorted_op_num = 0
while True:
que = ques[que_idx]
next_que = ques[(que_idx + 1) % 2]
dag_view = []
while que.qsize() != 0:
op = que.get()
dag_view.append(op)
sorted_op_num += 1
for succ_op in outdegs[op.name]:
indeg_num[succ_op.name] -= 1
if indeg_num[succ_op.name] == 0:
next_que.put(succ_op)
dag_views.append(dag_view)
if next_que.qsize() == 0:
break
que_idx = (que_idx + 1) % 2
if sorted_op_num < len(self._user_ops):
raise Exception("not legal DAG")
# create channels and virtual ops
def name_generator(prefix):
def number_generator():
idx = 0
while True:
yield "{}{}".format(prefix, idx)
idx += 1
return number_generator()
def gen_channel(name_gen):
channel = None
if self._use_multithread:
if sys.version_info.major == 2:
channel = ThreadChannel(name=name_gen.next())
elif sys.version_info.major == 3:
channel = ThreadChannel(name=name_gen.__next__())
else:
raise Exception("Error Python version")
else:
if sys.version_info.major == 2:
channel = ProcessChannel(
self._manager, name=name_gen.next())
elif sys.version_info.major == 3:
channel = ProcessChannel(
self._manager, name=name_gen.__next__())
else:
raise Exception("Error Python version")
return channel
def gen_virtual_op(name_gen):
virtual_op = None
if sys.version_info.major == 2:
virtual_op = VirtualOp(name=name_gen.next())
elif sys.version_info.major == 3:
virtual_op = VirtualOp(name=op_name_gen.__next__())
else:
raise Exception("Error Python version")
return virtual_op
virtual_op_name_gen = name_generator("vir")
channel_name_gen = name_generator("chl")
virtual_ops = []
channels = []
input_channel = None
actual_view = None
for v_idx, view in enumerate(dag_views):
if v_idx + 1 >= len(dag_views):
break
next_view = dag_views[v_idx + 1]
if actual_view is None:
actual_view = view
actual_next_view = []
pred_op_of_next_view_op = {}
for op in actual_view:
# find actual succ op in next view and create virtual op
for succ_op in outdegs[op.name]:
if succ_op in next_view:
if succ_op not in actual_next_view:
actual_next_view.append(succ_op)
if succ_op.name not in pred_op_of_next_view_op:
pred_op_of_next_view_op[succ_op.name] = []
pred_op_of_next_view_op[succ_op.name].append(op)
else:
# create virtual op
virtual_op = gen_virtual_op(virtual_op_name_gen)
virtual_ops.append(virtual_op)
outdegs[virtual_op.name] = [succ_op]
actual_next_view.append(virtual_op)
pred_op_of_next_view_op[virtual_op.name] = [op]
virtual_op.add_virtual_pred_op(op)
actual_view = actual_next_view
# create channel
processed_op = set()
for o_idx, op in enumerate(actual_next_view):
if op.name in processed_op:
continue
channel = gen_channel(channel_name_gen)
channels.append(channel)
logging.debug("{} => {}".format(channel.name, op.name))
op.add_input_channel(channel)
pred_ops = pred_op_of_next_view_op[op.name]
if v_idx == 0:
input_channel = channel
else:
# if pred_op is virtual op, it will use ancestors as producers to channel
for pred_op in pred_ops:
logging.debug("{} => {}".format(pred_op.name,
channel.name))
pred_op.add_output_channel(channel)
processed_op.add(op.name)
# find same input op to combine channel
for other_op in actual_next_view[o_idx + 1:]:
if other_op.name in processed_op:
continue
other_pred_ops = pred_op_of_next_view_op[other_op.name]
if len(other_pred_ops) != len(pred_ops):
continue
same_flag = True
for pred_op in pred_ops:
if pred_op not in other_pred_ops:
same_flag = False
break
if same_flag:
logging.debug("{} => {}".format(channel.name,
other_op.name))
other_op.add_input_channel(channel)
processed_op.add(other_op.name)
output_channel = gen_channel(channel_name_gen)
channels.append(output_channel)
last_op = dag_views[-1][0]
last_op.add_output_channel(output_channel)
self._actual_ops = virtual_ops
for op in self._user_ops:
if len(op.get_input_ops()) == 0:
# pass read op
continue
self._actual_ops.append(op)
self._channels = channels
for c in channels:
logging.debug(c.debug())
return input_channel, output_channel
def prepare_server(self, port, worker_num):
self._port = port
self._worker_num = worker_num
input_channel, output_channel = self._topo_sort()
self._in_channel = input_channel
self._out_channel = output_channel
for op in self._actual_ops:
if op.with_serving:
self.prepare_serving(op)
self.gen_desc()
def _run_ops(self):
threads_or_proces = []
for op in self._actual_ops:
op.init_profiler(_profiler)
if self._use_multithread:
threads_or_proces.extend(
op.start_with_thread(self._client_type, self._use_future))
else:
threads_or_proces.extend(
op.start_with_process(self._client_type, self._use_future))
return threads_or_proces
def _stop_ops(self):
for op in self._actual_ops:
op.stop()
def run_server(self):
op_threads_or_proces = self._run_ops()
server = grpc.server(
futures.ThreadPoolExecutor(max_workers=self._worker_num))
general_python_service_pb2_grpc.add_GeneralPythonServiceServicer_to_server(
GeneralPythonService(self._in_channel, self._out_channel,
self._retry), server)
server.add_insecure_port('[::]:{}'.format(self._port))
server.start()
server.wait_for_termination()
self._stop_ops() # TODO
for x in op_threads_or_proces:
x.join()
def prepare_serving(self, op):
model_path = op._server_model
port = op._server_port
device = op._device
if self._client_type == "grpc":
if device == "cpu":
cmd = "(Use grpc impl) python -m paddle_serving_server.serve" \
" --model {} --thread 4 --port {} --use_multilang &>/dev/null &".format(model_path, port)
else:
cmd = "(Use grpc impl) python -m paddle_serving_server_gpu.serve" \
" --model {} --thread 4 --port {} --use_multilang &>/dev/null &".format(model_path, port)
elif self._client_type == "brpc":
if device == "cpu":
cmd = "(Use brpc impl) python -m paddle_serving_server.serve" \
" --model {} --thread 4 --port {} &>/dev/null &".format(model_path, port)
else:
cmd = "(Use brpc impl) python -m paddle_serving_server_gpu.serve" \
" --model {} --thread 4 --port {} &>/dev/null &".format(model_path, port)
else:
raise Exception("unknow client type: {}".format(self._client_type))
# run a server (not in PyServing)
logging.info("run a server (not in PyServing): {}".format(cmd))
>>>>>>> d84910a1180061b57c51824e35e3ca5c857eb3b5
...@@ -13,6 +13,19 @@ ...@@ -13,6 +13,19 @@
# limitations under the License. # limitations under the License.
# pylint: disable=doc-string-missing # pylint: disable=doc-string-missing
<<<<<<< HEAD
=======
import os
import sys
if sys.version_info.major == 2:
import Queue
elif sys.version_info.major == 3:
import queue as Queue
else:
raise Exception("Error Python version")
import time
>>>>>>> d84910a1180061b57c51824e35e3ca5c857eb3b5
class TimeProfiler(object): class TimeProfiler(object):
def __init__(self): def __init__(self):
...@@ -35,18 +48,30 @@ class TimeProfiler(object): ...@@ -35,18 +48,30 @@ class TimeProfiler(object):
def print_profile(self): def print_profile(self):
if self._enable is False: if self._enable is False:
return return
<<<<<<< HEAD
print_str = self._print_head print_str = self._print_head
=======
sys.stderr.write(self._print_head)
>>>>>>> d84910a1180061b57c51824e35e3ca5c857eb3b5
tmp = {} tmp = {}
while not self._time_record.empty(): while not self._time_record.empty():
name, tag, timestamp = self._time_record.get() name, tag, timestamp = self._time_record.get()
if name in tmp: if name in tmp:
ptag, ptimestamp = tmp.pop(name) ptag, ptimestamp = tmp.pop(name)
<<<<<<< HEAD
print_str += "{}_{}:{} ".format(name, ptag, ptimestamp) print_str += "{}_{}:{} ".format(name, ptag, ptimestamp)
print_str += "{}_{}:{} ".format(name, tag, timestamp) print_str += "{}_{}:{} ".format(name, tag, timestamp)
else: else:
tmp[name] = (tag, timestamp) tmp[name] = (tag, timestamp)
print_str += "\n" print_str += "\n"
sys.stderr.write(print_str) sys.stderr.write(print_str)
=======
sys.stderr.write("{}_{}:{} ".format(name, ptag, ptimestamp))
sys.stderr.write("{}_{}:{} ".format(name, tag, timestamp))
else:
tmp[name] = (tag, timestamp)
sys.stderr.write('\n')
>>>>>>> d84910a1180061b57c51824e35e3ca5c857eb3b5
for name, item in tmp.items(): for name, item in tmp.items():
tag, timestamp = item tag, timestamp = item
self._time_record.put((name, tag, timestamp)) self._time_record.put((name, tag, timestamp))
numpy>=1.12, <=1.16.4 ; python_version<"3.5" numpy>=1.12, <=1.16.4 ; python_version<"3.5"
grpcio-tools>=1.28.1 grpcio-tools>=1.28.1
grpcio>=1.28.1 grpcio>=1.28.1
func-timeout>=4.3.5
...@@ -42,7 +42,8 @@ REQUIRED_PACKAGES = [ ...@@ -42,7 +42,8 @@ REQUIRED_PACKAGES = [
] ]
packages=['paddle_serving_server', packages=['paddle_serving_server',
'paddle_serving_server.proto'] 'paddle_serving_server.proto',
'paddle_serving_server.pipeline']
package_dir={'paddle_serving_server': package_dir={'paddle_serving_server':
'${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server', '${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server',
......
...@@ -43,7 +43,8 @@ REQUIRED_PACKAGES = [ ...@@ -43,7 +43,8 @@ REQUIRED_PACKAGES = [
packages=['paddle_serving_server_gpu', packages=['paddle_serving_server_gpu',
'paddle_serving_server_gpu.proto'] 'paddle_serving_server_gpu.proto',
'paddle_serving_server.pipeline']
package_dir={'paddle_serving_server_gpu': package_dir={'paddle_serving_server_gpu':
'${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu', '${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server_gpu',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册