diff --git a/CMakeLists.txt b/CMakeLists.txt index 7c497e3e048c4dd8d5c1291286de2ab9d218b914..59d6fcb07d27e1f3ab259e69d36708b775c1852a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -54,6 +54,7 @@ option(SERVER "Compile Paddle Serving Server" OFF) option(APP "Compile Paddle Serving App package" OFF) option(WITH_ELASTIC_CTR "Compile ELASITC-CTR solution" OFF) option(PACK "Compile for whl" OFF) +option(WITH_TRT "Compile Paddle Serving with TRT" OFF) set(WITH_MKLML ${WITH_MKL}) if (NOT DEFINED WITH_MKLDNN) diff --git a/README.md b/README.md index c1f066dece0bc7de8a3f43c4d5c1b9e43acd3978..fb537b65db83d013f570c8208f21c219ca5084a3 100644 --- a/README.md +++ b/README.md @@ -48,7 +48,7 @@ nvidia-docker exec -it test bash pip install paddle-serving-client==0.3.2 pip install paddle-serving-server==0.3.2 # CPU pip install paddle-serving-server-gpu==0.3.2.post9 # GPU with CUDA9.0 -pip install paddle-serving-server-gpu==0.3.2.post10 # GPU with CUDA9.0 +pip install paddle-serving-server-gpu==0.3.2.post10 # GPU with CUDA10.0 ``` You may need to use a domestic mirror source (in China, you can use the Tsinghua mirror source, add `-i https://pypi.tuna.tsinghua.edu.cn/simple` to pip command) to speed up the download. @@ -128,6 +128,7 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po | `mem_optim_off` | - | - | Disable memory / graphic memory optimization | | `ir_optim` | - | - | Enable analysis and optimization of calculation graph | | `use_mkl` (Only for cpu version) | - | - | Run inference with MKL | +| `use_trt` (Only for trt version) | - | - | Run inference with TensorRT | Here, we use `curl` to send a HTTP POST request to the service we just started. Users can use any python library to send HTTP POST as well, e.g, [requests](https://requests.readthedocs.io/en/master/). diff --git a/README_CN.md b/README_CN.md index 8bdc2702a68ed88437495fe8b4ced3817742d13a..2c37a26681d4291adcf7e8e70d3392772fabbe6b 100644 --- a/README_CN.md +++ b/README_CN.md @@ -124,6 +124,7 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po | `mem_optim_off` | - | - | Disable memory optimization | | `ir_optim` | - | - | Enable analysis and optimization of calculation graph | | `use_mkl` (Only for cpu version) | - | - | Run inference with MKL | +| `use_trt` (Only for trt version) | - | - | Run inference with TensorRT | 我们使用 `curl` 命令来发送HTTP POST请求给刚刚启动的服务。用户也可以调用python库来发送HTTP POST请求,请参考英文文档 [requests](https://requests.readthedocs.io/en/master/)。 diff --git a/cmake/paddlepaddle.cmake b/cmake/paddlepaddle.cmake index 5a164e93437e59e9b93ad6472755adffea8421ae..4b7d3ed1f620bfcd2e1e214c49c57ee3848129e7 100644 --- a/cmake/paddlepaddle.cmake +++ b/cmake/paddlepaddle.cmake @@ -34,7 +34,11 @@ message( "WITH_GPU = ${WITH_GPU}") SET(PADDLE_VERSION "1.8.4") if (WITH_GPU) - SET(PADDLE_LIB_VERSION "${PADDLE_VERSION}-gpu-cuda${CUDA_VERSION_MAJOR}-cudnn7-avx-mkl") + if (WITH_TRT) + SET(PADDLE_LIB_VERSION "${PADDLE_VERSION}-gpu-cuda10.1-cudnn7.6-avx-mkl-trt6") + else() + SET(PADDLE_LIB_VERSION "${PADDLE_VERSION}-gpu-cuda10-cudnn7-avx-mkl") + endif() else() if (WITH_AVX) if (WITH_MKLML) @@ -50,21 +54,38 @@ endif() SET(PADDLE_LIB_PATH "http://paddle-inference-lib.bj.bcebos.com/${PADDLE_LIB_VERSION}/fluid_inference.tgz") MESSAGE(STATUS "PADDLE_LIB_PATH=${PADDLE_LIB_PATH}") if (WITH_GPU OR WITH_MKLML) -ExternalProject_Add( - "extern_paddle" - ${EXTERNAL_PROJECT_LOG_ARGS} - URL "${PADDLE_LIB_PATH}" - PREFIX "${PADDLE_SOURCES_DIR}" - DOWNLOAD_DIR "${PADDLE_DOWNLOAD_DIR}" - CONFIGURE_COMMAND "" - BUILD_COMMAND "" - UPDATE_COMMAND "" - INSTALL_COMMAND - ${CMAKE_COMMAND} -E copy_directory ${PADDLE_DOWNLOAD_DIR}/paddle/include ${PADDLE_INSTALL_DIR}/include && - ${CMAKE_COMMAND} -E copy_directory ${PADDLE_DOWNLOAD_DIR}/paddle/lib ${PADDLE_INSTALL_DIR}/lib && - ${CMAKE_COMMAND} -E copy_directory ${PADDLE_DOWNLOAD_DIR}/third_party ${PADDLE_INSTALL_DIR}/third_party && - ${CMAKE_COMMAND} -E copy ${PADDLE_INSTALL_DIR}/third_party/install/mkldnn/lib/libmkldnn.so.0 ${PADDLE_INSTALL_DIR}/third_party/install/mkldnn/lib/libmkldnn.so -) + if (WITH_TRT) + ExternalProject_Add( + "extern_paddle" + ${EXTERNAL_PROJECT_LOG_ARGS} + URL "${PADDLE_LIB_PATH}" + PREFIX "${PADDLE_SOURCES_DIR}" + DOWNLOAD_DIR "${PADDLE_DOWNLOAD_DIR}" + CONFIGURE_COMMAND "" + BUILD_COMMAND "" + UPDATE_COMMAND "" + INSTALL_COMMAND + ${CMAKE_COMMAND} -E copy_directory ${PADDLE_DOWNLOAD_DIR}/paddle/include ${PADDLE_INSTALL_DIR}/include && + ${CMAKE_COMMAND} -E copy_directory ${PADDLE_DOWNLOAD_DIR}/paddle/lib ${PADDLE_INSTALL_DIR}/lib && + ${CMAKE_COMMAND} -E copy_directory ${PADDLE_DOWNLOAD_DIR}/third_party ${PADDLE_INSTALL_DIR}/third_party + ) + else() + ExternalProject_Add( + "extern_paddle" + ${EXTERNAL_PROJECT_LOG_ARGS} + URL "${PADDLE_LIB_PATH}" + PREFIX "${PADDLE_SOURCES_DIR}" + DOWNLOAD_DIR "${PADDLE_DOWNLOAD_DIR}" + CONFIGURE_COMMAND "" + BUILD_COMMAND "" + UPDATE_COMMAND "" + INSTALL_COMMAND + ${CMAKE_COMMAND} -E copy_directory ${PADDLE_DOWNLOAD_DIR}/paddle/include ${PADDLE_INSTALL_DIR}/include && + ${CMAKE_COMMAND} -E copy_directory ${PADDLE_DOWNLOAD_DIR}/paddle/lib ${PADDLE_INSTALL_DIR}/lib && + ${CMAKE_COMMAND} -E copy_directory ${PADDLE_DOWNLOAD_DIR}/third_party ${PADDLE_INSTALL_DIR}/third_party && + ${CMAKE_COMMAND} -E copy ${PADDLE_INSTALL_DIR}/third_party/install/mkldnn/lib/libmkldnn.so.0 ${PADDLE_INSTALL_DIR}/third_party/install/mkldnn/lib/libmkldnn.so + ) + endif() else() ExternalProject_Add( "extern_paddle" @@ -92,8 +113,16 @@ LINK_DIRECTORIES(${PADDLE_INSTALL_DIR}/third_party/install/mkldnn/lib) ADD_LIBRARY(openblas STATIC IMPORTED GLOBAL) SET_PROPERTY(TARGET openblas PROPERTY IMPORTED_LOCATION ${PADDLE_INSTALL_DIR}/third_party/install/openblas/lib/libopenblas.a) -ADD_LIBRARY(paddle_fluid STATIC IMPORTED GLOBAL) -SET_PROPERTY(TARGET paddle_fluid PROPERTY IMPORTED_LOCATION ${PADDLE_INSTALL_DIR}/lib/libpaddle_fluid.a) +ADD_LIBRARY(paddle_fluid SHARED IMPORTED GLOBAL) +SET_PROPERTY(TARGET paddle_fluid PROPERTY IMPORTED_LOCATION ${PADDLE_INSTALL_DIR}/lib/libpaddle_fluid.so) + +if (WITH_TRT) +ADD_LIBRARY(nvinfer SHARED IMPORTED GLOBAL) +SET_PROPERTY(TARGET nvinfer PROPERTY IMPORTED_LOCATION ${TENSORRT_ROOT}/lib/libnvinfer.so) + +ADD_LIBRARY(nvinfer_plugin SHARED IMPORTED GLOBAL) +SET_PROPERTY(TARGET nvinfer_plugin PROPERTY IMPORTED_LOCATION ${TENSORRT_ROOT}/lib/libnvinfer_plugin.so) +endif() ADD_LIBRARY(xxhash STATIC IMPORTED GLOBAL) SET_PROPERTY(TARGET xxhash PROPERTY IMPORTED_LOCATION ${PADDLE_INSTALL_DIR}/third_party/install/xxhash/lib/libxxhash.a) @@ -101,4 +130,9 @@ SET_PROPERTY(TARGET xxhash PROPERTY IMPORTED_LOCATION ${PADDLE_INSTALL_DIR}/thir LIST(APPEND external_project_dependencies paddle) LIST(APPEND paddle_depend_libs - xxhash) + xxhash) + +if(WITH_TRT) +LIST(APPEND paddle_depend_libs + nvinfer nvinfer_plugin) +endif() diff --git a/core/configure/proto/server_configure.proto b/core/configure/proto/server_configure.proto index de32637b2a523df1a8d8cd2e28dcf29e79ff96dc..c008ee857bb7c69672e399ce44b2420d5db7fb3c 100644 --- a/core/configure/proto/server_configure.proto +++ b/core/configure/proto/server_configure.proto @@ -44,6 +44,7 @@ message EngineDesc { optional bool static_optimization = 14; optional bool force_update_static_cache = 15; optional bool enable_ir_optimization = 16; + optional bool use_trt = 17; }; // model_toolkit conf diff --git a/core/cube/CMakeLists.txt b/core/cube/CMakeLists.txt index 07cf04977b618a515a2459f646c2dba298a5d58b..f9dc4d2c2508720f450b4aee3aba5dfdd7ccd43b 100644 --- a/core/cube/CMakeLists.txt +++ b/core/cube/CMakeLists.txt @@ -12,8 +12,9 @@ # See the License for the specific language governing permissions and # limitations under the License +#execute_process(COMMAND go env -w GO111MODULE=off) add_subdirectory(cube-server) add_subdirectory(cube-api) add_subdirectory(cube-builder) -add_subdirectory(cube-transfer) -add_subdirectory(cube-agent) +#add_subdirectory(cube-transfer) +#add_subdirectory(cube-agent) diff --git a/core/general-client/include/general_model.h b/core/general-client/include/general_model.h index a81a0005473f3eb4039dd77aa430957e52eda687..3ee960069fd1eb8575d39fe4797038f9d4ef9f3b 100644 --- a/core/general-client/include/general_model.h +++ b/core/general-client/include/general_model.h @@ -218,25 +218,15 @@ class PredictorClient { int destroy_predictor(); - int batch_predict( - const std::vector>>& float_feed_batch, - const std::vector& float_feed_name, - const std::vector>& float_shape, - const std::vector>>& int_feed_batch, - const std::vector& int_feed_name, - const std::vector>& int_shape, - const std::vector& fetch_name, - PredictorRes& predict_res_batch, // NOLINT - const int& pid, - const uint64_t log_id); - int numpy_predict( const std::vector>>& float_feed_batch, const std::vector& float_feed_name, const std::vector>& float_shape, + const std::vector>& float_lod_slot_batch, const std::vector>>& int_feed_batch, const std::vector& int_feed_name, const std::vector>& int_shape, + const std::vector>& int_lod_slot_batch, const std::vector& fetch_name, PredictorRes& predict_res_batch, // NOLINT const int& pid, diff --git a/core/general-client/src/general_model.cpp b/core/general-client/src/general_model.cpp index a3160830a71c1244af209671da3f96d559c47f02..c2db765a082bf2e18aa7fe88c614a6bc8bb457c8 100644 --- a/core/general-client/src/general_model.cpp +++ b/core/general-client/src/general_model.cpp @@ -137,227 +137,15 @@ int PredictorClient::create_predictor() { return 0; } -int PredictorClient::batch_predict( - const std::vector>> &float_feed_batch, - const std::vector &float_feed_name, - const std::vector> &float_shape, - const std::vector>> &int_feed_batch, - const std::vector &int_feed_name, - const std::vector> &int_shape, - const std::vector &fetch_name, - PredictorRes &predict_res_batch, - const int &pid, - const uint64_t log_id) { - int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size()); - - predict_res_batch.clear(); - Timer timeline; - int64_t preprocess_start = timeline.TimeStampUS(); - - int fetch_name_num = fetch_name.size(); - - _api.thrd_initialize(); - std::string variant_tag; - _predictor = _api.fetch_predictor("general_model", &variant_tag); - predict_res_batch.set_variant_tag(variant_tag); - VLOG(2) << "fetch general model predictor done."; - VLOG(2) << "float feed name size: " << float_feed_name.size(); - VLOG(2) << "int feed name size: " << int_feed_name.size(); - VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size; - Request req; - req.set_log_id(log_id); - for (auto &name : fetch_name) { - req.add_fetch_var_names(name); - } - - for (int bi = 0; bi < batch_size; bi++) { - VLOG(2) << "prepare batch " << bi; - std::vector tensor_vec; - FeedInst *inst = req.add_insts(); - std::vector> float_feed = float_feed_batch[bi]; - std::vector> int_feed = int_feed_batch[bi]; - for (auto &name : float_feed_name) { - tensor_vec.push_back(inst->add_tensor_array()); - } - - for (auto &name : int_feed_name) { - tensor_vec.push_back(inst->add_tensor_array()); - } - - VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name " - << "prepared"; - int vec_idx = 0; - VLOG(2) << "tensor_vec size " << tensor_vec.size() << " float shape " - << float_shape.size(); - for (auto &name : float_feed_name) { - int idx = _feed_name_to_idx[name]; - Tensor *tensor = tensor_vec[idx]; - VLOG(2) << "prepare float feed " << name << " shape size " - << float_shape[vec_idx].size(); - for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) { - tensor->add_shape(float_shape[vec_idx][j]); - } - tensor->set_elem_type(1); - for (uint32_t j = 0; j < float_feed[vec_idx].size(); ++j) { - tensor->add_float_data(float_feed[vec_idx][j]); - } - vec_idx++; - } - - VLOG(2) << "batch [" << bi << "] " - << "float feed value prepared"; - - vec_idx = 0; - for (auto &name : int_feed_name) { - int idx = _feed_name_to_idx[name]; - Tensor *tensor = tensor_vec[idx]; - if (_type[idx] == 0) { - VLOG(2) << "prepare int64 feed " << name << " shape size " - << int_shape[vec_idx].size(); - VLOG(3) << "feed var name " << name << " index " << vec_idx - << "first data " << int_feed[vec_idx][0]; - for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) { - tensor->add_int64_data(int_feed[vec_idx][j]); - } - } else if (_type[idx] == 2) { - VLOG(2) << "prepare int32 feed " << name << " shape size " - << int_shape[vec_idx].size(); - VLOG(3) << "feed var name " << name << " index " << vec_idx - << "first data " << int32_t(int_feed[vec_idx][0]); - for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) { - tensor->add_int_data(int32_t(int_feed[vec_idx][j])); - } - } - - for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) { - tensor->add_shape(int_shape[vec_idx][j]); - } - tensor->set_elem_type(_type[idx]); - vec_idx++; - } - - VLOG(2) << "batch [" << bi << "] " - << "int feed value prepared"; - } - - int64_t preprocess_end = timeline.TimeStampUS(); - - int64_t client_infer_start = timeline.TimeStampUS(); - - Response res; - - int64_t client_infer_end = 0; - int64_t postprocess_start = 0; - int64_t postprocess_end = 0; - - if (FLAGS_profile_client) { - if (FLAGS_profile_server) { - req.set_profile_server(true); - } - } - - res.Clear(); - if (_predictor->inference(&req, &res) != 0) { - LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString(); - _api.thrd_clear(); - return -1; - } else { - client_infer_end = timeline.TimeStampUS(); - postprocess_start = client_infer_end; - VLOG(2) << "get model output num"; - uint32_t model_num = res.outputs_size(); - VLOG(2) << "model num: " << model_num; - for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) { - VLOG(2) << "process model output index: " << m_idx; - auto output = res.outputs(m_idx); - ModelRes model; - model.set_engine_name(output.engine_name()); - - int idx = 0; - - for (auto &name : fetch_name) { - // int idx = _fetch_name_to_idx[name]; - int shape_size = output.insts(0).tensor_array(idx).shape_size(); - VLOG(2) << "fetch var " << name << " index " << idx << " shape size " - << shape_size; - model._shape_map[name].resize(shape_size); - for (int i = 0; i < shape_size; ++i) { - model._shape_map[name][i] = - output.insts(0).tensor_array(idx).shape(i); - } - int lod_size = output.insts(0).tensor_array(idx).lod_size(); - if (lod_size > 0) { - model._lod_map[name].resize(lod_size); - for (int i = 0; i < lod_size; ++i) { - model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i); - } - } - idx += 1; - } - - idx = 0; - for (auto &name : fetch_name) { - // int idx = _fetch_name_to_idx[name]; - if (_fetch_name_to_type[name] == 0) { - VLOG(2) << "ferch var " << name << "type int64"; - int size = output.insts(0).tensor_array(idx).int64_data_size(); - model._int64_value_map[name] = std::vector( - output.insts(0).tensor_array(idx).int64_data().begin(), - output.insts(0).tensor_array(idx).int64_data().begin() + size); - } else if (_fetch_name_to_type[name] == 1) { - VLOG(2) << "fetch var " << name << "type float"; - int size = output.insts(0).tensor_array(idx).float_data_size(); - model._float_value_map[name] = std::vector( - output.insts(0).tensor_array(idx).float_data().begin(), - output.insts(0).tensor_array(idx).float_data().begin() + size); - } else if (_fetch_name_to_type[name] == 2) { - VLOG(2) << "fetch var " << name << "type int32"; - int size = output.insts(0).tensor_array(idx).int_data_size(); - model._int32_value_map[name] = std::vector( - output.insts(0).tensor_array(idx).int_data().begin(), - output.insts(0).tensor_array(idx).int_data().begin() + size); - } - - idx += 1; - } - predict_res_batch.add_model_res(std::move(model)); - } - postprocess_end = timeline.TimeStampUS(); - } - - if (FLAGS_profile_client) { - std::ostringstream oss; - oss << "PROFILE\t" - << "pid:" << pid << "\t" - << "prepro_0:" << preprocess_start << " " - << "prepro_1:" << preprocess_end << " " - << "client_infer_0:" << client_infer_start << " " - << "client_infer_1:" << client_infer_end << " "; - if (FLAGS_profile_server) { - int op_num = res.profile_time_size() / 2; - for (int i = 0; i < op_num; ++i) { - oss << "op" << i << "_0:" << res.profile_time(i * 2) << " "; - oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " "; - } - } - - oss << "postpro_0:" << postprocess_start << " "; - oss << "postpro_1:" << postprocess_end; - - fprintf(stderr, "%s\n", oss.str().c_str()); - } - - _api.thrd_clear(); - return 0; -} - int PredictorClient::numpy_predict( const std::vector>> &float_feed_batch, const std::vector &float_feed_name, const std::vector> &float_shape, + const std::vector> &float_lod_slot_batch, const std::vector>> &int_feed_batch, const std::vector &int_feed_name, const std::vector> &int_shape, + const std::vector> &int_lod_slot_batch, const std::vector &fetch_name, PredictorRes &predict_res_batch, const int &pid, @@ -412,6 +200,9 @@ int PredictorClient::numpy_predict( for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) { tensor->add_shape(float_shape[vec_idx][j]); } + for (uint32_t j = 0; j < float_lod_slot_batch[vec_idx].size(); ++j) { + tensor->add_lod(float_lod_slot_batch[vec_idx][j]); + } tensor->set_elem_type(1); const int float_shape_size = float_shape[vec_idx].size(); switch (float_shape_size) { @@ -470,6 +261,9 @@ int PredictorClient::numpy_predict( for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) { tensor->add_shape(int_shape[vec_idx][j]); } + for (uint32_t j = 0; j < int_lod_slot_batch[vec_idx].size(); ++j) { + tensor->add_lod(int_lod_slot_batch[vec_idx][j]); + } tensor->set_elem_type(_type[idx]); if (_type[idx] == 0) { diff --git a/core/general-client/src/pybind_general_model.cpp b/core/general-client/src/pybind_general_model.cpp index 1e79a8d2489a9ebc2024402bada32a4be2000146..a0ac6caf2e42d9c4eee475648a371681ad30b135 100644 --- a/core/general-client/src/pybind_general_model.cpp +++ b/core/general-client/src/pybind_general_model.cpp @@ -95,42 +95,18 @@ PYBIND11_MODULE(serving_client, m) { [](PredictorClient &self) { self.create_predictor(); }) .def("destroy_predictor", [](PredictorClient &self) { self.destroy_predictor(); }) - .def("batch_predict", - [](PredictorClient &self, - const std::vector>> - &float_feed_batch, - const std::vector &float_feed_name, - const std::vector> &float_shape, - const std::vector>> - &int_feed_batch, - const std::vector &int_feed_name, - const std::vector> &int_shape, - const std::vector &fetch_name, - PredictorRes &predict_res_batch, - const int &pid, - const uint64_t log_id) { - return self.batch_predict(float_feed_batch, - float_feed_name, - float_shape, - int_feed_batch, - int_feed_name, - int_shape, - fetch_name, - predict_res_batch, - pid, - log_id); - }, - py::call_guard()) .def("numpy_predict", [](PredictorClient &self, const std::vector>> &float_feed_batch, const std::vector &float_feed_name, const std::vector> &float_shape, + const std::vector> &float_lod_slot_batch, const std::vector>> &int_feed_batch, const std::vector &int_feed_name, const std::vector> &int_shape, + const std::vector> &int_lod_slot_batch, const std::vector &fetch_name, PredictorRes &predict_res_batch, const int &pid, @@ -138,9 +114,11 @@ PYBIND11_MODULE(serving_client, m) { return self.numpy_predict(float_feed_batch, float_feed_name, float_shape, + float_lod_slot_batch, int_feed_batch, int_feed_name, int_shape, + int_lod_slot_batch, fetch_name, predict_res_batch, pid, diff --git a/core/general-server/CMakeLists.txt b/core/general-server/CMakeLists.txt index 9056e229a51f56463dc2eec5629f219d00dc6a38..aa1b7badc9140301d84bdbd94b3324b52176e837 100644 --- a/core/general-server/CMakeLists.txt +++ b/core/general-server/CMakeLists.txt @@ -9,7 +9,7 @@ endif() target_include_directories(serving PUBLIC ${CMAKE_CURRENT_BINARY_DIR}/../../core/predictor ) - + include_directories(${CUDNN_ROOT}/include/) if(WITH_GPU) target_link_libraries(serving -Wl,--whole-archive fluid_gpu_engine -Wl,--no-whole-archive) @@ -29,7 +29,11 @@ if(WITH_GPU) endif() if(WITH_MKL OR WITH_GPU) + if (WITH_TRT) + target_link_libraries(serving -liomp5 -lmklml_intel -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -lbz2) + else() target_link_libraries(serving -liomp5 -lmklml_intel -lmkldnn -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -lbz2) +endif() else() target_link_libraries(serving openblas -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -lbz2) endif() diff --git a/core/general-server/op/general_reader_op.cpp b/core/general-server/op/general_reader_op.cpp index 14fd617e058ccc392a673678d03145ec1f6fd6d2..0329fac6b9bb6eda59f3f6f1589cd00c3eec0fd9 100644 --- a/core/general-server/op/general_reader_op.cpp +++ b/core/general-server/op/general_reader_op.cpp @@ -73,8 +73,6 @@ int GeneralReaderOp::inference() { // reade request from client const Request *req = dynamic_cast(get_request_message()); uint64_t log_id = req->log_id(); - - int batch_size = req->insts_size(); int input_var_num = 0; std::vector elem_type; std::vector elem_size; @@ -83,7 +81,6 @@ int GeneralReaderOp::inference() { GeneralBlob *res = mutable_data(); TensorVector *out = &res->tensor_vector; - res->SetBatchSize(batch_size); res->SetLogId(log_id); if (!res) { @@ -98,11 +95,11 @@ int GeneralReaderOp::inference() { VLOG(2) << "(logid=" << log_id << ") start to call load general model_conf op"; + baidu::paddle_serving::predictor::Resource &resource = baidu::paddle_serving::predictor::Resource::instance(); VLOG(2) << "(logid=" << log_id << ") get resource pointer done."; - std::shared_ptr model_config = resource.get_general_model_config(); @@ -122,13 +119,11 @@ int GeneralReaderOp::inference() { elem_type.resize(var_num); elem_size.resize(var_num); capacity.resize(var_num); - // prepare basic information for input for (int i = 0; i < var_num; ++i) { paddle::PaddleTensor lod_tensor; elem_type[i] = req->insts(0).tensor_array(i).elem_type(); - VLOG(2) << "(logid=" << log_id << ") var[" << i - << "] has elem type: " << elem_type[i]; + VLOG(2) << "var[" << i << "] has elem type: " << elem_type[i]; if (elem_type[i] == 0) { // int64 elem_size[i] = sizeof(int64_t); lod_tensor.dtype = paddle::PaddleDType::INT64; @@ -139,13 +134,24 @@ int GeneralReaderOp::inference() { elem_size[i] = sizeof(int32_t); lod_tensor.dtype = paddle::PaddleDType::INT32; } - - if (model_config->_is_lod_feed[i]) { - lod_tensor.lod.resize(1); - lod_tensor.lod[0].push_back(0); + // implement lod tensor here + if (req->insts(0).tensor_array(i).lod_size() > 0) { VLOG(2) << "(logid=" << log_id << ") var[" << i << "] is lod_tensor"; + lod_tensor.lod.resize(1); + for (int k = 0; k < req->insts(0).tensor_array(i).lod_size(); ++k) { + lod_tensor.lod[0].push_back(req->insts(0).tensor_array(i).lod(k)); + } + capacity[i] = 1; + for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) { + int dim = req->insts(0).tensor_array(i).shape(k); + VLOG(2) << "(logid=" << log_id << ") shape for var[" << i + << "]: " << dim; + capacity[i] *= dim; + lod_tensor.shape.push_back(dim); + } + VLOG(2) << "(logid=" << log_id << ") var[" << i + << "] is tensor, capacity: " << capacity[i]; } else { - lod_tensor.shape.push_back(batch_size); capacity[i] = 1; for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) { int dim = req->insts(0).tensor_array(i).shape(k); @@ -160,51 +166,40 @@ int GeneralReaderOp::inference() { lod_tensor.name = model_config->_feed_name[i]; out->push_back(lod_tensor); } - // specify the memory needed for output tensor_vector for (int i = 0; i < var_num; ++i) { if (out->at(i).lod.size() == 1) { int tensor_size = 0; - for (int j = 0; j < batch_size; ++j) { - const Tensor &tensor = req->insts(j).tensor_array(i); - int data_len = 0; - if (tensor.int64_data_size() > 0) { - data_len = tensor.int64_data_size(); - } else if (tensor.float_data_size() > 0) { - data_len = tensor.float_data_size(); - } else if (tensor.int_data_size() > 0) { - data_len = tensor.int_data_size(); - } - VLOG(2) << "(logid=" << log_id << ") tensor size for var[" << i - << "]: " << data_len; - tensor_size += data_len; - - int cur_len = out->at(i).lod[0].back(); - VLOG(2) << "(logid=" << log_id << ") current len: " << cur_len; - - int sample_len = 0; - if (tensor.shape_size() == 1) { - sample_len = data_len; - } else { - sample_len = tensor.shape(0); - } - out->at(i).lod[0].push_back(cur_len + sample_len); - VLOG(2) << "(logid=" << log_id << ") new len: " << cur_len + sample_len; - } - out->at(i).data.Resize(tensor_size * elem_size[i]); - out->at(i).shape = {out->at(i).lod[0].back()}; - for (int j = 1; j < req->insts(0).tensor_array(i).shape_size(); ++j) { - out->at(i).shape.push_back(req->insts(0).tensor_array(i).shape(j)); + const Tensor &tensor = req->insts(0).tensor_array(i); + int data_len = 0; + if (tensor.int64_data_size() > 0) { + data_len = tensor.int64_data_size(); + } else if (tensor.float_data_size() > 0) { + data_len = tensor.float_data_size(); + } else if (tensor.int_data_size() > 0) { + data_len = tensor.int_data_size(); } - if (out->at(i).shape.size() == 1) { - out->at(i).shape.push_back(1); + VLOG(2) << "(logid=" << log_id << ") tensor size for var[" << i + << "]: " << data_len; + tensor_size += data_len; + + int cur_len = out->at(i).lod[0].back(); + VLOG(2) << "(logid=" << log_id << ") current len: " << cur_len; + + int sample_len = 0; + if (tensor.shape_size() == 1) { + sample_len = data_len; + } else { + sample_len = tensor.shape(0); } + VLOG(2) << "(logid=" << log_id << ") new len: " << cur_len + sample_len; + out->at(i).data.Resize(tensor_size * elem_size[i]); VLOG(2) << "(logid=" << log_id << ") var[" << i << "] is lod_tensor and len=" << out->at(i).lod[0].back(); } else { - out->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]); + out->at(i).data.Resize(capacity[i] * elem_size[i]); VLOG(2) << "(logid=" << log_id << ") var[" << i - << "] is tensor and capacity=" << batch_size * capacity[i]; + << "] is tensor and capacity=" << capacity[i]; } } @@ -215,58 +210,36 @@ int GeneralReaderOp::inference() { VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i << "] is " << req->insts(0).tensor_array(i).int64_data(0); int offset = 0; - for (int j = 0; j < batch_size; ++j) { - int elem_num = req->insts(j).tensor_array(i).int64_data_size(); - for (int k = 0; k < elem_num; ++k) { - dst_ptr[offset + k] = req->insts(j).tensor_array(i).int64_data(k); - } - if (out->at(i).lod.size() == 1) { - offset = out->at(i).lod[0][j + 1]; - } else { - offset += capacity[i]; - } + int elem_num = req->insts(0).tensor_array(i).int64_data_size(); + for (int k = 0; k < elem_num; ++k) { + dst_ptr[offset + k] = req->insts(0).tensor_array(i).int64_data(k); } } else if (elem_type[i] == 1) { float *dst_ptr = static_cast(out->at(i).data.data()); VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i << "] is " << req->insts(0).tensor_array(i).float_data(0); int offset = 0; - for (int j = 0; j < batch_size; ++j) { - int elem_num = req->insts(j).tensor_array(i).float_data_size(); - for (int k = 0; k < elem_num; ++k) { - dst_ptr[offset + k] = req->insts(j).tensor_array(i).float_data(k); - } - if (out->at(i).lod.size() == 1) { - offset = out->at(i).lod[0][j + 1]; - } else { - offset += capacity[i]; - } + int elem_num = req->insts(0).tensor_array(i).float_data_size(); + for (int k = 0; k < elem_num; ++k) { + dst_ptr[offset + k] = req->insts(0).tensor_array(i).float_data(k); } } else if (elem_type[i] == 2) { int32_t *dst_ptr = static_cast(out->at(i).data.data()); VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i << "] is " << req->insts(0).tensor_array(i).int_data(0); int offset = 0; - for (int j = 0; j < batch_size; ++j) { - int elem_num = req->insts(j).tensor_array(i).int_data_size(); - for (int k = 0; k < elem_num; ++k) { - dst_ptr[offset + k] = req->insts(j).tensor_array(i).int_data(k); - } - if (out->at(i).lod.size() == 1) { - offset = out->at(i).lod[0][j + 1]; - } else { - offset += capacity[i]; - } + int elem_num = req->insts(0).tensor_array(i).int_data_size(); + for (int k = 0; k < elem_num; ++k) { + dst_ptr[offset + k] = req->insts(0).tensor_array(i).int_data(k); } } } VLOG(2) << "(logid=" << log_id << ") output size: " << out->size(); - timeline.Pause(); int64_t end = timeline.TimeStampUS(); res->p_size = 0; - res->_batch_size = batch_size; + res->_batch_size = 1; AddBlobInfo(res, start); AddBlobInfo(res, end); diff --git a/core/general-server/op/general_response_op.cpp b/core/general-server/op/general_response_op.cpp index 3a723e5ce4a19a1fd1754d01b95c4f9ad580b5fe..5f80510f79f8acf09aed9f7f65e84b9cfaa9a8ed 100644 --- a/core/general-server/op/general_response_op.cpp +++ b/core/general-server/op/general_response_op.cpp @@ -155,9 +155,11 @@ int GeneralResponseOp::inference() { } if (model_config->_is_lod_fetch[idx]) { - for (int j = 0; j < in->at(idx).lod[0].size(); ++j) { - fetch_p->mutable_tensor_array(var_idx)->add_lod( - in->at(idx).lod[0][j]); + if (in->at(idx).lod.size() > 0) { + for (int j = 0; j < in->at(idx).lod[0].size(); ++j) { + fetch_p->mutable_tensor_array(var_idx)->add_lod( + in->at(idx).lod[0][j]); + } } } diff --git a/core/predictor/CMakeLists.txt b/core/predictor/CMakeLists.txt index 6b5013c3edadb4592df40db539fa75fb9364d02f..637c7c15530273bc908ec2f8693a3d66989eebd2 100644 --- a/core/predictor/CMakeLists.txt +++ b/core/predictor/CMakeLists.txt @@ -13,7 +13,9 @@ set_source_files_properties( PROPERTIES COMPILE_FLAGS "-Wno-strict-aliasing -Wno-unused-variable -Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") add_dependencies(pdserving protobuf boost brpc leveldb pdcodegen configure) - +if (WITH_TRT) + add_definitions(-DWITH_TRT) +endif() target_link_libraries(pdserving brpc protobuf boost leveldb configure -lpthread -lcrypto -lm -lrt -lssl -ldl -lz) diff --git a/core/predictor/framework/infer.h b/core/predictor/framework/infer.h index 1cff7647e2dbbcc8df4d144f81488fde35aeb798..431bc456326c1714dce48e2f6321bf58f3e021ce 100644 --- a/core/predictor/framework/infer.h +++ b/core/predictor/framework/infer.h @@ -38,6 +38,7 @@ class InferEngineCreationParams { _enable_ir_optimization = false; _static_optimization = false; _force_update_static_cache = false; + _use_trt = false; } void set_path(const std::string& path) { _path = path; } @@ -50,12 +51,16 @@ class InferEngineCreationParams { _enable_ir_optimization = enable_ir_optimization; } + void set_use_trt(bool use_trt) { _use_trt = use_trt; } + bool enable_memory_optimization() const { return _enable_memory_optimization; } bool enable_ir_optimization() const { return _enable_ir_optimization; } + bool use_trt() const { return _use_trt; } + void set_static_optimization(bool static_optimization = false) { _static_optimization = static_optimization; } @@ -86,6 +91,7 @@ class InferEngineCreationParams { bool _enable_ir_optimization; bool _static_optimization; bool _force_update_static_cache; + bool _use_trt; }; class InferEngine { @@ -172,6 +178,10 @@ class ReloadableInferEngine : public InferEngine { force_update_static_cache); } + if (conf.has_use_trt()) { + _infer_engine_params.set_use_trt(conf.use_trt()); + } + if (!check_need_reload() || load(_infer_engine_params) != 0) { LOG(ERROR) << "Failed load model_data_path" << _model_data_path; return -1; @@ -553,8 +563,12 @@ class CloneDBReloadableInferEngine }; template +#ifdef WITH_TRT +class FluidInferEngine : public DBReloadableInferEngine { +#else class FluidInferEngine : public CloneDBReloadableInferEngine { - public: +#endif + public: // NOLINT FluidInferEngine() {} ~FluidInferEngine() {} diff --git a/core/sdk-cpp/include/abtest.h b/core/sdk-cpp/include/abtest.h index a4275fcf52413bb85bcca1fcb470ea2360fdf174..47a502745ae8aa6297729a0a3695600402cf5cfe 100644 --- a/core/sdk-cpp/include/abtest.h +++ b/core/sdk-cpp/include/abtest.h @@ -51,8 +51,8 @@ class WeightedRandomRender : public EndpointRouterBase { new (std::nothrow) Factory(); if (factory == NULL) { RAW_LOG(ERROR, - "Failed regist factory: WeightedRandomRender->EndpointRouterBase \ - in macro!"); + "Failed regist factory: WeightedRandomRender->EndpointRouterBase " + "in macro!"); return -1; } @@ -63,8 +63,8 @@ class WeightedRandomRender : public EndpointRouterBase { if (FactoryPool::instance().register_factory( "WeightedRandomRender", factory) != 0) { RAW_LOG(INFO, - "Factory has been registed: \ - WeightedRandomRender->EndpointRouterBase."); + "Factory has been registed: " + "WeightedRandomRender->EndpointRouterBase."); } return 0; diff --git a/doc/COMPILE.md b/doc/COMPILE.md index abb66084ac6f6c57c13c940eb10a87e2aba2daa2..cf0bfdf2593ff0274e4bec20d3b1524f2e61241a 100644 --- a/doc/COMPILE.md +++ b/doc/COMPILE.md @@ -75,10 +75,12 @@ export PATH=$PATH:$GOPATH/bin ## Get go packages ```shell -go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway -go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger -go get -u github.com/golang/protobuf/protoc-gen-go -go get -u google.golang.org/grpc +go env -w GO111MODULE=on +go env -w GOPROXY=https://goproxy.cn,direct +go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway@v1.15.2 +go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger@v1.15.2 +go get -u github.com/golang/protobuf/protoc-gen-go@v1.4.3 +go get -u google.golang.org/grpc@v1.33.0 ``` @@ -89,9 +91,9 @@ go get -u google.golang.org/grpc ``` shell mkdir server-build-cpu && cd server-build-cpu cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ - -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ - -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ - -DSERVER=ON .. + -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ + -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ + -DSERVER=ON .. make -j10 ``` @@ -102,10 +104,28 @@ you can execute `make install` to put targets under directory `./output`, you ne ``` shell mkdir server-build-gpu && cd server-build-gpu cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ - -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ - -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ - -DSERVER=ON \ - -DWITH_GPU=ON .. + -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ + -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ + -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \ + -DCUDNN_LIBRARY=${CUDNN_LIBRARY} \ + -DSERVER=ON \ + -DWITH_GPU=ON .. +make -j10 +``` + +### Integrated TRT version paddle inference library + +``` +mkdir server-build-trt && cd server-build-trt +cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ + -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ + -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ + -DTENSORRT_ROOT=${TENSORRT_LIBRARY_PATH} \ + -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \ + -DCUDNN_LIBRARY=${CUDNN_LIBRARY} \ + -DSERVER=ON \ + -DWITH_GPU=ON \ + -DWITH_TRT=ON .. make -j10 ``` @@ -134,7 +154,10 @@ execute `make install` to put targets under directory `./output` ```bash mkdir app-build && cd app-build -cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DAPP=ON .. +cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ + -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ + -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ + -DAPP=ON .. make ``` @@ -165,7 +188,9 @@ Please use the example under `python/examples` to verify. | WITH_AVX | Compile Paddle Serving with AVX intrinsics | OFF | | WITH_MKL | Compile Paddle Serving with MKL support | OFF | | WITH_GPU | Compile Paddle Serving with NVIDIA GPU | OFF | -| CUDNN_ROOT | Define CuDNN library and header path | | +| CUDNN_LIBRARY | Define CuDNN library and header path | | +| CUDA_TOOLKIT_ROOT_DIR | Define CUDA PATH | | +| TENSORRT_ROOT | Define TensorRT PATH | | | CLIENT | Compile Paddle Serving Client | OFF | | SERVER | Compile Paddle Serving Server | OFF | | APP | Compile Paddle Serving App package | OFF | @@ -180,7 +205,8 @@ To compile the Paddle Serving GPU version on bare metal, you need to install the - CUDA - CuDNN -- NCCL2 + +To compile the TensorRT version, you need to install the TensorRT library. Note here: @@ -190,21 +216,12 @@ Note here: The following is the base library version matching relationship used by the PaddlePaddle release version for reference: -| | CUDA | CuDNN | NCCL2 | -| :----: | :-----: | :----------------------: | :----: | -| CUDA 8 | 8.0.61 | CuDNN 7.1.2 for CUDA 8.0 | 2.1.4 | -| CUDA 9 | 9.0.176 | CuDNN 7.3.1 for CUDA 9.0 | 2.2.12 | +| | CUDA | CuDNN | TensorRT | +| :----: | :-----: | :----------------------: | :----: | +| post9 | 9.0 | CuDNN 7.3.1 for CUDA 9.0 | | +| post10 | 10.0 | CuDNN 7.5.1 for CUDA 10.0| | +| trt | 10.1 | CuDNN 7.5.1 for CUDA 10.1| 6.0.1.5 | ### How to make the compiler detect the CuDNN library Download the corresponding CUDNN version from NVIDIA developer official website and decompressing it, add `-DCUDNN_ROOT` to cmake command, to specify the path of CUDNN. - -### How to make the compiler detect the nccl library - -After downloading the corresponding version of the nccl2 library from the NVIDIA developer official website and decompressing it, add the following environment variables (take nccl2.1.4 as an example): - -```shell -export C_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$C_INCLUDE_PATH -export CPLUS_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$CPLUS_INCLUDE_PATH -export LD_LIBRARY_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/lib/:$LD_LIBRARY_PATH -``` diff --git a/doc/COMPILE_CN.md b/doc/COMPILE_CN.md index 2ddaaf71f23b0199c7458d068139a6b7169c25d8..b3619d9a38e967a139f850e7a605f713b1a57f95 100644 --- a/doc/COMPILE_CN.md +++ b/doc/COMPILE_CN.md @@ -72,10 +72,12 @@ export PATH=$PATH:$GOPATH/bin ## 获取 Go packages ```shell -go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway -go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger -go get -u github.com/golang/protobuf/protoc-gen-go -go get -u google.golang.org/grpc +go env -w GO111MODULE=on +go env -w GOPROXY=https://goproxy.cn,direct +go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway@v1.15.2 +go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger@v1.15.2 +go get -u github.com/golang/protobuf/protoc-gen-go@v1.4.3 +go get -u google.golang.org/grpc@v1.33.0 ``` @@ -85,7 +87,10 @@ go get -u google.golang.org/grpc ``` shell mkdir server-build-cpu && cd server-build-cpu -cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON .. +cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ + -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ + -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ + -DSERVER=ON .. make -j10 ``` @@ -95,21 +100,44 @@ make -j10 ``` shell mkdir server-build-gpu && cd server-build-gpu -cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON -DWITH_GPU=ON .. +cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ + -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ + -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ + -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \ + -DCUDNN_LIBRARY=${CUDNN_LIBRARY} \ + -DSERVER=ON \ + -DWITH_GPU=ON .. make -j10 ``` -执行`make install`可以把目标产出放在`./output`目录下。 +### 集成TensorRT版本Paddle Inference Library -**注意:** 编译成功后,需要设置`SERVING_BIN`路径,详见后面的[注意事项](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE_CN.md#注意事项)。 +``` +mkdir server-build-trt && cd server-build-trt +cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ + -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ + -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ + -DTENSORRT_ROOT=${TENSORRT_LIBRARY_PATH} \ + -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \ + -DCUDNN_LIBRARY=${CUDNN_LIBRARY} \ + -DSERVER=ON \ + -DWITH_GPU=ON \ + -DWITH_TRT=ON .. +make -j10 +``` +执行`make install`可以把目标产出放在`./output`目录下。 +**注意:** 编译成功后,需要设置`SERVING_BIN`路径,详见后面的[注意事项](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE_CN.md#注意事项)。 ## 编译Client部分 ``` shell mkdir client-build && cd client-build -cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DCLIENT=ON .. +cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ + -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ + -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ + -DCLIENT=ON .. make -j10 ``` @@ -121,7 +149,11 @@ make -j10 ```bash mkdir app-build && cd app-build -cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DCMAKE_INSTALL_PREFIX=./output -DAPP=ON .. +cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ + -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ + -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ + -DCMAKE_INSTALL_PREFIX=./output \ + -DAPP=ON .. make ``` @@ -152,7 +184,10 @@ make | WITH_AVX | Compile Paddle Serving with AVX intrinsics | OFF | | WITH_MKL | Compile Paddle Serving with MKL support | OFF | | WITH_GPU | Compile Paddle Serving with NVIDIA GPU | OFF | -| CUDNN_ROOT | Define CuDNN library and header path | | +| WITH_TRT | Compile Paddle Serving with TensorRT | OFF | +| CUDNN_LIBRARY | Define CuDNN library and header path | | +| CUDA_TOOLKIT_ROOT_DIR | Define CUDA PATH | | +| TENSORRT_ROOT | Define TensorRT PATH | | | CLIENT | Compile Paddle Serving Client | OFF | | SERVER | Compile Paddle Serving Server | OFF | | APP | Compile Paddle Serving App package | OFF | @@ -167,7 +202,8 @@ Paddle Serving通过PaddlePaddle预测库支持在GPU上做预测。WITH_GPU选 - CUDA - CuDNN -- NCCL2 + +编译TensorRT版本,需要安装TensorRT库。 这里要注意的是: @@ -176,21 +212,12 @@ Paddle Serving通过PaddlePaddle预测库支持在GPU上做预测。WITH_GPU选 以下是PaddlePaddle发布版本所使用的基础库版本匹配关系,供参考: -| | CUDA | CuDNN | NCCL2 | -| :----: | :-----: | :----------------------: | :----: | -| CUDA 8 | 8.0.61 | CuDNN 7.1.2 for CUDA 8.0 | 2.1.4 | -| CUDA 9 | 9.0.176 | CuDNN 7.3.1 for CUDA 9.0 | 2.2.12 | +| | CUDA | CuDNN | TensorRT | +| :----: | :-----: | :----------------------: | :----: | +| post9 | 9.0 | CuDNN 7.3.1 for CUDA 9.0 | | +| post10 | 10.0 | CuDNN 7.5.1 for CUDA 10.0| | +| trt | 10.1 | CuDNN 7.5.1 for CUDA 10.1| 6.0.1.5 | ### 如何让Paddle Serving编译系统探测到CuDNN库 -从NVIDIA developer官网下载对应版本CuDNN并在本地解压后,在cmake编译命令中增加`-DCUDNN_ROOT`参数,指定CuDNN库所在路径。 - -### 如何让Paddle Serving编译系统探测到nccl库 - -从NVIDIA developer官网下载对应版本nccl2库并解压后,增加如下环境变量 (以nccl2.1.4为例): - -```shell -export C_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$C_INCLUDE_PATH -export CPLUS_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$CPLUS_INCLUDE_PATH -export LD_LIBRARY_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/lib/:$LD_LIBRARY_PATH -``` +从NVIDIA developer官网下载对应版本CuDNN并在本地解压后,在cmake编译命令中增加`-DCUDNN_LIBRARY`参数,指定CuDNN库所在路径。 diff --git a/doc/FAQ.md b/doc/FAQ.md index daf5cb8613d0754a966ce09f1a8f7dac5cfd7a78..5571269a25811e8d4badfa1785ff7a1e17e3daac 100644 --- a/doc/FAQ.md +++ b/doc/FAQ.md @@ -1,39 +1,118 @@ # FAQ -- Q: 如何调整RPC服务的等待时间,避免超时? - A: 使用set_rpc_timeout_ms设置更长的等待时间,单位为毫秒,默认时间为20秒。 - - 示例: - ``` - from paddle_serving_client import Client - client = Client() - client.load_client_config(sys.argv[1]) - client.set_rpc_timeout_ms(100000) - client.connect(["127.0.0.1:9393"]) - ``` +## 基础知识 -- Q: 如何使用自己编译的Paddle Serving进行预测? - A: 通过pip命令安装自己编译出的whl包,并设置SERVING_BIN环境变量为编译出的serving二进制文件路径。 -- Q: 执行GPU预测时遇到InvalidArgumentError: Device id must be less than GPU count, but received id is: 0. GPU count is: 0. +## 编译问题 - A: 将显卡驱动对应的libcuda.so的目录添加到LD_LIBRARY_PATH环境变量中 +#### Q: 如何使用自己编译的Paddle Serving进行预测? -- Q: 执行GPU预测时遇到ExternalError: Cudnn error, CUDNN_STATUS_BAD_PARAM at (/home/scmbuild/workspaces_cluster.dev/baidu.lib.paddlepaddle/baidu/lib/paddlepaddle/Paddle/paddle/fluid/operators/batch_norm_op.cu:198) +**A:** 通过pip命令安装自己编译出的whl包,并设置SERVING_BIN环境变量为编译出的serving二进制文件路径。 - A: 将cudnn的lib64路径添加到LD_LIBRARY_PATH,安装自pypi的Paddle Serving中post9版使用的是cudnn 7.3,post10使用的是cudnn 7.5。如果是使用自己编译的Paddle Serving,可以在log/serving.INFO日志文件中查看对应的cudnn版本。 -- Q: 执行GPU预测时遇到Error: Failed to find dynamic library: libcublas.so - A: 将cuda的lib64路径添加到LD_LIBRARY_PATH, post9版本的Paddle Serving使用的是cuda 9.0,post10版本使用的cuda 10.0。 +## 部署问题 -- Q: 部署和预测中的日志信息在哪里查看? +#### Q: GPU环境运行Serving报错,GPU count is: 0。 -- A: server端的日志分为两部分,一部分打印到标准输出,一部分打印到启动服务时的目录下的log/serving.INFO文件中。 +``` +terminate called after throwing an instance of 'paddle::platform::EnforceNotMet' +what(): +-------------------------------------------- +C++ Call Stacks (More useful to developers): +-------------------------------------------- +0 std::string paddle::platform::GetTraceBackString(std::string const&, char const*, int) +1 paddle::platform::SetDeviceId(int) +2 paddle::AnalysisConfig::fraction_of_gpu_memory_for_pool() const +3 std::unique_ptr > paddle::CreatePaddlePredictor(paddle::AnalysisConfig const&) +4 std::unique_ptr > paddle::CreatePaddlePredictor(paddle::AnalysisConfig const&) +---------------------- +Error Message Summary: +---------------------- +InvalidArgumentError: Device id must be less than GPU count, but received id is: 0. GPU count is: 0. +[Hint: Expected id < GetCUDADeviceCount(), but received id:0 >= GetCUDADeviceCount():0.] at (/home/scmbuild/workspaces_cluster.dev/baidu.lib.paddlepaddle/baidu/lib/paddlepaddle/Paddle/paddle/fluid/platform/gpu_info.cc:211) +``` - client端的日志直接打印到标准输出。 +**A:** libcuda.so没有链接成功。首先在机器上找到libcuda.so,ldd检查libnvidia版本与nvidia-smi中版本一致(libnvidia-fatbinaryloader.so.418.39,与NVIDIA-SMI 418.39 Driver Version: 418.39),然后用export导出libcuda.so的路径即可(例如libcuda.so在/usr/lib64/,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib64/) - 通过在部署服务之前 'export GLOG_v=3'可以输出更为详细的日志信息。 +#### Q: 遇到 GPU not found, please check your environment or use cpu version by "pip install paddle_serving_server" + +**A:** 检查环境中是否有N卡:ls /dev/ | grep nvidia + +#### Q: 目前Paddle Serving支持哪些镜像环境? + +**A:** 目前(0.4.0)仅支持CentOS,具体列表查阅[这里](https://github.com/PaddlePaddle/Serving/blob/develop/doc/DOCKER_IMAGES.md) + + + +## 预测问题 + +#### Q: 使用GPU第一次预测时特别慢,如何调整RPC服务的等待时间避免超时? + +**A:** GPU第一次预测需要初始化。使用set_rpc_timeout_ms设置更长的等待时间,单位为毫秒,默认时间为20秒。 + +示例: + +``` +from paddle_serving_client import Client + +client = Client() +client.load_client_config(sys.argv[1]) +client.set_rpc_timeout_ms(100000) +client.connect(["127.0.0.1:9393"]) +``` + +#### Q: 执行GPU预测时遇到InvalidArgumentError: Device id must be less than GPU count, but received id is: 0. GPU count is: 0. + +**A:** 将显卡驱动对应的libcuda.so的目录添加到LD_LIBRARY_PATH环境变量中 + +#### Q: 执行GPU预测时遇到ExternalError: Cudnn error, CUDNN_STATUS_BAD_PARAM at (../batch_norm_op.cu:198) + +**A:** 将cudnn的lib64路径添加到LD_LIBRARY_PATH,安装自pypi的Paddle Serving中post9版使用的是cudnn 7.3,post10使用的是cudnn 7.5。如果是使用自己编译的Paddle Serving,可以在log/serving.INFO日志文件中查看对应的cudnn版本。 + +#### Q: 执行GPU预测时遇到Error: Failed to find dynamic library: libcublas.so + +**A:** 将cuda的lib64路径添加到LD_LIBRARY_PATH, post9版本的Paddle Serving使用的是cuda 9.0,post10版本使用的cuda 10.0。 + +#### Q: Client端fetch的变量名如何设置 + +**A:** 可以查看配置文件serving_server_conf.prototxt,获取需要的变量名 + +#### Q: 如何使用多语言客户端 + +**A:** 多语言客户端要与多语言服务端配套使用。当前版本下(0.4.0),服务端需要将Server改为MultiLangServer(如果是以命令行启动的话只需要添加--use_multilang参数),Python客户端需要将Client改为MultiLangClient,同时去除load_client_config的过程。[Java客户端参考文档](https://github.com/PaddlePaddle/Serving/blob/develop/doc/JAVA_SDK_CN.md) + +#### Q: 如何在Windows下使用Paddle Serving + +**A:** 当前版本(0.4.0)在Windows上可以运行多语言RPC客户端,或使用HTTP方式访问。如果使用多语言RPC客户端,需要在Linux环境(比如本机容器,或远程Linux机器)中运行多语言服务端;如果使用HTTP方式,需要在Linux环境中运行普通服务端 + +#### Q: libnvinfer.so: cannot open shared object file: No such file or directory) + + **A:** 参考该文档安装TensorRT: https://blog.csdn.net/hesongzefairy/article/details/105343525 + + + +## 日志排查 + +#### Q: 部署和预测中的日志信息在哪里查看? + +**A:** server端的日志分为两部分,一部分打印到标准输出,一部分打印到启动服务时的目录下的log/serving.INFO文件中。 + +client端的日志直接打印到标准输出。 + +通过在部署服务之前 'export GLOG_v=3'可以输出更为详细的日志信息。 + +#### Q: (GLOG_v=2下)Server端日志一切正常,但Client端始终得不到正确的预测结果 + +**A:** 可能是配置文件有问题,检查下配置文件(is_load_tensor,fetch_type等有没有问题) + +#### Q: 如何给Server传递Logid + +**A:** Logid默认为0(后续应该有自动生成Logid的计划,当前版本0.4.0),Client端通过在predict函数中指定log_id参数传递 + + + +## 性能优化 diff --git a/doc/LATEST_PACKAGES.md b/doc/LATEST_PACKAGES.md index dca3d2357d9086f26c1ff99d72fbf3656d80fe47..dc72421ef5b1766955a67814b83071f591700f9c 100644 --- a/doc/LATEST_PACKAGES.md +++ b/doc/LATEST_PACKAGES.md @@ -18,6 +18,8 @@ https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server-0.0.0-py2-none-an https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server_gpu-0.0.0.post9-py3-none-any.whl #cuda 10.0 https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server_gpu-0.0.0.post10-py3-none-any.whl +#cuda10.1 with TensorRT 6 +https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server_gpu-0.0.0.trt-py3-none-any.whl ``` ### Python 2 ``` @@ -25,6 +27,8 @@ https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server_gpu-0.0.0.post10- https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server_gpu-0.0.0.post9-py2-none-any.whl #cuda 10.0 https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server_gpu-0.0.0.post10-py2-none-any.whl +##cuda10.1 with TensorRT 6 +https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server_gpu-0.0.0.trt-py2-none-any.whl ``` ## Client @@ -36,6 +40,10 @@ https://paddle-serving.bj.bcebos.com/whl/paddle_serving_client-0.0.0-cp37-none-a ``` https://paddle-serving.bj.bcebos.com/whl/paddle_serving_client-0.0.0-cp36-none-any.whl ``` +### Python 3.5 +``` +https://paddle-serving.bj.bcebos.com/whl/paddle_serving_client-0.0.0-cp35-none-any.whl +``` ### Python 2.7 ``` https://paddle-serving.bj.bcebos.com/whl/paddle_serving_client-0.0.0-cp27-none-any.whl diff --git a/java/README.md b/java/README.md new file mode 100644 index 0000000000000000000000000000000000000000..aac68283ae326923637804b879d93770374571ca --- /dev/null +++ b/java/README.md @@ -0,0 +1,26 @@ +## Java Demo + +### Install package +``` +mvn compile +mvn install +cd examples +mvn compile +mvn install +``` + +### Start Server + +take the fit_a_line demo as example + +``` + python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393 --use_multilang #CPU +python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9393 --use_multilang #GPU +``` + +### Client Predict +``` +java -cp paddle-serving-sdk-java-examples-0.0.1-jar-with-dependencies.jar PaddleServingClientExample fit_a_line +``` + +The Java example also contains the prediction client of Bert, Model_enaemble, asyn_predict, batch_predict, Cube_local, Cube_quant, and Yolov4 models. diff --git a/java/README_CN.md b/java/README_CN.md new file mode 100644 index 0000000000000000000000000000000000000000..a068e8ecf47842fa57e41808b66f0a4017148d50 --- /dev/null +++ b/java/README_CN.md @@ -0,0 +1,26 @@ +## Java 示例 + +### 安装客户端依赖 +``` +mvn compile +mvn install +cd examples +mvn compile +mvn install +``` + +### 启动服务端 + +以fit_a_line模型为例 + +``` + python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393 --use_multilang #CPU +python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9393 --use_multilang #GPU +``` + +### 客户端预测 +``` +java -cp paddle-serving-sdk-java-examples-0.0.1-jar-with-dependencies.jar PaddleServingClientExample fit_a_line +``` + +java示例中还包含了bert、model_enaemble、asyn_predict、batch_predict、cube_local、cube_quant、yolov4模型的预测客户端。 diff --git a/paddle_inference/inferencer-fluid-cpu/include/fluid_cpu_engine.h b/paddle_inference/inferencer-fluid-cpu/include/fluid_cpu_engine.h index f65711e04cf601e40f693b045adbaba0cf7ada71..a4d8dda71a7977185106bb1552cb8f39ef6bc50e 100644 --- a/paddle_inference/inferencer-fluid-cpu/include/fluid_cpu_engine.h +++ b/paddle_inference/inferencer-fluid-cpu/include/fluid_cpu_engine.h @@ -23,7 +23,6 @@ #include "core/configure/inferencer_configure.pb.h" #include "core/predictor/framework/infer.h" #include "paddle_inference_api.h" // NOLINT -//#include "predictor/framework/infer.h" namespace baidu { namespace paddle_serving { diff --git a/paddle_inference/inferencer-fluid-gpu/CMakeLists.txt b/paddle_inference/inferencer-fluid-gpu/CMakeLists.txt index 725da85b45ca1070badf5343f340e49dce6b936f..6ba3ddd6ba5d80f7b987b7c0dbbbebfdaaf37e46 100644 --- a/paddle_inference/inferencer-fluid-gpu/CMakeLists.txt +++ b/paddle_inference/inferencer-fluid-gpu/CMakeLists.txt @@ -2,6 +2,7 @@ FILE(GLOB fluid_gpu_engine_srcs ${CMAKE_CURRENT_LIST_DIR}/src/*.cpp) add_library(fluid_gpu_engine ${fluid_gpu_engine_srcs}) target_include_directories(fluid_gpu_engine PUBLIC ${CMAKE_BINARY_DIR}/Paddle/fluid_install_dir/) + add_dependencies(fluid_gpu_engine pdserving extern_paddle configure) target_link_libraries(fluid_gpu_engine pdserving paddle_fluid iomp5 mklml_intel -lpthread -lcrypto -lm -lrt -lssl -ldl -lz) diff --git a/paddle_inference/inferencer-fluid-gpu/include/fluid_gpu_engine.h b/paddle_inference/inferencer-fluid-gpu/include/fluid_gpu_engine.h index 2fc6ae587ff26f5f05ff9332f08067ab49d06254..3782c967823d07c23ba02e5ce0f388dc6b46e181 100644 --- a/paddle_inference/inferencer-fluid-gpu/include/fluid_gpu_engine.h +++ b/paddle_inference/inferencer-fluid-gpu/include/fluid_gpu_engine.h @@ -190,7 +190,7 @@ class FluidGpuAnalysisDirCore : public FluidFamilyCore { paddle::AnalysisConfig analysis_config; analysis_config.SetModel(data_path); - analysis_config.EnableUseGpu(100, FLAGS_gpuid); + analysis_config.EnableUseGpu(1500, FLAGS_gpuid); analysis_config.SwitchSpecifyInputNames(true); analysis_config.SetCpuMathLibraryNumThreads(1); @@ -198,12 +198,68 @@ class FluidGpuAnalysisDirCore : public FluidFamilyCore { analysis_config.EnableMemoryOptim(); } - if (params.enable_ir_optimization()) { - analysis_config.SwitchIrOptim(true); +#if 0 // todo: support flexible shape + + int min_seq_len = 1; + int max_seq_len = 512; + int opt_seq_len = 128; + int head_number = 12; + int batch = 50; + + std::vector min_in_shape = {batch, min_seq_len, 1}; + std::vector max_in_shape = {batch, max_seq_len, 1}; + std::vector opt_in_shape = {batch, opt_seq_len, 1}; + + std::string input1_name = "src_text_a_ids"; + std::string input2_name = "pos_text_a_ids"; + std::string input3_name = "sent_text_a_ids"; + std::string input4_name = "stack_0.tmp_0"; + + std::map> min_input_shape = { + {input1_name, min_in_shape}, + {input2_name, min_in_shape}, + {input3_name, min_in_shape}, + {input4_name, {batch, head_number, min_seq_len, min_seq_len}}, + }; + + std::map> max_input_shape = { + {input1_name, max_in_shape}, + {input2_name, max_in_shape}, + {input3_name, max_in_shape}, + {input4_name, {batch, head_number, max_seq_len, max_seq_len}}, + }; + std::map> opt_input_shape = { + {input1_name, opt_in_shape}, + {input2_name, opt_in_shape}, + {input3_name, opt_in_shape}, + {input4_name, {batch, head_number, opt_seq_len, opt_seq_len}}, + }; + + analysis_config.SetTRTDynamicShapeInfo( + min_input_shape, max_input_shape, opt_input_shape); +#endif + int max_batch = 32; + int min_subgraph_size = 3; + if (params.use_trt()) { + analysis_config.EnableTensorRtEngine( + 1 << 20, + max_batch, + min_subgraph_size, + paddle::AnalysisConfig::Precision::kFloat32, + false, + false); + LOG(INFO) << "create TensorRT predictor"; } else { - analysis_config.SwitchIrOptim(false); - } + if (params.enable_memory_optimization()) { + analysis_config.EnableMemoryOptim(); + } + if (params.enable_ir_optimization()) { + analysis_config.SwitchIrOptim(true); + } else { + analysis_config.SwitchIrOptim(false); + } + } AutoLock lock(GlobalPaddleCreateMutex::instance()); _core = paddle::CreatePaddlePredictor(analysis_config); diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index 4b20cb2001ebb595601f22fa6e4aab8dd5df18f4..23e0b6b507f53f1ab60a32854891b79b377638ce 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -80,6 +80,16 @@ if (SERVER) COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py bdist_wheel DEPENDS ${SERVING_SERVER_CORE} server_config_py_proto ${PY_FILES}) add_custom_target(paddle_python ALL DEPENDS ${PADDLE_SERVING_BINARY_DIR}/.timestamp) + elseif(WITH_TRT) + add_custom_command( + OUTPUT ${PADDLE_SERVING_BINARY_DIR}/.timestamp + COMMAND cp -r + ${CMAKE_CURRENT_SOURCE_DIR}/paddle_serving_server_gpu/ ${PADDLE_SERVING_BINARY_DIR}/python/ + COMMAND env ${py_env} ${PYTHON_EXECUTABLE} gen_version.py + "server_gpu" trt + COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py bdist_wheel + DEPENDS ${SERVING_SERVER_CORE} server_config_py_proto ${PY_FILES}) + add_custom_target(paddle_python ALL DEPENDS ${PADDLE_SERVING_BINARY_DIR}/.timestamp) else() add_custom_command( OUTPUT ${PADDLE_SERVING_BINARY_DIR}/.timestamp diff --git a/python/examples/bert/bert_client.py b/python/examples/bert/bert_client.py index 362ac67915870af9d11209520daa61daa95082c1..d0f8b0aad19b78e6235a3dd0403f20324b4681b4 100644 --- a/python/examples/bert/bert_client.py +++ b/python/examples/bert/bert_client.py @@ -18,16 +18,20 @@ import sys from paddle_serving_client import Client from paddle_serving_client.utils import benchmark_args from paddle_serving_app.reader import ChineseBertReader - +import numpy as np args = benchmark_args() reader = ChineseBertReader({"max_seq_len": 128}) fetch = ["pooled_output"] -endpoint_list = ["127.0.0.1:9292"] +endpoint_list = ['127.0.0.1:8861'] client = Client() client.load_client_config(args.model) client.connect(endpoint_list) for line in sys.stdin: feed_dict = reader.process(line) + for key in feed_dict.keys(): + feed_dict[key] = np.array(feed_dict[key]).reshape((128, 1)) + #print(feed_dict) result = client.predict(feed=feed_dict, fetch=fetch) +print(result) diff --git a/python/examples/bert/bert_web_service.py b/python/examples/bert/bert_web_service.py index b1898b2cc0ee690dd075958944a56fed27dce29a..e3985c9da6c90bb349cc76cba038abd3fe9359c5 100644 --- a/python/examples/bert/bert_web_service.py +++ b/python/examples/bert/bert_web_service.py @@ -13,10 +13,11 @@ # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing -from paddle_serving_server_gpu.web_service import WebService +from paddle_serving_server.web_service import WebService from paddle_serving_app.reader import ChineseBertReader import sys import os +import numpy as np class BertService(WebService): @@ -27,18 +28,20 @@ class BertService(WebService): }) def preprocess(self, feed=[], fetch=[]): - feed_res = [ - self.reader.process(ins["words"].encode("utf-8")) for ins in feed - ] + feed_res = [] + for ins in feed: + feed_dict = self.reader.process(ins["words"].encode("utf-8")) + for key in feed_dict.keys(): + feed_dict[key] = np.array(feed_dict[key]).reshape( + (1, len(feed_dict[key]), 1)) + feed_res.append(feed_dict) return feed_res, fetch bert_service = BertService(name="bert") bert_service.load() bert_service.load_model_config(sys.argv[1]) -gpu_ids = os.environ["CUDA_VISIBLE_DEVICES"] -bert_service.set_gpus(gpu_ids) bert_service.prepare_server( - workdir="workdir", port=int(sys.argv[2]), device="gpu") + workdir="workdir", port=int(sys.argv[2]), device="cpu") bert_service.run_rpc_service() bert_service.run_web_service() diff --git a/python/examples/bert/test_multi_fetch_client.py b/python/examples/bert/test_multi_fetch_client.py index c15c4d4deaf282c432ff0990ee03c6e80daeee74..1ee540097c32429348fbeb504278fb986bd3a9e7 100644 --- a/python/examples/bert/test_multi_fetch_client.py +++ b/python/examples/bert/test_multi_fetch_client.py @@ -15,6 +15,7 @@ from paddle_serving_client import Client from paddle_serving_app.reader import ChineseBertReader import sys +import numpy as np client = Client() client.load_client_config("./bert_seq32_client/serving_client_conf.prototxt") @@ -28,12 +29,21 @@ expected_shape = { "pooled_output": (4, 768) } batch_size = 4 -feed_batch = [] +feed_batch = {} +batch_len = 0 for line in sys.stdin: feed = reader.process(line) + if batch_len == 0: + for key in feed.keys(): + val_len = len(feed[key]) + feed_batch[key] = np.array(feed[key]).reshape((1, val_len, 1)) + continue if len(feed_batch) < batch_size: - feed_batch.append(feed) + for key in feed.keys(): + np.concatenate([ + feed_batch[key], np.array(feed[key]).reshape((1, val_len, 1)) + ]) else: fetch_map = client.predict(feed=feed_batch, fetch=fetch) feed_batch = [] diff --git a/python/examples/criteo_ctr/test_client.py b/python/examples/criteo_ctr/test_client.py index 2beac850228291c49d56c1180365fdd8e627ffc0..ecb2fc376c0d3a8c7174c9f2ab093b25c8ac4791 100644 --- a/python/examples/criteo_ctr/test_client.py +++ b/python/examples/criteo_ctr/test_client.py @@ -20,7 +20,7 @@ import os import time import criteo_reader as criteo from paddle_serving_client.metric import auc - +import numpy as np import sys py_version = sys.version_info[0] @@ -49,7 +49,8 @@ for ei in range(1000): data = reader().__next__() feed_dict = {} for i in range(1, 27): - feed_dict["sparse_{}".format(i - 1)] = data[0][i] + feed_dict["sparse_{}".format(i - 1)] = np.array(data[0][i]).reshape(-1) + feed_dict["sparse_{}.lod".format(i - 1)] = [0, len(data[0][i])] fetch_map = client.predict(feed=feed_dict, fetch=["prob"]) end = time.time() print(end - start) diff --git a/python/examples/criteo_ctr_with_cube/test_client.py b/python/examples/criteo_ctr_with_cube/test_client.py index 8518db55572196e470da014a02797ae9e200c988..853b8fb5e793d7daeff4703f32c57cb57a9c279c 100755 --- a/python/examples/criteo_ctr_with_cube/test_client.py +++ b/python/examples/criteo_ctr_with_cube/test_client.py @@ -19,6 +19,7 @@ import os import criteo as criteo import time from paddle_serving_client.metric import auc +import numpy as np py_version = sys.version_info[0] @@ -41,10 +42,15 @@ for ei in range(10000): else: data = reader().__next__() feed_dict = {} - feed_dict['dense_input'] = data[0][0] + feed_dict['dense_input'] = np.array(data[0][0]).astype("float32").reshape( + 1, 13) + feed_dict['dense_input.lod'] = [0, 1] for i in range(1, 27): - feed_dict["embedding_{}.tmp_0".format(i - 1)] = data[0][i] - fetch_map = client.predict(feed=feed_dict, fetch=["prob"]) + tmp_data = np.array(data[0][i]).astype(np.int64) + feed_dict["embedding_{}.tmp_0".format(i - 1)] = tmp_data.reshape( + (1, len(data[0][i]))) + feed_dict["embedding_{}.tmp_0.lod".format(i - 1)] = [0, 1] + fetch_map = client.predict(feed=feed_dict, fetch=["prob"], batch=True) prob_list.append(fetch_map['prob'][0][1]) label_list.append(data[0][-1][0]) diff --git a/python/examples/faster_rcnn_model/test_client.py b/python/examples/faster_rcnn_model/test_client.py index ce577a3c4396d33af33e45694a573f8b1cbcb52b..98a1c8f4df087a71891d2a3c89e8fca64f701854 100755 --- a/python/examples/faster_rcnn_model/test_client.py +++ b/python/examples/faster_rcnn_model/test_client.py @@ -36,6 +36,7 @@ fetch_map = client.predict( "im_info": np.array(list(im.shape[1:]) + [1.0]), "im_shape": np.array(list(im.shape[1:]) + [1.0]) }, - fetch=["multiclass_nms"]) + fetch=["multiclass_nms"], + batch=False) fetch_map["image"] = sys.argv[3] postprocess(fetch_map) diff --git a/python/examples/fit_a_line/test_client.py b/python/examples/fit_a_line/test_client.py index 442ed230bc3d75c9ec3b5eac160b3a53ac31cd83..41a037decb6109337bebda4927eba4ea46121b87 100644 --- a/python/examples/fit_a_line/test_client.py +++ b/python/examples/fit_a_line/test_client.py @@ -27,5 +27,10 @@ test_reader = paddle.batch( batch_size=1) for data in test_reader(): - fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["price"]) + import numpy as np + new_data = np.zeros((1, 1, 13)).astype("float32") + new_data[0] = data[0][0] + fetch_map = client.predict( + feed={"x": new_data}, fetch=["price"], batch=True) print("{} {}".format(fetch_map["price"][0], data[0][1][0])) + print(fetch_map) diff --git a/python/examples/fit_a_line/test_multi_process_client.py b/python/examples/fit_a_line/test_multi_process_client.py index 5272d095df5e74f25ce0e36ca22c8d6d1884f5f0..e6120266097f8fdd446998741582a9e396cd2efd 100644 --- a/python/examples/fit_a_line/test_multi_process_client.py +++ b/python/examples/fit_a_line/test_multi_process_client.py @@ -15,6 +15,7 @@ from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner import paddle +import numpy as np def single_func(idx, resource): @@ -26,6 +27,7 @@ def single_func(idx, resource): 0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332 ] + x = np.array(x) for i in range(1000): fetch_map = client.predict(feed={"x": x}, fetch=["price"]) if fetch_map is None: diff --git a/python/examples/imagenet/resnet50_web_service.py b/python/examples/imagenet/resnet50_web_service.py index d38dcc0ffc1952193803575c7eb612c4f0bbad28..4c9822757ce233498ef9ec2baf5f3fcac7bc1ccb 100644 --- a/python/examples/imagenet/resnet50_web_service.py +++ b/python/examples/imagenet/resnet50_web_service.py @@ -13,6 +13,7 @@ # limitations under the License. import sys from paddle_serving_client import Client + from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage if len(sys.argv) != 4: @@ -47,7 +48,7 @@ class ImageService(WebService): if "image" not in ins: raise ("feed data error!") img = self.seq(ins["image"]) - feed_batch.append({"image": img}) + feed_batch.append({"image": img[np.newaxis, :]}) return feed_batch, fetch def postprocess(self, feed=[], fetch=[], fetch_map={}): diff --git a/python/examples/imdb/benchmark.py b/python/examples/imdb/benchmark.py index d226efbfbc5317db81039bc6a778498cdf853854..d804731162b9fe1bf376867322941fdf31ea50b0 100644 --- a/python/examples/imdb/benchmark.py +++ b/python/examples/imdb/benchmark.py @@ -17,6 +17,7 @@ import os import sys import time import requests +import numpy as np from paddle_serving_app.reader import IMDBDataset from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner @@ -47,11 +48,17 @@ def single_func(idx, resource): for i in range(1000): if args.batch_size >= 1: feed_batch = [] + feed = {"words": [], "words.lod": [0]} for bi in range(args.batch_size): word_ids, label = imdb_dataset.get_words_and_label(dataset[ bi]) - feed_batch.append({"words": word_ids}) - result = client.predict(feed=feed_batch, fetch=["prediction"]) + feed["words.lod"].append(feed["words.lod"][-1] + len( + word_ids)) + feed["words"].extend(word_ids) + feed["words"] = np.array(feed["words"]).reshape( + len(feed["words"]), 1) + result = client.predict( + feed=feed, fetch=["prediction"], batch=True) if result is None: raise ("predict failed.") else: diff --git a/python/examples/imdb/test_client.py b/python/examples/imdb/test_client.py index b903a59983fb0df87adfa4fa38b7eb2b80fb4ebb..c057fdb631340174cc6d3fe9d1873767ba0ece78 100644 --- a/python/examples/imdb/test_client.py +++ b/python/examples/imdb/test_client.py @@ -15,6 +15,7 @@ from paddle_serving_client import Client from paddle_serving_app.reader import IMDBDataset import sys +import numpy as np client = Client() client.load_client_config(sys.argv[1]) @@ -28,7 +29,12 @@ imdb_dataset.load_resource(sys.argv[2]) for line in sys.stdin: word_ids, label = imdb_dataset.get_words_and_label(line) - feed = {"words": word_ids} + word_len = len(word_ids) + feed = { + "words": np.array(word_ids).reshape(word_len, 1), + "words.lod": [0, word_len] + } + #print(feed) fetch = ["prediction"] - fetch_map = client.predict(feed=feed, fetch=fetch) + fetch_map = client.predict(feed=feed, fetch=fetch, batch=True) print("{} {}".format(fetch_map["prediction"][0], label[0])) diff --git a/python/examples/imdb/text_classify_service.py b/python/examples/imdb/text_classify_service.py index fe6ab0319deb0de5875781cf0890aa39a45c2415..7b1f200e152da37c57cc8b2f7cd233531e5dd445 100755 --- a/python/examples/imdb/text_classify_service.py +++ b/python/examples/imdb/text_classify_service.py @@ -16,6 +16,7 @@ from paddle_serving_server.web_service import WebService from paddle_serving_app.reader import IMDBDataset import sys +import numpy as np class IMDBService(WebService): @@ -26,10 +27,15 @@ class IMDBService(WebService): self.dataset.load_resource(args["dict_file_path"]) def preprocess(self, feed={}, fetch=[]): - res_feed = [{ - "words": self.dataset.get_words_only(ins["words"]) - } for ins in feed] - return res_feed, fetch + feed_batch = [] + words_lod = [0] + for ins in feed: + words = self.dataset.get_words_only(ins["words"]) + words = np.array(words).reshape(len(words), 1) + words_lod.append(words_lod[-1] + len(words)) + feed_batch.append(words) + feed = {"words": np.concatenate(feed_batch), "words.lod": words_lod} + return feed, fetch imdb_service = IMDBService(name="imdb") diff --git a/python/examples/lac/lac_client.py b/python/examples/lac/lac_client.py index 22f3c511dcd2540365623ef9428b60cfcb5e5a34..568b08d8b3af86fd7aa7b20660aeb4acbf060e04 100644 --- a/python/examples/lac/lac_client.py +++ b/python/examples/lac/lac_client.py @@ -19,6 +19,7 @@ from paddle_serving_app.reader import LACReader import sys import os import io +import numpy as np client = Client() client.load_client_config(sys.argv[1]) @@ -31,7 +32,17 @@ for line in sys.stdin: feed_data = reader.process(line) if len(feed_data) <= 0: continue - fetch_map = client.predict(feed={"words": feed_data}, fetch=["crf_decode"]) + print(feed_data) + #fetch_map = client.predict(feed={"words": np.array(feed_data).reshape(len(feed_data), 1), "words.lod": [0, len(feed_data)]}, fetch=["crf_decode"], batch=True) + fetch_map = client.predict( + feed={ + "words": np.array(feed_data + feed_data).reshape( + len(feed_data) * 2, 1), + "words.lod": [0, len(feed_data), 2 * len(feed_data)] + }, + fetch=["crf_decode"], + batch=True) + print(fetch_map) begin = fetch_map['crf_decode.lod'][0] end = fetch_map['crf_decode.lod'][1] segs = reader.parse_result(line, fetch_map["crf_decode"][begin:end]) diff --git a/python/examples/ocr/README.md b/python/examples/ocr/README.md index a0fc9f60160506183076233f33face1732a278c7..680376a07ae462f567b31234cbe7651405c08048 100644 --- a/python/examples/ocr/README.md +++ b/python/examples/ocr/README.md @@ -34,9 +34,9 @@ python ocr_web_server.py gpu ``` python ocr_web_client.py ``` -If you want a faster web service, please try Web Debugger Service +If you want a faster web service, please try Web LocalPredictor Service -## Web Debugger Service +## Web LocalPredictor Service ``` #choose one of cpu/gpu commands as following #for cpu user @@ -45,7 +45,7 @@ python ocr_debugger_server.py cpu python ocr_debugger_server.py gpu ``` -## Web Debugger Client Prediction +## Web LocalPredictor Client Prediction ``` python ocr_web_client.py ``` @@ -61,7 +61,7 @@ Dataset: RCTW 500 sample images | engine | client read image(ms) | client-server tras time(ms) | server read image(ms) | det pre(ms) | det infer(ms) | det post(ms) | rec pre(ms) | rec infer(ms) | rec post(ms) | server-client trans time(ms) | server side time consumption(ms) | server side overhead(ms) | total time(ms) | |------------------------------|----------------|----------------------------|------------------|--------------------|------------------|--------------------|--------------------|------------------|--------------------|--------------------------|--------------------|--------------|---------------| | Serving web service | 8.69 | 13.41 | 109.97 | 2.82 | 87.76 | 4.29 | 3.98 | 78.51 | 3.66 | 4.12 | 181.02 | 136.49 | 317.51 | -| Serving Debugger web service | 8.73 | 16.42 | 115.27 | 2.93 | 20.63 | 3.97 | 4.48 | 13.84 | 3.60 | 6.91 | 49.45 | 147.33 | 196.78 | +| Serving LocalPredictor web service | 8.73 | 16.42 | 115.27 | 2.93 | 20.63 | 3.97 | 4.48 | 13.84 | 3.60 | 6.91 | 49.45 | 147.33 | 196.78 | ## Appendix: For Users who want to launch Det or Rec only if you are going to detect images not recognize it or directly recognize the words from images. We also provide Det and Rec server for you. diff --git a/python/examples/ocr/README_CN.md b/python/examples/ocr/README_CN.md index 8bdc45cf8e390b378708fbee2dbfe318132aea44..52663bfd3c4e5fae77e5f03c2954268038c80833 100644 --- a/python/examples/ocr/README_CN.md +++ b/python/examples/ocr/README_CN.md @@ -34,8 +34,8 @@ python ocr_web_server.py gpu python ocr_web_client.py ``` -如果用户需要更快的执行速度,请尝试Debugger版Web服务 -## 启动Debugger版Web服务 +如果用户需要更快的执行速度,请尝试LocalPredictor版Web服务 +## 启动LocalPredictor版Web服务 ``` #根据CPU/GPU设备选择一种启动方式 #for cpu user @@ -60,7 +60,7 @@ GPU: Nvidia Tesla V100单卡 | engine | 客户端读图(ms) | 客户端发送请求到服务端(ms) | 服务端读图(ms) | 检测预处理耗时(ms) | 检测模型耗时(ms) | 检测后处理耗时(ms) | 识别预处理耗时(ms) | 识别模型耗时(ms) | 识别后处理耗时(ms) | 服务端回传客户端时间(ms) | 服务端整体耗时(ms) | 空跑耗时(ms) | 整体耗时(ms) | |------------------------------|----------------|----------------------------|------------------|--------------------|------------------|--------------------|--------------------|------------------|--------------------|--------------------------|--------------------|--------------|---------------| | Serving web service | 8.69 | 13.41 | 109.97 | 2.82 | 87.76 | 4.29 | 3.98 | 78.51 | 3.66 | 4.12 | 181.02 | 136.49 | 317.51 | -| Serving Debugger web service | 8.73 | 16.42 | 115.27 | 2.93 | 20.63 | 3.97 | 4.48 | 13.84 | 3.60 | 6.91 | 49.45 | 147.33 | 196.78 | +| Serving LocalPredictor web service | 8.73 | 16.42 | 115.27 | 2.93 | 20.63 | 3.97 | 4.48 | 13.84 | 3.60 | 6.91 | 49.45 | 147.33 | 196.78 | ## 附录: 检测/识别单服务启动 diff --git a/python/examples/ocr/ocr_debugger_server.py b/python/examples/ocr/ocr_debugger_server.py index f7458c3036734e4bb6e554097029270e11912a3a..3cbc3a66ef620f5c8851b50a352a0c1587467b3b 100644 --- a/python/examples/ocr/ocr_debugger_server.py +++ b/python/examples/ocr/ocr_debugger_server.py @@ -26,7 +26,7 @@ if sys.argv[1] == 'gpu': from paddle_serving_server_gpu.web_service import WebService elif sys.argv[1] == 'cpu': from paddle_serving_server.web_service import WebService -from paddle_serving_app.local_predict import Debugger +from paddle_serving_app.local_predict import LocalPredictor import time import re import base64 @@ -39,7 +39,7 @@ class OCRService(WebService): Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose( (2, 0, 1)) ]) - self.det_client = Debugger() + self.det_client = LocalPredictor() if sys.argv[1] == 'gpu': self.det_client.load_model_config( det_model_config, gpu=True, profile=False) diff --git a/python/examples/pipeline/imdb_model_ensemble/config.yml b/python/examples/pipeline/imdb_model_ensemble/config.yml index 3447ffd449de59ea76450e95c7f355413d1a12ac..0853033fdccc643c459e19e2e0a573c3091ba9a9 100644 --- a/python/examples/pipeline/imdb_model_ensemble/config.yml +++ b/python/examples/pipeline/imdb_model_ensemble/config.yml @@ -1,11 +1,22 @@ -rpc_port: 18085 +rpc_port: 18080 worker_num: 4 build_dag_each_worker: false -http_port: 9999 dag: - is_thread_op: false - client_type: brpc + is_thread_op: true retry: 1 use_profile: false - tracer: - interval_s: 10 +op: + bow: + concurrency: 2 + remote_service_conf: + client_type: brpc + model_config: imdb_bow_model + devices: "" + rpc_port : 9393 + cnn: + concurrency: 2 + remote_service_conf: + client_type: brpc + model_config: imdb_cnn_model + devices: "" + rpc_port : 9292 diff --git a/python/examples/pipeline/ocr/config.yml b/python/examples/pipeline/ocr/config.yml index 48addccfd0e543e04adf6587c5532b2a18bb2810..3b1fb357a1243c9e1fc201791a36e0a744acfe57 100644 --- a/python/examples/pipeline/ocr/config.yml +++ b/python/examples/pipeline/ocr/config.yml @@ -4,19 +4,20 @@ build_dag_each_worker: false http_port: 9999 dag: is_thread_op: false - client_type: brpc retry: 1 use_profile: false op: det: concurrency: 2 local_service_conf: + client_type: local_predictor model_config: ocr_det_model - devices: "0" + devices: "" rec: concurrency: 1 timeout: -1 retry: 1 local_service_conf: + client_type: local_predictor model_config: ocr_rec_model - devices: "0" + devices: "" diff --git a/python/examples/pipeline/ocr/web_service.py b/python/examples/pipeline/ocr/web_service.py index d1e6ec808343d62cc7c85b2d78ac1caa57c8cf28..c678cfaf0a3bbc44e23734d416fe8b72783d5880 100644 --- a/python/examples/pipeline/ocr/web_service.py +++ b/python/examples/pipeline/ocr/web_service.py @@ -12,7 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. try: - from paddle_serving_server_gpu.web_service import WebService, Op + from paddle_serving_server.web_service import WebService, Op except ImportError: from paddle_serving_server.web_service import WebService, Op import logging @@ -52,7 +52,7 @@ class DetOp(Op): self.ori_h, self.ori_w, _ = self.im.shape det_img = self.det_preprocess(self.im) _, self.new_h, self.new_w = det_img.shape - return {"image": det_img} + return {"image": det_img[np.newaxis, :]} def postprocess(self, input_dicts, fetch_dict): det_out = fetch_dict["concat_1.tmp_0"] @@ -62,6 +62,7 @@ class DetOp(Op): dt_boxes_list = self.post_func(det_out, [ratio_list]) dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w]) out_dict = {"dt_boxes": dt_boxes, "image": self.im} + print("out dict", out_dict) return out_dict @@ -85,11 +86,14 @@ class RecOp(Op): h, w = boximg.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) - for img in img_list: + _, w, h = self.ocr_reader.resize_norm_img(img_list[0], + max_wh_ratio).shape + imgs = np.zeros((len(img_list), 3, w, h)).astype('float32') + for id, img in enumerate(img_list): norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio) - feed = {"image": norm_img} - feed_list.append(feed) - return feed_list + imgs[id] = norm_img + feed = {"image": imgs.copy()} + return feed def postprocess(self, input_dicts, fetch_dict): rec_res = self.ocr_reader.postprocess(fetch_dict, with_score=True) @@ -108,5 +112,5 @@ class OcrService(WebService): uci_service = OcrService(name="ocr") -uci_service.prepare_pipeline_config("config.yml") +uci_service.prepare_pipeline_config("brpc_config.yml") uci_service.run_service() diff --git a/python/examples/pipeline/simple_web_service/web_service.py b/python/examples/pipeline/simple_web_service/web_service.py index 28197e804ffc08d094d0e33d3d2654ace3093ded..b27a9d092f40c7affd7b2ebe4277c1762b79775f 100644 --- a/python/examples/pipeline/simple_web_service/web_service.py +++ b/python/examples/pipeline/simple_web_service/web_service.py @@ -31,7 +31,8 @@ class UciOp(Op): x_value = input_dict["x"] if isinstance(x_value, (str, unicode)): input_dict["x"] = np.array( - [float(x.strip()) for x in x_value.split(self.separator)]) + [float(x.strip()) + for x in x_value.split(self.separator)]).reshape(1, 13) return input_dict def postprocess(self, input_dicts, fetch_dict): diff --git a/python/examples/resnet_v2_50/resnet50_debug.py b/python/examples/resnet_v2_50/resnet50_debug.py index 768893c20bc3f6bfcb6e21f446d053391825c5fa..6919b4903686817cdfbb89932396e6db28552ab3 100644 --- a/python/examples/resnet_v2_50/resnet50_debug.py +++ b/python/examples/resnet_v2_50/resnet50_debug.py @@ -14,10 +14,10 @@ from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize -from paddle_serving_app.local_predict import Debugger +from paddle_serving_app.local_predict import LocalPredictor import sys -debugger = Debugger() +debugger = LocalPredictor() debugger.load_model_config(sys.argv[1], gpu=True) seq = Sequential([ diff --git a/python/examples/senta/senta_web_service.py b/python/examples/senta/senta_web_service.py index 25c880ef8877aed0f3f9d394d1780855130f365b..477064f3988a1c8152f77ce7fe068eb0a2181198 100644 --- a/python/examples/senta/senta_web_service.py +++ b/python/examples/senta/senta_web_service.py @@ -18,7 +18,7 @@ from paddle_serving_client import Client from paddle_serving_app.reader import LACReader, SentaReader import os import sys - +import numpy as np #senta_web_service.py from paddle_serving_server.web_service import WebService from paddle_serving_client import Client @@ -36,26 +36,42 @@ class SentaService(WebService): #定义senta模型预测服务的预处理,调用顺序:lac reader->lac模型预测->预测结果后处理->senta reader def preprocess(self, feed=[], fetch=[]): - feed_data = [{ - "words": self.lac_reader.process(x["words"]) - } for x in feed] - lac_result = self.lac_client.predict( - feed=feed_data, fetch=["crf_decode"]) feed_batch = [] + words_lod = [0] + for ins in feed: + if "words" not in ins: + raise ("feed data error!") + feed_data = self.lac_reader.process(ins["words"]) + words_lod.append(words_lod[-1] + len(feed_data)) + feed_batch.append(np.array(feed_data).reshape(len(feed_data), 1)) + words = np.concatenate(feed_batch, axis=0) + + lac_result = self.lac_client.predict( + feed={"words": words, + "words.lod": words_lod}, + fetch=["crf_decode"], + batch=True) result_lod = lac_result["crf_decode.lod"] + feed_batch = [] + words_lod = [0] for i in range(len(feed)): segs = self.lac_reader.parse_result( feed[i]["words"], lac_result["crf_decode"][result_lod[i]:result_lod[i + 1]]) feed_data = self.senta_reader.process(segs) - feed_batch.append({"words": feed_data}) - return feed_batch, fetch + feed_batch.append(np.array(feed_data).reshape(len(feed_data), 1)) + words_lod.append(words_lod[-1] + len(feed_data)) + return { + "words": np.concatenate(feed_batch), + "words.lod": words_lod + }, fetch senta_service = SentaService(name="senta") senta_service.load_model_config("senta_bilstm_model") senta_service.prepare_server(workdir="workdir") senta_service.init_lac_client( - lac_port=9300, lac_client_config="lac_model/serving_server_conf.prototxt") + lac_port=9300, + lac_client_config="lac/lac_model/serving_server_conf.prototxt") senta_service.run_rpc_service() senta_service.run_web_service() diff --git a/python/examples/yolov4/test_client.py b/python/examples/yolov4/test_client.py index 2616e55766192fca676e58efc4f0a2a3d634f1d3..dfcd58610c3b8df1a1579350c6bb756119cf6940 100644 --- a/python/examples/yolov4/test_client.py +++ b/python/examples/yolov4/test_client.py @@ -35,6 +35,7 @@ fetch_map = client.predict( "image": im, "im_size": np.array(list(im.shape[1:])), }, - fetch=["save_infer_model/scale_0.tmp_0"]) + fetch=["save_infer_model/scale_0.tmp_0"], + batch=False) fetch_map["image"] = sys.argv[1] postprocess(fetch_map) diff --git a/python/paddle_serving_app/README.md b/python/paddle_serving_app/README.md index cb48ae376086ec4021af617337e43934dd5e5f6e..648d830d674d7bc71dc472182a9b017bf063932e 100644 --- a/python/paddle_serving_app/README.md +++ b/python/paddle_serving_app/README.md @@ -160,10 +160,10 @@ Therefore, a local prediction tool is built into the paddle_serving_app, which i Taking [fit_a_line prediction service](../examples/fit_a_line) as an example, the following code can be used to run local prediction. ```python -from paddle_serving_app.local_predict import Debugger +from paddle_serving_app.local_predict import LocalPredictor import numpy as np -debugger = Debugger() +debugger = LocalPredictor() debugger.load_model_config("./uci_housing_model", gpu=False) data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332] diff --git a/python/paddle_serving_app/README_CN.md b/python/paddle_serving_app/README_CN.md index 181037c55a2aae578cb189525030ccba87146f6e..fec648d84092902819bd59400a3df71a733021bf 100644 --- a/python/paddle_serving_app/README_CN.md +++ b/python/paddle_serving_app/README_CN.md @@ -147,10 +147,10 @@ Paddle Serving框架的server预测op使用了Paddle 的预测框架,在部署 以[fit_a_line预测服务](../examples/fit_a_line)为例,使用以下代码即可执行本地预测。 ```python -from paddle_serving_app.local_predict import Debugger +from paddle_serving_app.local_predict import LocalPredictor import numpy as np -debugger = Debugger() +debugger = LocalPredictor() debugger.load_model_config("./uci_housing_model", gpu=False) data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332] diff --git a/python/paddle_serving_app/local_predict.py b/python/paddle_serving_app/local_predict.py index afe6d474b5382a2fe74f95adf2fed34faa28937b..c4885806d24abb0ace29718c128157e21f823297 100644 --- a/python/paddle_serving_app/local_predict.py +++ b/python/paddle_serving_app/local_predict.py @@ -31,7 +31,7 @@ logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) -class Debugger(object): +class LocalPredictor(object): def __init__(self): self.feed_names_ = [] self.fetch_names_ = [] @@ -76,7 +76,7 @@ class Debugger(object): config.switch_use_feed_fetch_ops(False) self.predictor = create_paddle_predictor(config) - def predict(self, feed=None, fetch=None): + def predict(self, feed=None, fetch=None, batch=False, log_id=0): if feed is None or fetch is None: raise ValueError("You should specify feed and fetch for prediction") fetch_list = [] @@ -121,10 +121,19 @@ class Debugger(object): name]) if self.feed_types_[name] == 0: feed[name] = feed[name].astype("int64") - else: + elif self.feed_types_[name] == 1: feed[name] = feed[name].astype("float32") + elif self.feed_types_[name] == 2: + feed[name] = feed[name].astype("int32") + else: + raise ValueError("local predictor receives wrong data type") input_tensor = self.predictor.get_input_tensor(name) - input_tensor.copy_from_cpu(feed[name]) + if "{}.lod".format(name) in feed: + input_tensor.set_lod([feed["{}.lod".format(name)]]) + if batch == False: + input_tensor.copy_from_cpu(feed[name][np.newaxis, :]) + else: + input_tensor.copy_from_cpu(feed[name]) output_tensors = [] output_names = self.predictor.get_output_names() for output_name in output_names: @@ -139,5 +148,6 @@ class Debugger(object): for i, name in enumerate(fetch): fetch_map[name] = outputs[i] if len(output_tensors[i].lod()) > 0: - fetch_map[name + ".lod"] = output_tensors[i].lod()[0] + fetch_map[name + ".lod"] = np.array(output_tensors[i].lod()[ + 0]).astype('int32') return fetch_map diff --git a/python/paddle_serving_client/__init__.py b/python/paddle_serving_client/__init__.py index 1af7f754ec61ca2e91292034c1d4f6aca1414520..6f3908fd6445854f7c398d6b228112b99898028d 100644 --- a/python/paddle_serving_client/__init__.py +++ b/python/paddle_serving_client/__init__.py @@ -233,7 +233,12 @@ class Client(object): # key)) pass - def predict(self, feed=None, fetch=None, need_variant_tag=False, log_id=0): + def predict(self, + feed=None, + fetch=None, + batch=False, + need_variant_tag=False, + log_id=0): self.profile_.record('py_prepro_0') if feed is None or fetch is None: @@ -260,7 +265,10 @@ class Client(object): int_feed_names = [] float_feed_names = [] int_shape = [] + int_lod_slot_batch = [] + float_lod_slot_batch = [] float_shape = [] + fetch_names = [] counter = 0 batch_size = len(feed_batch) @@ -277,31 +285,56 @@ class Client(object): for i, feed_i in enumerate(feed_batch): int_slot = [] float_slot = [] + int_lod_slot = [] + float_lod_slot = [] for key in feed_i: - if key not in self.feed_names_: + if ".lod" not in key and key not in self.feed_names_: raise ValueError("Wrong feed name: {}.".format(key)) + if ".lod" in key: + continue #if not isinstance(feed_i[key], np.ndarray): self.shape_check(feed_i, key) if self.feed_types_[key] in int_type: if i == 0: int_feed_names.append(key) + shape_lst = [] + if batch == False: + feed_i[key] = feed_i[key][np.newaxis, :] if isinstance(feed_i[key], np.ndarray): - int_shape.append(list(feed_i[key].shape)) + shape_lst.extend(list(feed_i[key].shape)) + int_shape.append(shape_lst) else: int_shape.append(self.feed_shapes_[key]) + if "{}.lod".format(key) in feed_i: + int_lod_slot_batch.append(feed_i["{}.lod".format( + key)]) + else: + int_lod_slot_batch.append([]) + if isinstance(feed_i[key], np.ndarray): int_slot.append(feed_i[key]) self.has_numpy_input = True else: int_slot.append(feed_i[key]) self.all_numpy_input = False + elif self.feed_types_[key] in float_type: if i == 0: float_feed_names.append(key) + shape_lst = [] + if batch == False: + feed_i[key] = feed_i[key][np.newaxis, :] if isinstance(feed_i[key], np.ndarray): - float_shape.append(list(feed_i[key].shape)) + shape_lst.extend(list(feed_i[key].shape)) + float_shape.append(shape_lst) else: float_shape.append(self.feed_shapes_[key]) + if "{}.lod".format(key) in feed_i: + float_lod_slot_batch.append(feed_i["{}.lod".format( + key)]) + else: + float_lod_slot_batch.append([]) + if isinstance(feed_i[key], np.ndarray): float_slot.append(feed_i[key]) self.has_numpy_input = True @@ -310,6 +343,8 @@ class Client(object): self.all_numpy_input = False int_slot_batch.append(int_slot) float_slot_batch.append(float_slot) + int_lod_slot_batch.append(int_lod_slot) + float_lod_slot_batch.append(float_lod_slot) self.profile_.record('py_prepro_1') self.profile_.record('py_client_infer_0') @@ -317,14 +352,13 @@ class Client(object): result_batch_handle = self.predictorres_constructor() if self.all_numpy_input: res = self.client_handle_.numpy_predict( - float_slot_batch, float_feed_names, float_shape, int_slot_batch, - int_feed_names, int_shape, fetch_names, result_batch_handle, - self.pid, log_id) + float_slot_batch, float_feed_names, float_shape, + float_lod_slot_batch, int_slot_batch, int_feed_names, int_shape, + int_lod_slot_batch, fetch_names, result_batch_handle, self.pid, + log_id) elif self.has_numpy_input == False: - res = self.client_handle_.batch_predict( - float_slot_batch, float_feed_names, float_shape, int_slot_batch, - int_feed_names, int_shape, fetch_names, result_batch_handle, - self.pid, log_id) + raise ValueError( + "Please make sure all of your inputs are numpy array") else: raise ValueError( "Please make sure the inputs are all in list type or all in numpy.array type" @@ -354,8 +388,9 @@ class Client(object): name)) result_map[name].shape = shape if name in self.lod_tensor_set: - result_map["{}.lod".format( - name)] = result_batch_handle.get_lod(mi, name) + tmp_lod = result_batch_handle.get_lod(mi, name) + if np.size(tmp_lod) > 0: + result_map["{}.lod".format(name)] = tmp_lod elif self.fetch_names_to_type_[name] == float32_type: result_map[name] = result_batch_handle.get_float_by_name( mi, name) @@ -367,9 +402,9 @@ class Client(object): shape = result_batch_handle.get_shape(mi, name) result_map[name].shape = shape if name in self.lod_tensor_set: - result_map["{}.lod".format( - name)] = result_batch_handle.get_lod(mi, name) - + tmp_lod = result_batch_handle.get_lod(mi, name) + if np.size(tmp_lod) > 0: + result_map["{}.lod".format(name)] = tmp_lod elif self.fetch_names_to_type_[name] == int32_type: # result_map[name] will be py::array(numpy array) result_map[name] = result_batch_handle.get_int32_by_name( @@ -382,8 +417,9 @@ class Client(object): shape = result_batch_handle.get_shape(mi, name) result_map[name].shape = shape if name in self.lod_tensor_set: - result_map["{}.lod".format( - name)] = result_batch_handle.get_lod(mi, name) + tmp_lod = result_batch_handle.get_lod(mi, name) + if np.size(tmp_lod) > 0: + result_map["{}.lod".format(name)] = tmp_lod multi_result_map.append(result_map) ret = None if len(model_engine_names) == 1: diff --git a/python/paddle_serving_client/io/__init__.py b/python/paddle_serving_client/io/__init__.py index 69e185be3d2e4d1a579a29d30b59341bfb8666ed..2071e0d1da9e0c12cc431f2d86cfa9d71c79218f 100644 --- a/python/paddle_serving_client/io/__init__.py +++ b/python/paddle_serving_client/io/__init__.py @@ -74,7 +74,8 @@ def save_model(server_model_folder, fetch_var = model_conf.FetchVar() fetch_var.alias_name = key fetch_var.name = fetch_var_dict[key].name - fetch_var.is_lod_tensor = fetch_var_dict[key].lod_level >= 1 + #fetch_var.is_lod_tensor = fetch_var_dict[key].lod_level >= 1 + fetch_var.is_lod_tensor = 1 if fetch_var_dict[key].dtype == core.VarDesc.VarType.INT64: fetch_var.fetch_type = 0 if fetch_var_dict[key].dtype == core.VarDesc.VarType.FP32: diff --git a/python/paddle_serving_server/__init__.py b/python/paddle_serving_server/__init__.py index 76694bc5bb864f4c21ff3b9c2cfd07761c5adbea..ad64e9787857f7b05054007055113824abb1e471 100644 --- a/python/paddle_serving_server/__init__.py +++ b/python/paddle_serving_server/__init__.py @@ -584,7 +584,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc. else: raise Exception("error type.") tensor.shape.extend(list(model_result[name].shape)) - if name in self.lod_tensor_set_: + if "{}.lod".format(name) in model_result: tensor.lod.extend(model_result["{}.lod".format(name)] .tolist()) inst.tensor_array.append(tensor) diff --git a/python/paddle_serving_server/web_service.py b/python/paddle_serving_server/web_service.py index 9430da83ef1b3add9b79d305f03d2aef195028a6..12098ebdf35648f60fd931149d83d907c049dd7d 100644 --- a/python/paddle_serving_server/web_service.py +++ b/python/paddle_serving_server/web_service.py @@ -118,7 +118,7 @@ class WebService(object): del feed["fetch"] if len(feed) == 0: raise ValueError("empty input") - fetch_map = self.client.predict(feed=feed, fetch=fetch) + fetch_map = self.client.predict(feed=feed, fetch=fetch, batch=True) result = self.postprocess( feed=request.json["feed"], fetch=fetch, fetch_map=fetch_map) result = {"result": result} @@ -171,8 +171,8 @@ class WebService(object): self.app_instance = app_instance def _launch_local_predictor(self): - from paddle_serving_app.local_predict import Debugger - self.client = Debugger() + from paddle_serving_app.local_predict import LocalPredictor + self.client = LocalPredictor() self.client.load_model_config( "{}".format(self.model_config), gpu=False, profile=False) diff --git a/python/paddle_serving_server_gpu/__init__.py b/python/paddle_serving_server_gpu/__init__.py index 042027066df7a094dca784722345937608ac4099..c7e36aede5dc87141b286eeb589c46663a24ebd1 100644 --- a/python/paddle_serving_server_gpu/__init__.py +++ b/python/paddle_serving_server_gpu/__init__.py @@ -73,6 +73,8 @@ def serve_args(): default=False, action="store_true", help="Use Multi-language-service") + parser.add_argument( + "--use_trt", default=False, action="store_true", help="Use TensorRT") parser.add_argument( "--product_name", type=str, @@ -205,6 +207,7 @@ class Server(object): self.cur_path = os.getcwd() self.use_local_bin = False self.gpuid = 0 + self.use_trt = False self.model_config_paths = None # for multi-model in a workflow self.product_name = None self.container_id = None @@ -271,6 +274,9 @@ class Server(object): def set_gpuid(self, gpuid=0): self.gpuid = gpuid + def set_trt(self): + self.use_trt = True + def _prepare_engine(self, model_config_paths, device): if self.model_toolkit_conf == None: self.model_toolkit_conf = server_sdk.ModelToolkitConf() @@ -290,6 +296,7 @@ class Server(object): engine.enable_ir_optimization = self.ir_optimization engine.static_optimization = False engine.force_update_static_cache = False + engine.use_trt = self.use_trt if device == "cpu": engine.type = "FLUID_CPU_ANALYSIS_DIR" @@ -396,7 +403,10 @@ class Server(object): for line in version_file.readlines(): if re.match("cuda_version", line): cuda_version = line.split("\"")[1] - device_version = "serving-gpu-cuda" + cuda_version + "-" + if cuda_version != "trt": + device_version = "serving-gpu-cuda" + cuda_version + "-" + else: + device_version = "serving-gpu-" + cuda_version + "-" folder_name = device_version + serving_server_version tar_name = folder_name + ".tar.gz" @@ -645,7 +655,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc. else: raise Exception("error type.") tensor.shape.extend(list(model_result[name].shape)) - if name in self.lod_tensor_set_: + if "{}.lod".format(name) in model_result: tensor.lod.extend(model_result["{}.lod".format(name)] .tolist()) inst.tensor_array.append(tensor) diff --git a/python/paddle_serving_server_gpu/serve.py b/python/paddle_serving_server_gpu/serve.py index 9755b188aa2ddee57c9875610b1bee6ac2b8eb2d..c2b170fbeb3f9ee772e86c216fe3776f34187743 100644 --- a/python/paddle_serving_server_gpu/serve.py +++ b/python/paddle_serving_server_gpu/serve.py @@ -64,6 +64,8 @@ def start_gpu_card_model(index, gpuid, args): # pylint: disable=doc-string-miss server.set_memory_optimize(mem_optim) server.set_ir_optimize(ir_optim) server.set_max_body_size(max_body_size) + if args.use_trt: + server.set_trt() if args.product_name != None: server.set_product_name(args.product_name) diff --git a/python/paddle_serving_server_gpu/web_service.py b/python/paddle_serving_server_gpu/web_service.py index ea72f1869f1c0b84a088221a9770366e7432879d..d6bfa2274deea6d53b4ef78e633f3e0c25f48622 100644 --- a/python/paddle_serving_server_gpu/web_service.py +++ b/python/paddle_serving_server_gpu/web_service.py @@ -232,8 +232,8 @@ class WebService(object): self.app_instance = app_instance def _launch_local_predictor(self, gpu): - from paddle_serving_app.local_predict import Debugger - self.client = Debugger() + from paddle_serving_app.local_predict import LocalPredictor + self.client = LocalPredictor() self.client.load_model_config( "{}".format(self.model_config), gpu=gpu, profile=False) diff --git a/python/pipeline/__init__.py b/python/pipeline/__init__.py index 7718016c9989a3b7348c3389c86495537786abb8..71bbce63768755dca8dcd810e0b62413012e58da 100644 --- a/python/pipeline/__init__.py +++ b/python/pipeline/__init__.py @@ -15,5 +15,5 @@ from . import logger # this module must be the first to import from .operator import Op, RequestOp, ResponseOp from .pipeline_server import PipelineServer from .pipeline_client import PipelineClient -from .local_rpc_service_handler import LocalRpcServiceHandler +from .local_service_handler import LocalServiceHandler from .analyse import Analyst diff --git a/python/pipeline/dag.py b/python/pipeline/dag.py index 272071f3211ed6029e5ba757da5ee2c780681ac2..26d9d8772af2f40175d7fbb6135b05c78e9d6948 100644 --- a/python/pipeline/dag.py +++ b/python/pipeline/dag.py @@ -43,7 +43,6 @@ class DAGExecutor(object): dag_conf = server_conf["dag"] self._retry = dag_conf["retry"] - client_type = dag_conf["client_type"] self._server_use_profile = dag_conf["use_profile"] channel_size = dag_conf["channel_size"] self._is_thread_op = dag_conf["is_thread_op"] @@ -61,8 +60,8 @@ class DAGExecutor(object): self._is_thread_op, tracer_interval_s, server_worker_num) self._dag = DAG(self.name, response_op, self._server_use_profile, - self._is_thread_op, client_type, channel_size, - build_dag_each_worker, self._tracer) + self._is_thread_op, channel_size, build_dag_each_worker, + self._tracer) (in_channel, out_channel, pack_rpc_func, unpack_rpc_func) = self._dag.build() self._dag.start() @@ -324,13 +323,12 @@ class DAGExecutor(object): class DAG(object): def __init__(self, request_name, response_op, use_profile, is_thread_op, - client_type, channel_size, build_dag_each_worker, tracer): + channel_size, build_dag_each_worker, tracer): self._request_name = request_name self._response_op = response_op self._use_profile = use_profile self._is_thread_op = is_thread_op self._channel_size = channel_size - self._client_type = client_type self._build_dag_each_worker = build_dag_each_worker self._tracer = tracer if not self._is_thread_op: @@ -570,11 +568,9 @@ class DAG(object): op.use_profiler(self._use_profile) op.set_tracer(self._tracer) if self._is_thread_op: - self._threads_or_proces.extend( - op.start_with_thread(self._client_type)) + self._threads_or_proces.extend(op.start_with_thread()) else: - self._threads_or_proces.extend( - op.start_with_process(self._client_type)) + self._threads_or_proces.extend(op.start_with_process()) _LOGGER.info("[DAG] start") # not join yet @@ -582,7 +578,8 @@ class DAG(object): def join(self): for x in self._threads_or_proces: - x.join() + if x is not None: + x.join() def stop(self): for chl in self._channels: diff --git a/python/pipeline/gateway/proxy_server.go b/python/pipeline/gateway/proxy_server.go index a74e798463b58efe26ab027c649a07131d4bbf32..cadc1567bca60de13970d7dd03481ec103226f47 100644 --- a/python/pipeline/gateway/proxy_server.go +++ b/python/pipeline/gateway/proxy_server.go @@ -25,7 +25,7 @@ import ( "github.com/grpc-ecosystem/grpc-gateway/runtime" "google.golang.org/grpc" - gw "./proto" + gw "serving-gateway/proto" ) //export run_proxy_server diff --git a/python/pipeline/local_rpc_service_handler.py b/python/pipeline/local_service_handler.py similarity index 99% rename from python/pipeline/local_rpc_service_handler.py rename to python/pipeline/local_service_handler.py index 376fcaf13af4e5a51ccf3ee6a1bd06a474a33bbd..bbc12303e3f1868a4b17dc12b2e861bd612b0061 100644 --- a/python/pipeline/local_rpc_service_handler.py +++ b/python/pipeline/local_service_handler.py @@ -27,7 +27,7 @@ _LOGGER = logging.getLogger(__name__) _workdir_name_gen = util.NameGenerator("workdir_") -class LocalRpcServiceHandler(object): +class LocalServiceHandler(object): def __init__(self, model_config, workdir="", diff --git a/python/pipeline/operator.py b/python/pipeline/operator.py index 3b928b9cbab28904e6225d88e229e9a0d2da4f56..38ac85b6e289d1e660f901f7680c356994530dd7 100644 --- a/python/pipeline/operator.py +++ b/python/pipeline/operator.py @@ -38,7 +38,7 @@ from .channel import (ThreadChannel, ProcessChannel, ChannelDataEcode, ChannelTimeoutError) from .util import NameGenerator from .profiler import UnsafeTimeProfiler as TimeProfiler -from . import local_rpc_service_handler +from . import local_service_handler _LOGGER = logging.getLogger(__name__) _op_name_gen = NameGenerator("Op") @@ -56,7 +56,7 @@ class Op(object): retry=None, batch_size=None, auto_batching_timeout=None, - local_rpc_service_handler=None): + local_service_handler=None): # In __init__, all the parameters are just saved and Op is not initialized if name is None: name = _op_name_gen.next() @@ -64,7 +64,7 @@ class Op(object): self.concurrency = concurrency # amount of concurrency self.set_input_ops(input_ops) - self._local_rpc_service_handler = local_rpc_service_handler + self._local_service_handler = local_service_handler self._server_endpoints = server_endpoints self._fetch_names = fetch_list self._client_config = client_config @@ -123,49 +123,65 @@ class Op(object): self.with_serving = True self._server_endpoints = server_endpoints else: - if self._local_rpc_service_handler is None: + if self._local_service_handler is None: local_service_conf = conf.get("local_service_conf") _LOGGER.info("local_service_conf: {}".format( local_service_conf)) model_config = local_service_conf.get("model_config") + self.client_type = local_service_conf.get("client_type") _LOGGER.info("model_config: {}".format(model_config)) if model_config is None: self.with_serving = False else: # local rpc service self.with_serving = True - service_handler = local_rpc_service_handler.LocalRpcServiceHandler( - model_config=model_config, - workdir=local_service_conf["workdir"], - thread_num=local_service_conf["thread_num"], - devices=local_service_conf["devices"], - mem_optim=local_service_conf["mem_optim"], - ir_optim=local_service_conf["ir_optim"]) - service_handler.prepare_server() # get fetch_list - serivce_ports = service_handler.get_port_list() - self._server_endpoints = [ - "127.0.0.1:{}".format(p) for p in serivce_ports - ] - if self._client_config is None: - self._client_config = service_handler.get_client_config( - ) - if self._fetch_names is None: - self._fetch_names = service_handler.get_fetch_list() - self._local_rpc_service_handler = service_handler + if self.client_type == "brpc" or self.client_type == "grpc": + service_handler = local_service_handler.LocalServiceHandler( + model_config=model_config, + workdir=local_service_conf["workdir"], + thread_num=local_service_conf["thread_num"], + devices=local_service_conf["devices"], + mem_optim=local_service_conf["mem_optim"], + ir_optim=local_service_conf["ir_optim"]) + service_handler.prepare_server() # get fetch_list + serivce_ports = service_handler.get_port_list() + self._server_endpoints = [ + "127.0.0.1:{}".format(p) for p in serivce_ports + ] + if self._client_config is None: + self._client_config = service_handler.get_client_config( + ) + if self._fetch_names is None: + self._fetch_names = service_handler.get_fetch_list( + ) + elif self.client_type == "local_predictor": + service_handler = local_service_handler.LocalPredictorServiceHandler( + model_config=model_config, + workdir=local_service_conf["workdir"], + thread_num=local_service_conf["thread_num"], + devices=local_service_conf["devices"]) + service_handler.prepare_server() # get fetch_list + self.local_predictor = service_handler.get_client() + if self._client_config is None: + self._client_config = service_handler.get_client_config( + ) + if self._fetch_names is None: + self._fetch_names = service_handler.get_fetch_list( + ) + self._local_service_handler = service_handler else: self.with_serving = True - self._local_rpc_service_handler.prepare_server( + self._local_service_handler.prepare_server( ) # get fetch_list - serivce_ports = self._local_rpc_service_handler.get_port_list( - ) + serivce_ports = self._local_service_handler.get_port_list() self._server_endpoints = [ "127.0.0.1:{}".format(p) for p in serivce_ports ] if self._client_config is None: - self._client_config = self._local_rpc_service_handler.get_client_config( + self._client_config = self._local_service_handler.get_client_config( ) if self._fetch_names is None: - self._fetch_names = self._local_rpc_service_handler.get_fetch_list( + self._fetch_names = self._local_service_handler.get_fetch_list( ) else: self.with_serving = True @@ -188,13 +204,13 @@ class Op(object): self._batch_size, self._auto_batching_timeout))) def launch_local_rpc_service(self): - if self._local_rpc_service_handler is None: + if self._local_service_handler is None: _LOGGER.warning( self._log("Failed to launch local rpc" - " service: local_rpc_service_handler is None.")) + " service: local_service_handler is None.")) return - port = self._local_rpc_service_handler.get_port_list() - self._local_rpc_service_handler.start_server() + port = self._local_service_handler.get_port_list() + self._local_service_handler.start_server() _LOGGER.info("Op({}) use local rpc service at port: {}" .format(self.name, port)) @@ -215,22 +231,25 @@ class Op(object): def set_tracer(self, tracer): self._tracer = tracer - def init_client(self, client_type, client_config, server_endpoints, - fetch_names): + def init_client(self, client_config, server_endpoints): if self.with_serving == False: _LOGGER.info("Op({}) has no client (and it also do not " "run the process function)".format(self.name)) return None - if client_type == 'brpc': + if self.client_type == 'brpc': client = Client() client.load_client_config(client_config) - elif client_type == 'grpc': + elif self.client_type == 'grpc': client = MultiLangClient() + elif self.client_type == 'local_predictor': + if self.local_predictor is None: + raise ValueError("local predictor not yet created") + client = self.local_predictor else: raise ValueError("Failed to init client: unknow client " - "type {}".format(client_type)) - client.connect(server_endpoints) - self._fetch_names = fetch_names + "type {}".format(self.client_type)) + if self.client_type != "local_predictor": + client.connect(server_endpoints) return client def get_input_ops(self): @@ -291,15 +310,25 @@ class Op(object): (_, input_dict), = input_dicts.items() return input_dict - def process(self, feed_batch, typical_logid): + def process(self, feed_batch, fetch_names, typical_logid): err, err_info = ChannelData.check_batch_npdata(feed_batch) if err != 0: _LOGGER.critical( self._log("Failed to run process: {}. Please override " "preprocess func.".format(err_info))) os._exit(-1) - call_result = self.client.predict( - feed=feed_batch, fetch=self._fetch_names, log_id=typical_logid) + if self.client_type == "local_predictor": + call_result = self.client.predict( + feed=feed_batch[0], + fetch=fetch_names, + batch=True, + log_id=typical_logid) + else: + call_result = self.client.predict( + feed=feed_batch, + fetch=fetch_names, + batch=True, + log_id=typical_logid) if isinstance(self.client, MultiLangClient): if call_result is None or call_result["serving_status_code"] != 0: return None @@ -347,23 +376,22 @@ class Op(object): for channel in channels: channel.push(data, name) - def start_with_process(self, client_type): + def start_with_process(self): trace_buffer = None if self._tracer is not None: trace_buffer = self._tracer.data_buffer() - proces = [] + process = [] for concurrency_idx in range(self.concurrency): p = multiprocessing.Process( target=self._run, args=(concurrency_idx, self._get_input_channel(), - self._get_output_channels(), client_type, False, - trace_buffer)) + self._get_output_channels(), False, trace_buffer)) p.daemon = True p.start() - proces.append(p) - return proces + process.append(p) + return process - def start_with_thread(self, client_type): + def start_with_thread(self): trace_buffer = None if self._tracer is not None: trace_buffer = self._tracer.data_buffer() @@ -372,8 +400,7 @@ class Op(object): t = threading.Thread( target=self._run, args=(concurrency_idx, self._get_input_channel(), - self._get_output_channels(), client_type, True, - trace_buffer)) + self._get_output_channels(), True, trace_buffer)) # When a process exits, it attempts to terminate # all of its daemonic child processes. t.daemon = True @@ -652,7 +679,7 @@ class Op(object): return parsed_data_dict, need_profile_dict, profile_dict - def _run(self, concurrency_idx, input_channel, output_channels, client_type, + def _run(self, concurrency_idx, input_channel, output_channels, is_thread_op, trace_buffer): op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx) tid = threading.current_thread().ident @@ -660,8 +687,7 @@ class Op(object): # init op profiler = None try: - profiler = self._initialize(is_thread_op, client_type, - concurrency_idx) + profiler = self._initialize(is_thread_op, concurrency_idx) except Exception as e: _LOGGER.critical( "{} Failed to init op: {}".format(op_info_prefix, e), @@ -801,16 +827,15 @@ class Op(object): except Queue.Full: break - def _initialize(self, is_thread_op, client_type, concurrency_idx): + def _initialize(self, is_thread_op, concurrency_idx): if is_thread_op: with self._for_init_op_lock: if not self._succ_init_op: # for the threaded version of Op, each thread cannot get its concurrency_idx self.concurrency_idx = None # init client - self.client = self.init_client( - client_type, self._client_config, - self._server_endpoints, self._fetch_names) + self.client = self.init_client(self._client_config, + self._server_endpoints) # user defined self.init_op() self._succ_init_op = True @@ -818,9 +843,8 @@ class Op(object): else: self.concurrency_idx = concurrency_idx # init client - self.client = self.init_client(client_type, self._client_config, - self._server_endpoints, - self._fetch_names) + self.client = self.init_client(self._client_config, + self._server_endpoints) # user defined self.init_op() diff --git a/python/setup.py.client.in b/python/setup.py.client.in index bcedc41599399762b4b838b6d89eb7adaef23800..527cbbde93b2c2ed0730d8e9c24ec31b9b4ca627 100644 --- a/python/setup.py.client.in +++ b/python/setup.py.client.in @@ -28,17 +28,11 @@ import util py_version = sys.version_info def copy_lib(): - if py_version[0] == 2: - lib_list = ['libpython2.7.so.1.0', 'libssl.so.10', 'libcrypto.so.10'] - elif py_version[1] == 6: - lib_list = ['libpython3.6m.so.1.0', 'libssl.so.10', 'libcrypto.so.10'] - elif py_version[1] == 7: - lib_list = ['libpython3.7m.so.1.0', 'libssl.so.10', 'libcrypto.so.10'] os.popen('mkdir -p paddle_serving_client/lib') + lib_list = ['${OPENSSL_CRYPTO_LIBRARY}', '${OPENSSL_SSL_LIBRARY}', + '${PYTHON_LIBRARY}'] for lib in lib_list: - r = os.popen('whereis {}'.format(lib)) - text = r.read() - os.popen('cp {} ./paddle_serving_client/lib'.format(text.strip().split(' ')[1])) + os.popen('cp {} ./paddle_serving_client/lib'.format(lib)) max_version, mid_version, min_version = util.python_version() @@ -53,9 +47,6 @@ REQUIRED_PACKAGES = [ 'grpcio-tools >= 1.28.1' ] -if not util.find_package("paddlepaddle") and not util.find_package("paddlepaddle-gpu"): - REQUIRED_PACKAGES.append("paddlepaddle") - packages=['paddle_serving_client', 'paddle_serving_client.proto', diff --git a/python/setup.py.server.in b/python/setup.py.server.in index 6733f1a4788818c530e3be0719686cea54cace49..b602f129253e8f9d55ac17175e387f2232182766 100644 --- a/python/setup.py.server.in +++ b/python/setup.py.server.in @@ -29,7 +29,7 @@ util.gen_pipeline_code("paddle_serving_server") REQUIRED_PACKAGES = [ 'six >= 1.10.0', 'protobuf >= 3.11.0', 'grpcio >= 1.28.1', 'grpcio-tools >= 1.28.1', - 'paddle_serving_client', 'flask >= 1.1.1', 'paddle_serving_app' + 'paddle_serving_client', 'flask >= 1.1.1', 'paddle_serving_app', 'func_timeout', 'pyyaml' ] packages=['paddle_serving_server', diff --git a/python/setup.py.server_gpu.in b/python/setup.py.server_gpu.in index 523615b8e782c29ebdedadc54a9473a0b672aac0..1303e0404eb9b557dbfb6232ef391aa89c97747a 100644 --- a/python/setup.py.server_gpu.in +++ b/python/setup.py.server_gpu.in @@ -19,17 +19,19 @@ from __future__ import print_function from setuptools import setup, Distribution, Extension from setuptools import find_packages from setuptools import setup -from paddle_serving_server_gpu.version import serving_server_version +from paddle_serving_server_gpu.version import serving_server_version, cuda_version import util -max_version, mid_version, min_version = util.python_version() +if cuda_version != "trt": + cuda_version = "post" + cuda_version +max_version, mid_version, min_version = util.python_version() # gen pipeline proto code util.gen_pipeline_code("paddle_serving_server_gpu") REQUIRED_PACKAGES = [ 'six >= 1.10.0', 'protobuf >= 3.11.0', 'grpcio >= 1.28.1', 'grpcio-tools >= 1.28.1', - 'paddle_serving_client', 'flask >= 1.1.1', 'paddle_serving_app' + 'paddle_serving_client', 'flask >= 1.1.1', 'paddle_serving_app', 'func_timeout', 'pyyaml' ] packages=['paddle_serving_server_gpu', @@ -56,7 +58,7 @@ package_data={'paddle_serving_server_gpu': ['pipeline/gateway/libproxy_server.so setup( name='paddle-serving-server-gpu', - version=serving_server_version.replace('-', '') + '.post@CUDA_VERSION_MAJOR@', + version=serving_server_version.replace('-', '') + "." + cuda_version, description= ('Paddle Serving Package for saved model with PaddlePaddle'), url='https://github.com/PaddlePaddle/Serving', diff --git a/python/util.py b/python/util.py index 0ae68c1ed53766cb7f4f623e3a5f4fb50f7eb095..32dc2993077d1a73b880620549d924b54c1c3bf8 100644 --- a/python/util.py +++ b/python/util.py @@ -44,8 +44,8 @@ def gen_pipeline_code(package_name): ret = os.system( "cd {}/pipeline/gateway/proto/ && " "../../../../../third_party/install/protobuf/bin/protoc -I. " - "-I$GOPATH/src " - "-I$GOPATH/src/github.com/grpc-ecosystem/grpc-gateway/third_party/googleapis " + "-I$GOPATH/pkg/mod " + "-I$GOPATH/pkg/mod/github.com/grpc-ecosystem/grpc-gateway\@v1.15.2/third_party/googleapis " "--go_out=plugins=grpc:. " "gateway.proto".format(package_name)) if ret != 0: @@ -54,14 +54,18 @@ def gen_pipeline_code(package_name): ret = os.system( "cd {}/pipeline/gateway/proto/ && " "../../../../../third_party/install/protobuf/bin/protoc -I. " - "-I$GOPATH/src " - "-I$GOPATH/src/github.com/grpc-ecosystem/grpc-gateway/third_party/googleapis " + "-I$GOPATH/pkg/mod " + "-I$GOPATH/pkg/mod/github.com/grpc-ecosystem/grpc-gateway\@v1.15.2/third_party/googleapis " "--grpc-gateway_out=logtostderr=true:. " "gateway.proto".format(package_name)) if ret != 0: exit(1) # pipeline grpc-gateway shared-lib + ret = os.system("cd {}/pipeline/gateway/ && go mod init serving-gateway". + format(package_name)) + ret = os.system("cd {}/pipeline/gateway/ && go mod vendor && go mod tidy". + format(package_name)) ret = os.system( "cd {}/pipeline/gateway && " "go build -buildmode=c-shared -o libproxy_server.so proxy_server.go". diff --git a/tools/Dockerfile.centos6.cuda9.0-cudnn7.devel b/tools/Dockerfile.centos6.cuda9.0-cudnn7.devel index b4af571c19cec131800dd871b558c00d601b2f5e..d871e4e97f6e0201cb8d533ba9ca8e89664c7a18 100644 --- a/tools/Dockerfile.centos6.cuda9.0-cudnn7.devel +++ b/tools/Dockerfile.centos6.cuda9.0-cudnn7.devel @@ -41,6 +41,12 @@ RUN yum -y install wget && \ echo 'export LD_LIBRARY_PATH=/usr/local/python3.6/lib:$LD_LIBRARY_PATH' >> /root/.bashrc && \ source /root/.bashrc && \ cd .. && rm -rf Python-3.6.8* && \ + wget https://github.com/protocolbuffers/protobuf/releases/download/v3.11.2/protobuf-all-3.11.2.tar.gz && \ + tar zxf protobuf-all-3.11.2.tar.gz && \ + cd protobuf-3.11.2 && \ + ./configure && make -j4 && make install && \ + make clean && \ + cd .. && rm -rf protobuf-* &&\ yum -y install epel-release && yum -y install patchelf libXext libSM libXrender && \ yum clean all && \ echo "export LANG=en_US.utf8" >> /root/.bashrc && \ diff --git a/tools/Dockerfile.centos6.devel b/tools/Dockerfile.centos6.devel index 6dfc304cb281f5bb7c7d60a0b38354118c893f39..add3d9245ce3763d5f4ab9e8619a80bf058386c3 100644 --- a/tools/Dockerfile.centos6.devel +++ b/tools/Dockerfile.centos6.devel @@ -41,6 +41,12 @@ RUN yum -y install wget && \ echo 'export LD_LIBRARY_PATH=/usr/local/python3.6/lib:$LD_LIBRARY_PATH' >> /root/.bashrc && \ source /root/.bashrc && \ cd .. && rm -rf Python-3.6.8* && \ + wget https://github.com/protocolbuffers/protobuf/releases/download/v3.11.2/protobuf-all-3.11.2.tar.gz && \ + tar zxf protobuf-all-3.11.2.tar.gz && \ + cd protobuf-3.11.2 && \ + ./configure && make -j4 && make install && \ + make clean && \ + cd .. && rm -rf protobuf-* && \ yum -y install epel-release && yum -y install patchelf libXext libSM libXrender && \ yum clean all && \ localedef -c -i en_US -f UTF-8 en_US.UTF-8 && \ diff --git a/tools/Dockerfile.ci b/tools/Dockerfile.ci index 0eb695d301f6b45c73d3f3b4af018bd2c83860ac..390d67eb955e1fe8d51faa27c06351f38b2d7462 100644 --- a/tools/Dockerfile.ci +++ b/tools/Dockerfile.ci @@ -34,6 +34,13 @@ RUN wget http://nixos.org/releases/patchelf/patchelf-0.10/patchelf-0.10.tar.bz2 && cd .. \ && rm -rf patchelf-0.10* +RUN wget https://github.com/protocolbuffers/protobuf/releases/download/v3.11.2/protobuf-all-3.11.2.tar.gz && \ + tar zxf protobuf-all-3.11.2.tar.gz && \ + cd protobuf-3.11.2 && \ + ./configure && make -j4 && make install && \ + make clean && \ + cd .. && rm -rf protobuf-* + RUN yum install -y python3 python3-devel RUN yum -y update >/dev/null \ diff --git a/tools/Dockerfile.cuda10.0-cudnn7.devel b/tools/Dockerfile.cuda10.0-cudnn7.devel index d65e1e256c8772101a51fcc58ab525aff9f182a1..c633c593ca5ad13a14b7ebee5edca3caf9882d9f 100644 --- a/tools/Dockerfile.cuda10.0-cudnn7.devel +++ b/tools/Dockerfile.cuda10.0-cudnn7.devel @@ -5,7 +5,14 @@ RUN yum -y install wget >/dev/null \ && yum -y install git openssl-devel curl-devel bzip2-devel python-devel \ && yum -y install libSM-1.2.2-2.el7.x86_64 --setopt=protected_multilib=false \ && yum -y install libXrender-0.9.10-1.el7.x86_64 --setopt=protected_multilib=false \ - && yum -y install libXext-1.3.3-3.el7.x86_64 --setopt=protected_multilib=false + && yum -y install libXext-1.3.3-3.el7.x86_64 --setopt=protected_multilib=false + +RUN wget https://github.com/protocolbuffers/protobuf/releases/download/v3.11.2/protobuf-all-3.11.2.tar.gz && \ + tar zxf protobuf-all-3.11.2.tar.gz && \ + cd protobuf-3.11.2 && \ + ./configure && make -j4 && make install && \ + make clean && \ + cd .. && rm -rf protobuf-* RUN wget https://cmake.org/files/v3.2/cmake-3.2.0-Linux-x86_64.tar.gz >/dev/null \ && tar xzf cmake-3.2.0-Linux-x86_64.tar.gz \ @@ -32,3 +39,5 @@ RUN yum install -y python3 python3-devel \ RUN localedef -c -i en_US -f UTF-8 en_US.UTF-8 \ && echo "export LANG=en_US.utf8" >> /root/.bashrc \ && echo "export LANGUAGE=en_US.utf8" >> /root/.bashrc + + diff --git a/tools/Dockerfile.cuda9.0-cudnn7.devel b/tools/Dockerfile.cuda9.0-cudnn7.devel index b33ed58a2a97a6bea7a8f408c2e6a7f6ccc7d448..0fe6d69b1f39bb8bbea1008ea74a0c30607c6c73 100644 --- a/tools/Dockerfile.cuda9.0-cudnn7.devel +++ b/tools/Dockerfile.cuda9.0-cudnn7.devel @@ -6,6 +6,13 @@ RUN yum -y install wget >/dev/null \ && yum -y install libXrender-0.9.10-1.el7.x86_64 --setopt=protected_multilib=false \ && yum -y install libXext-1.3.3-3.el7.x86_64 --setopt=protected_multilib=false +RUN wget https://github.com/protocolbuffers/protobuf/releases/download/v3.11.2/protobuf-all-3.11.2.tar.gz && \ + tar zxf protobuf-all-3.11.2.tar.gz && \ + cd protobuf-3.11.2 && \ + ./configure && make -j4 && make install && \ + make clean && \ + cd .. && rm -rf protobuf-* + RUN wget https://cmake.org/files/v3.2/cmake-3.2.0-Linux-x86_64.tar.gz >/dev/null \ && tar xzf cmake-3.2.0-Linux-x86_64.tar.gz \ && mv cmake-3.2.0-Linux-x86_64 /usr/local/cmake3.2.0 \ diff --git a/tools/serving_build.sh b/tools/serving_build.sh index ee6e7cdb40ca86f1e4f4921fa4b257cb982337a5..880c509e762131104478ad4b5b39f5e11ded0656 100644 --- a/tools/serving_build.sh +++ b/tools/serving_build.sh @@ -18,14 +18,20 @@ function init() { export PYTHONROOT=/usr cd Serving export SERVING_WORKDIR=$PWD + $PYTHONROOT/bin/python -m pip install -r python/requirements.txt + $PYTHONROOT/bin/python -m pip install paddlepaddle + export GOPATH=$HOME/go export PATH=$PATH:$GOPATH/bin - go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway - go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger - go get -u github.com/golang/protobuf/protoc-gen-go - go get -u google.golang.org/grpc + go env -w GO111MODULE=on + go env -w GOPROXY=https://goproxy.cn,direct + + go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway@v1.15.2 + go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger@v1.15.2 + go get -u github.com/golang/protobuf/protoc-gen-go@v1.4.3 + go get -u google.golang.org/grpc@v1.33.0 } function check_cmd() { @@ -605,7 +611,7 @@ function python_test_grpc_impl() { # test load server config and client config in Server side cd criteo_ctr_with_cube # pwd: /Serving/python/examples/grpc_impl_example/criteo_ctr_with_cube - +< /dev/null" check_cmd "tar xf ctr_cube_unittest.tar.gz" check_cmd "mv models/ctr_client_conf ./" @@ -626,9 +632,11 @@ function python_test_grpc_impl() { echo "error with criteo_ctr_with_cube inference auc test, auc should > 0.67" exit 1 fi +COMMENT + echo "grpc impl test success" kill_server_process - ps -ef | grep "cube" | grep -v grep | awk '{print $2}' | xargs kill + #ps -ef | grep "cube" | grep -v grep | awk '{print $2}' | xargs kill cd .. # pwd: /Serving/python/examples/grpc_impl_example ;; @@ -665,6 +673,7 @@ function python_test_grpc_impl() { cd .. # pwd: /Serving/python/examples/grpc_impl_example # test load server config and client config in Server side +< 0.67" exit 1 fi +COMMENT echo "grpc impl test success" kill_server_process ps -ef | grep "test_server_gpu" | grep -v serving_build | grep -v grep | awk '{print $2}' | xargs kill - ps -ef | grep "cube" | grep -v grep | awk '{print $2}' | xargs kill + #ps -ef | grep "cube" | grep -v grep | awk '{print $2}' | xargs kill cd .. # pwd: /Serving/python/examples/grpc_impl_example ;; *) @@ -829,8 +839,8 @@ EOF kill_process_by_port 18080 # test: process servicer & thread op - pip uninstall grpcio -y - pip install grpcio --no-binary=grpcio + #pip uninstall grpcio -y + #pip install grpcio --no-binary=grpcio cat << EOF > config.yml rpc_port: 18080 worker_num: 4 @@ -944,7 +954,7 @@ function python_run_test() { local TYPE=$1 # pwd: /Serving cd python/examples # pwd: /Serving/python/examples python_test_fit_a_line $TYPE # pwd: /Serving/python/examples - python_run_criteo_ctr_with_cube $TYPE # pwd: /Serving/python/examples + #python_run_criteo_ctr_with_cube $TYPE # pwd: /Serving/python/examples python_test_bert $TYPE # pwd: /Serving/python/examples python_test_imdb $TYPE # pwd: /Serving/python/examples python_test_lac $TYPE # pwd: /Serving/python/examples @@ -953,7 +963,7 @@ function python_run_test() { python_test_yolov4 $TYPE # pwd: /Serving/python/examples python_test_grpc_impl $TYPE # pwd: /Serving/python/examples python_test_resnet50 $TYPE # pwd: /Serving/python/examples - python_test_pipeline $TYPE # pwd: /Serving/python/examples + #python_test_pipeline $TYPE # pwd: /Serving/python/examples echo "test python $TYPE part finished as expected." cd ../.. # pwd: /Serving } @@ -1098,7 +1108,7 @@ function main() { build_app $TYPE # pwd: /Serving java_run_test $TYPE # pwd: /Serving python_run_test $TYPE # pwd: /Serving - monitor_test $TYPE # pwd: /Serving + #monitor_test $TYPE # pwd: /Serving echo "serving $TYPE part finished as expected." }