提交 addc9376 编写于 作者: D Dong Daxiang 提交者: GitHub

Update README.md

上级 6f1ebe7a
...@@ -26,14 +26,6 @@ We consider deploying deep learning inference service online to be a user-facing ...@@ -26,14 +26,6 @@ We consider deploying deep learning inference service online to be a user-facing
<img src="doc/demo.gif" width="700"> <img src="doc/demo.gif" width="700">
</p> </p>
<h2 align="center">Some Key Features</h2>
- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed **with one line command**.
- **Industrial serving features** supported, such as models management, online loading, online A/B testing etc.
- **Distributed Key-Value indexing** supported which is especially useful for large scale sparse features as model inputs.
- **Highly concurrent and efficient communication** between clients and servers supported.
- **Multiple programming languages** supported on client side, such as Golang, C++ and python.
- **Extensible framework design** which can support model serving beyond Paddle.
<h2 align="center">Installation</h2> <h2 align="center">Installation</h2>
...@@ -63,6 +55,70 @@ If you need install modules compiled with develop branch, please download packag ...@@ -63,6 +55,70 @@ If you need install modules compiled with develop branch, please download packag
Client package support Centos 7 and Ubuntu 18, or you can use HTTP service without install client. Client package support Centos 7 and Ubuntu 18, or you can use HTTP service without install client.
<h2 align="center"> Pre-built services with Paddle Serving</h2>
<h3 align="center">Chinese Word Segmentation</h4>
- **Description**:
``` shell
Chinese word segmentation HTTP service that can be deployed with one line command.
```
- **Demo**:
``` shell
> python -m paddle_serving_app.package -get lac
> tar -xzf lac.tar.gz
> python lac_web_service.py 9292 &
> curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "我爱北京天安门"}], "fetch":["word_seg"]}' http://127.0.0.1:9393/lac/prediction
{"result":[{"word_seg":"我|爱|北京|天安门"}]}
```
<h3 align="center">Image Classification</h4>
- **Description**:
``` shell
Image classification trained with Imagenet dataset. A label and corresponding probability will be returned.
Note: This demo needs paddle-serving-server-gpu.
```
- **Download Servable Package**:
``` shell
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imagenet-example/imagenet_demo.tar.gz
```
- **Host web service**:
``` shell
tar -xzf imagenet_demo.tar.gz
python image_classification_service_demo.py resnet50_serving_model
```
- **Request sample**:
<p align="center">
<br>
<img src='https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg' width = "200" height = "200">
<br>
<p>
``` shell
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"url": "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"}], "fetch": ["score"]}' http://127.0.0.1:9292/image/prediction
```
- **Request result**:
``` shell
{"label":"daisy","prob":0.9341403245925903}
```
<h2 align="center">Some Key Features</h2>
- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed **with one line command**.
- **Industrial serving features** supported, such as models management, online loading, online A/B testing etc.
- **Distributed Key-Value indexing** supported which is especially useful for large scale sparse features as model inputs.
- **Highly concurrent and efficient communication** between clients and servers supported.
- **Multiple programming languages** supported on client side, such as Golang, C++ and python.
- **Extensible framework design** which can support model serving beyond Paddle.
<h2 align="center">Quick Start Example</h2> <h2 align="center">Quick Start Example</h2>
### Boston House Price Prediction model ### Boston House Price Prediction model
...@@ -120,66 +176,6 @@ print(fetch_map) ...@@ -120,66 +176,6 @@ print(fetch_map)
``` ```
Here, `client.predict` function has two arguments. `feed` is a `python dict` with model input variable alias name and values. `fetch` assigns the prediction variables to be returned from servers. In the example, the name of `"x"` and `"price"` are assigned when the servable model is saved during training. Here, `client.predict` function has two arguments. `feed` is a `python dict` with model input variable alias name and values. `fetch` assigns the prediction variables to be returned from servers. In the example, the name of `"x"` and `"price"` are assigned when the servable model is saved during training.
<h2 align="center"> Pre-built services with Paddle Serving</h2>
<h3 align="center">Chinese Word Segmentation</h4>
- **Description**:
``` shell
Chinese word segmentation HTTP service that can be deployed with one line command.
```
- **Download Servable Package**:
``` shell
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/lac/lac_model_jieba_web.tar.gz
```
- **Host web service**:
``` shell
tar -xzf lac_model_jieba_web.tar.gz
python lac_web_service.py jieba_server_model/ lac_workdir 9292
```
- **Request sample**:
``` shell
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "我爱北京天安门"}], "fetch":["word_seg"]}' http://127.0.0.1:9292/lac/prediction
```
- **Request result**:
``` shell
{"word_seg":"我|爱|北京|天安门"}
```
<h3 align="center">Image Classification</h4>
- **Description**:
``` shell
Image classification trained with Imagenet dataset. A label and corresponding probability will be returned.
Note: This demo needs paddle-serving-server-gpu.
```
- **Download Servable Package**:
``` shell
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imagenet-example/imagenet_demo.tar.gz
```
- **Host web service**:
``` shell
tar -xzf imagenet_demo.tar.gz
python image_classification_service_demo.py resnet50_serving_model
```
- **Request sample**:
<p align="center">
<br>
<img src='https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg' width = "200" height = "200">
<br>
<p>
``` shell
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"url": "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"}], "fetch": ["score"]}' http://127.0.0.1:9292/image/prediction
```
- **Request result**:
``` shell
{"label":"daisy","prob":0.9341403245925903}
```
<h3 align="center">More Demos</h3> <h3 align="center">More Demos</h3>
| Key | Value | | Key | Value |
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册