提交 a27774f2 编写于 作者: T TeslaZhao

sync from compiling code in code platform

上级 6c2a607b
......@@ -58,6 +58,8 @@ message ResourceConf {
optional string cube_config_path = 5;
optional string cube_config_file = 6;
optional int32 cube_quant_bits = 7; // set 0 if no quant.
optional string auth_product_name = 8;
optional string auth_container_id = 9;
};
// DAG node depency info
......
......@@ -22,7 +22,8 @@
#ifdef BCLOUD
#include "baidu/rpc/channel.h"
#include "baidu/rpc/parallel_channel.h"
#include "rapidjson/document.h"
#include "rapidjson_1.0/document.h"
#include "rapidjson_1.0/rapidjson.h"
#else
#include "brpc/channel.h"
#include "brpc/parallel_channel.h"
......
......@@ -39,7 +39,9 @@ using configure::GeneralModelConfig;
void PredictorClient::init_gflags(std::vector<std::string> argv) {
std::call_once(gflags_init_flag, [&]() {
#ifndef BCLOUD
FLAGS_logtostderr = true;
#endif
argv.insert(argv.begin(), "dummy");
int argc = argv.size();
char **arr = new char *[argv.size()];
......
......@@ -13,20 +13,12 @@
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
#include <vector>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/framework/resource.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
......
......@@ -15,17 +15,9 @@
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
......
......@@ -15,17 +15,9 @@
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
......
......@@ -15,17 +15,9 @@
#pragma once
#include <string.h>
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
namespace baidu {
namespace paddle_serving {
......
......@@ -57,10 +57,10 @@ int GeneralInferOp::inference() {
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->GetBatchSize();
int batch_size = input_blob->_batch_size;
VLOG(2) << "input batch size: " << batch_size;
output_blob->SetBatchSize(batch_size);
output_blob->_batch_size = batch_size;
VLOG(2) << "infer batch size: " << batch_size;
......
......@@ -15,17 +15,9 @@
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
......
......@@ -72,7 +72,9 @@ int conf_check(const Request *req,
int GeneralReaderOp::inference() {
// reade request from client
const Request *req = dynamic_cast<const Request *>(get_request_message());
VLOG(2) << "start to call load general model_conf op";
baidu::paddle_serving::predictor::Resource &resource =
baidu::paddle_serving::predictor::Resource::instance();
int batch_size = req->insts_size();
int input_var_num = 0;
std::vector<int64_t> elem_type;
......@@ -82,8 +84,6 @@ int GeneralReaderOp::inference() {
GeneralBlob *res = mutable_data<GeneralBlob>();
TensorVector *out = &res->tensor_vector;
res->SetBatchSize(batch_size);
if (!res) {
LOG(ERROR) << "Failed get op tls reader object output";
}
......@@ -93,10 +93,6 @@ int GeneralReaderOp::inference() {
int var_num = req->insts(0).tensor_array_size();
VLOG(2) << "var num: " << var_num;
VLOG(2) << "start to call load general model_conf op";
baidu::paddle_serving::predictor::Resource &resource =
baidu::paddle_serving::predictor::Resource::instance();
VLOG(2) << "get resource pointer done.";
std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config();
......@@ -257,6 +253,7 @@ int GeneralReaderOp::inference() {
timeline.Pause();
int64_t end = timeline.TimeStampUS();
res->p_size = 0;
res->_batch_size = batch_size;
AddBlobInfo(res, start);
AddBlobInfo(res, end);
......
......@@ -13,21 +13,13 @@
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
#include <vector>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/load_general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/framework/resource.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
......
......@@ -15,16 +15,8 @@
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
......
......@@ -13,21 +13,13 @@
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
#include <vector>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/load_general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/framework/resource.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
......
......@@ -15,17 +15,9 @@
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
......
......@@ -50,7 +50,7 @@
#include "butil/time.h"
#endif
#include "glog/raw_logging.h"
#define ERROR_STRING_LEN 10240
#include "core/configure/general_model_config.pb.h"
#include "core/configure/include/configure_parser.h"
......
......@@ -17,7 +17,7 @@
#include <string>
#include <utility>
#include "core/predictor/common/inner_common.h"
#include "glog/raw_logging.h"
namespace baidu {
namespace paddle_serving {
namespace predictor {
......@@ -25,10 +25,13 @@ namespace predictor {
//////////////// DECLARE INTERFACE ////////////////
#define DECLARE_FACTORY_OBJECT(D, B) \
static int regist(const std::string& tag) { \
FactoryDerive<D, B>* factory = new (std::nothrow) FactoryDerive<D, B>(); \
FactoryDerive<D, B>* factory = new (std::nothrow) FactoryDerive<D, B>();\
if (factory == NULL || \
FactoryPool<B>::instance().register_factory(tag, factory) != 0) { \
RAW_LOG_FATAL("Failed regist factory: %s in macro!", #D); \
char err_str[ERROR_STRING_LEN]; \
snprintf(err_str, ERROR_STRING_LEN - 1, \
"Failed regist factory: %s in macro!", #D); \
RAW_LOG(FATAL, err_str); \
return -1; \
} \
return 0; \
......@@ -54,7 +57,10 @@ namespace predictor {
if (factory == NULL || \
::baidu::paddle_serving::predictor::FactoryPool<B>::instance() \
.register_factory(#D, factory) != 0) { \
RAW_LOG_FATAL("Failed regist factory: %s->%s in macro!", #D, #B); \
char err_str[ERROR_STRING_LEN]; \
snprintf(err_str, ERROR_STRING_LEN - 1, \
"Failed regist factory: %s->%s in macro!", #D, #B); \
RAW_LOG(FATAL, err_str); \
return; \
} \
return; \
......@@ -66,15 +72,18 @@ namespace predictor {
::baidu::paddle_serving::predictor::FactoryDerive<D, B>* factory = new ( \
::std::nothrow)::baidu::paddle_serving::predictor::FactoryDerive<D, \
B>(); \
char err_str[ERROR_STRING_LEN]; \
if (factory == NULL || \
::baidu::paddle_serving::predictor::FactoryPool<B>::instance() \
.register_factory(N, factory) != 0) { \
RAW_LOG_FATAL( \
snprintf(err_str, ERROR_STRING_LEN - 1, \
"Failed regist factory: %s->%s, tag: %s in macro!", #D, #B, N); \
RAW_LOG(FATAL, err_str); \
return; \
} \
RAW_LOG_WARNING( \
snprintf(err_str, ERROR_STRING_LEN - 1, \
"Succ regist factory: %s->%s, tag: %s in macro!", #D, #B, N); \
RAW_LOG(WARNING, err_str); \
return; \
}
......@@ -102,24 +111,29 @@ class FactoryPool {
}
int register_factory(const std::string& tag, FactoryBase<B>* factory) {
char err_str[ERROR_STRING_LEN];
typename std::map<std::string, FactoryBase<B>*>::iterator it =
_pool.find(tag);
if (it != _pool.end()) {
RAW_LOG_FATAL("Insert duplicate with tag: %s", tag.c_str());
snprintf(err_str, ERROR_STRING_LEN - 1,
"Insert duplicate with tag: %s", tag.c_str());
RAW_LOG(FATAL, err_str);
return -1;
}
std::pair<typename std::map<std::string, FactoryBase<B>*>::iterator, bool>
r = _pool.insert(std::make_pair(tag, factory));
if (!r.second) {
RAW_LOG_FATAL("Failed insert new factory with: %s", tag.c_str());
snprintf(err_str, ERROR_STRING_LEN - 1,
"Failed insert new factory with: %s", tag.c_str());
RAW_LOG(FATAL, err_str);
return -1;
}
RAW_LOG_INFO("Succ insert one factory, tag: %s, base type %s",
tag.c_str(),
snprintf(err_str, ERROR_STRING_LEN - 1,
"Succ insert one factory, tag: %s, base type %s", tag.c_str(),
typeid(B).name());
RAW_LOG(INFO, err_str);
return 0;
}
......@@ -127,9 +141,11 @@ class FactoryPool {
typename std::map<std::string, FactoryBase<B>*>::iterator it =
_pool.find(tag);
if (it == _pool.end() || it->second == NULL) {
RAW_LOG_FATAL("Not found factory pool, tag: %s, pool size %u",
tag.c_str(),
char err_str[ERROR_STRING_LEN];
snprintf(err_str, ERROR_STRING_LEN - 1,
"Not found factory pool, tag: %s, pool size %u", tag.c_str(),
_pool.size());
RAW_LOG(FATAL, err_str);
return NULL;
}
......
......@@ -603,6 +603,7 @@ class VersionedInferEngine : public InferEngine {
LOG(ERROR) << "Failed generate engine with type:" << engine_type;
return -1;
}
#ifndef BCLOUD
VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
int tmp = FLAGS_logtostderr;
if (engine->proc_initialize(conf, version) != 0) {
......@@ -611,6 +612,12 @@ class VersionedInferEngine : public InferEngine {
}
VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
FLAGS_logtostderr = tmp;
#else
if (engine->proc_initialize(conf, version) != 0) {
LOG(ERROR) << "Failed initialize engine, type:" << engine_type;
return -1;
}
#endif
auto r = _versions.insert(std::make_pair(engine->version(), engine));
if (!r.second) {
LOG(ERROR) << "Failed insert item: " << engine->version()
......
......@@ -62,7 +62,10 @@ class OpRepository {
template <typename OP_TYPE>
void regist_op(std::string op_type) {
_repository[op_type] = &OpFactory<OP_TYPE>::instance();
RAW_LOG_INFO("Succ regist op: %s", op_type.c_str());
char err_str[ERROR_STRING_LEN];
snprintf(err_str, ERROR_STRING_LEN - 1, "Succ regist op: %s",
op_type.c_str());
RAW_LOG(INFO, err_str);
}
Op* get_op(std::string op_type);
......
......@@ -17,6 +17,9 @@
#include <string>
#include "core/predictor/common/inner_common.h"
#include "core/predictor/framework/kv_manager.h"
#ifdef BCLOUD
#include "aipe_sec_client.h" // NOLINT
#endif
namespace baidu {
namespace paddle_serving {
namespace predictor {
......@@ -109,6 +112,42 @@ int Resource::initialize(const std::string& path, const std::string& file) {
}
LOG(WARNING) << "Successfully proc initialized mempool wrapper";
#ifdef WITH_AUTH
std::string product_name_str = resource_conf.auth_product_name();
std::string container_id_str = resource_conf.auth_container_id();
char* product_name = new char[product_name_str.size() + 1];
snprintf(product_name,
product_name_str.size() + 1,
"%s",
product_name_str.c_str());
char* container_id = new char[container_id_str.size() + 1];
snprintf(container_id,
container_id_str.size() + 1,
"%s",
container_id_str.c_str());
aipe_auth_request request;
request.product_name = product_name;
request.container_id = container_id;
request.request_ts = (int64_t)time(NULL);
LOG(INFO) << "\nEasypack info"
<< "\nproduct name: " << request.product_name
<< "\ncontainer_id: " << request.container_id
<< "\nrequest time stamp: " << request.request_ts;
aipe_auth_response response;
response = check_auth(request);
if (response.result == 0) {
LOG(INFO) << "Authentication succeed.";
} else {
LOG(ERROR) << "Authentication failed. Error code: " << response.result;
return -1;
}
#endif
if (FLAGS_enable_model_toolkit) {
int err = 0;
std::string model_toolkit_path = resource_conf.model_toolkit_path();
......
......@@ -23,17 +23,20 @@ namespace predictor {
#define REGIST_FORMAT_SERVICE(svr_name, svr) \
do { \
char err_str[ERROR_STRING_LEN]; \
int ret = \
::baidu::paddle_serving::predictor::FormatServiceManager::instance() \
.regist_service(svr_name, svr); \
if (ret != 0) { \
RAW_LOG_ERROR("Failed regist service[%s][%s]", \
snprintf(err_str, ERROR_STRING_LEN - 1, "Failed regist service[%s][%s]", \
svr_name.c_str(), \
typeid(svr).name()); \
RAW_LOG(ERROR, err_str); \
} else { \
RAW_LOG_INFO("Success regist service[%s][%s]", \
snprintf(err_str, ERROR_STRING_LEN - 1, "Success regist service[%s][%s]", \
svr_name.c_str(), \
typeid(svr).name()); \
RAW_LOG(INFO, err_str); \
} \
} while (0)
......@@ -42,31 +45,38 @@ class FormatServiceManager {
typedef google::protobuf::Service Service;
int regist_service(const std::string& svr_name, Service* svr) {
char err_str[ERROR_STRING_LEN];
if (_service_map.find(svr_name) != _service_map.end()) {
RAW_LOG_ERROR("Service[%s][%s] already exist!",
snprintf(err_str, ERROR_STRING_LEN - 1, "Service[%s][%s] already exist!",
svr_name.c_str(),
typeid(svr).name());
RAW_LOG(ERROR, err_str);
return -1;
}
std::pair<boost::unordered_map<std::string, Service*>::iterator, bool> ret;
ret = _service_map.insert(std::make_pair(svr_name, svr));
if (ret.second == false) {
RAW_LOG_ERROR("Service[%s][%s] insert failed!",
snprintf(err_str, ERROR_STRING_LEN - 1, "Service[%s][%s] insert failed!",
svr_name.c_str(),
typeid(svr).name());
RAW_LOG(ERROR, err_str);
return -1;
}
RAW_LOG_INFO("Service[%s] insert successfully!", svr_name.c_str());
snprintf(err_str, ERROR_STRING_LEN - 1, "Service[%s] insert successfully!",
svr_name.c_str());
RAW_LOG(INFO, err_str);
return 0;
}
Service* get_service(const std::string& svr_name) {
char err_str[ERROR_STRING_LEN];
boost::unordered_map<std::string, Service*>::iterator res;
if ((res = _service_map.find(svr_name)) == _service_map.end()) {
RAW_LOG_WARNING("Service[%s] not found in service manager!",
svr_name.c_str());
snprintf(err_str, ERROR_STRING_LEN - 1,
"Service[%s] not found in service manager!", svr_name.c_str());
RAW_LOG(WARNING, err_str);
return NULL;
}
return (*res).second;
......
......@@ -202,8 +202,6 @@ int main(int argc, char** argv) {
}
VLOG(2) << "Succ call pthread worker start function";
#ifndef BCLOUD
if (Resource::instance().general_model_initialize(FLAGS_resource_path,
FLAGS_resource_file) != 0) {
LOG(ERROR) << "Failed to initialize general model conf: "
......@@ -213,6 +211,7 @@ int main(int argc, char** argv) {
VLOG(2) << "Succ initialize general model";
#ifndef BCLOUD
// FATAL messages are output to stderr
FLAGS_stderrthreshold = 3;
#endif
......
......@@ -50,9 +50,9 @@ class WeightedRandomRender : public EndpointRouterBase {
Factory<WeightedRandomRender, EndpointRouterBase>* factory =
new (std::nothrow) Factory<WeightedRandomRender, EndpointRouterBase>();
if (factory == NULL) {
RAW_LOG_ERROR(
"Failed regist factory: WeightedRandomRender->EndpointRouterBase in "
"macro!");
RAW_LOG(ERROR,
"Failed regist factory: WeightedRandomRender->EndpointRouterBase \
in macro!");
return -1;
}
......@@ -62,9 +62,8 @@ class WeightedRandomRender : public EndpointRouterBase {
// together.
if (FactoryPool<EndpointRouterBase>::instance().register_factory(
"WeightedRandomRender", factory) != 0) {
RAW_LOG_INFO(
"Factory has been registed: "
"WeightedRandomRender->EndpointRouterBase.");
RAW_LOG(INFO, "Factory has been registed: \
WeightedRandomRender->EndpointRouterBase.");
}
return 0;
......
......@@ -18,7 +18,6 @@
#include <utility>
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/stub_impl.h"
#include "glog/raw_logging.h"
namespace baidu {
namespace paddle_serving {
......@@ -28,12 +27,17 @@ namespace sdk_cpp {
namespace brpc = baidu::rpc;
#endif
#define ERROR_STRING_LEN 10240
#define INLINE_REGIST_OBJECT(D, B, E) \
do { \
Factory<D, B>* factory = new (std::nothrow) Factory<D, B>(); \
if (factory == NULL || \
FactoryPool<B>::instance().register_factory(#D, factory) != 0) { \
RAW_LOG_ERROR("Failed regist factory: %s->%s in macro!", #D, #B); \
FactoryPool<B>::instance().register_factory(#D, factory) != 0) {\
char err_str[ERROR_STRING_LEN]; \
snprintf(err_str, ERROR_STRING_LEN - 1, \
"Failed regist factory: %s->%s in macro!", #D, #B); \
RAW_LOG(ERROR, err_str); \
return E; \
} \
} while (0)
......@@ -43,7 +47,10 @@ namespace brpc = baidu::rpc;
Factory<D, B>* factory = new (std::nothrow) Factory<D, B>(); \
if (factory == NULL || \
FactoryPool<B>::instance().register_factory(tag, factory) != 0) { \
RAW_LOG_ERROR("Failed regist factory: %s in macro!", #D); \
char err_str[ERROR_STRING_LEN]; \
snprintf(err_str, ERROR_STRING_LEN - 1, \
"Failed regist factory: %s in macro!", #D); \
RAW_LOG(ERROR, err_str); \
return -1; \
} \
return 0; \
......@@ -62,11 +69,14 @@ namespace brpc = baidu::rpc;
__attribute__((constructor)) static void PDS_STR_CAT(GlobalRegistObject, \
__LINE__)(void) { \
::baidu::paddle_serving::sdk_cpp::Factory<D, B>* factory = \
new (::std::nothrow)::baidu::paddle_serving::sdk_cpp::Factory<D, B>(); \
new (::std::nothrow)::baidu::paddle_serving::sdk_cpp::Factory<D, B>();\
if (factory == NULL || \
::baidu::paddle_serving::sdk_cpp::FactoryPool<B>::instance() \
.register_factory(#D, factory) != 0) { \
RAW_LOG_ERROR("Failed regist factory: %s->%s in macro!", #D, #B); \
char err_str[ERROR_STRING_LEN]; \
snprintf(err_str, ERROR_STRING_LEN - 1, \
"Failed regist factory: %s->%s in macro!", #D, #B); \
RAW_LOG(ERROR, err_str); \
return; \
} \
return; \
......@@ -76,12 +86,14 @@ namespace brpc = baidu::rpc;
__attribute__((constructor)) static void PDS_STR_CAT(GlobalRegistObject, \
__LINE__)(void) { \
::baidu::paddle_serving::sdk_cpp::Factory<D, B>* factory = \
new (::std::nothrow)::baidu::paddle_serving::sdk_cpp::Factory<D, B>(); \
new (::std::nothrow)::baidu::paddle_serving::sdk_cpp::Factory<D, B>();\
if (factory == NULL || \
::baidu::paddle_serving::sdk_cpp::FactoryPool<B>::instance() \
.register_factory(T, factory) != 0) { \
RAW_LOG_ERROR( \
char err_str[ERROR_STRING_LEN]; \
snprintf(err_str, ERROR_STRING_LEN - 1, \
"Failed regist factory: %s->%s, tag %s in macro!", #D, #B, T); \
RAW_LOG(ERROR, err_str); \
return; \
} \
return; \
......@@ -108,8 +120,10 @@ namespace brpc = baidu::rpc;
::baidu::paddle_serving::sdk_cpp::FactoryPool< \
::baidu::paddle_serving::sdk_cpp::Stub>::instance() \
.register_factory(T, factory) != 0) { \
RAW_LOG_ERROR( \
char err_str[ERROR_STRING_LEN]; \
snprintf(err_str, ERROR_STRING_LEN - 1, \
"Failed regist factory: %s->Stub, tag: %s in macro!", #D, T); \
RAW_LOG(ERROR, err_str); \
return; \
} \
return; \
......@@ -146,14 +160,20 @@ class FactoryPool {
typename std::map<std::string, FactoryBase<B>*>::iterator it =
_pool.find(tag);
if (it != _pool.end()) {
RAW_LOG_ERROR("Insert duplicate with tag: %s", tag.c_str());
char err_str[ERROR_STRING_LEN];
snprintf(err_str, ERROR_STRING_LEN - 1,
"Insert duplicate with tag: %s", tag.c_str());
RAW_LOG(ERROR, err_str);
return -1;
}
std::pair<typename std::map<std::string, FactoryBase<B>*>::iterator, bool>
r = _pool.insert(std::make_pair(tag, factory));
if (!r.second) {
RAW_LOG_ERROR("Failed insert new factory with: %s", tag.c_str());
char err_str[ERROR_STRING_LEN];
snprintf(err_str, ERROR_STRING_LEN - 1,
"Failed insert new factory with: %s", tag.c_str());
RAW_LOG(ERROR, err_str);
return -1;
}
......@@ -164,9 +184,11 @@ class FactoryPool {
typename std::map<std::string, FactoryBase<B>*>::iterator it =
_pool.find(tag);
if (it == _pool.end() || it->second == NULL) {
RAW_LOG_ERROR("Not found factory pool, tag: %s, pool size: %u",
tag.c_str(),
_pool.size());
char err_str[ERROR_STRING_LEN];
snprintf(err_str, ERROR_STRING_LEN - 1,
"Not found factory pool, tag: %s, pool size: %u",
tag.c_str(), _pool.size());
RAW_LOG(ERROR, err_str);
return NULL;
}
......
......@@ -23,6 +23,7 @@
#include "core/configure/inferencer_configure.pb.h"
#include "core/predictor/framework/infer.h"
#include "paddle_inference_api.h" // NOLINT
//#include "predictor/framework/infer.h"
namespace baidu {
namespace paddle_serving {
......
......@@ -157,6 +157,8 @@ class Server(object):
self.cur_path = os.getcwd()
self.use_local_bin = False
self.mkl_flag = False
self.product_name = None
self.container_id = None
self.model_config_paths = None # for multi-model in a workflow
def set_max_concurrency(self, concurrency):
......@@ -191,6 +193,16 @@ class Server(object):
def set_ir_optimize(self, flag=False):
self.ir_optimization = flag
def set_product_name(self, product_name=None):
if product_name == None:
raise ValueError("product_name can't be None.")
self.product_name = product_name
def set_container_id(self, container_id):
if container_id == None:
raise ValueError("container_id can't be None.")
self.container_id = container_id
def check_local_bin(self):
if "SERVING_BIN" in os.environ:
self.use_local_bin = True
......@@ -254,6 +266,10 @@ class Server(object):
self.resource_conf.model_toolkit_file = self.model_toolkit_fn
self.resource_conf.general_model_path = workdir
self.resource_conf.general_model_file = self.general_model_config_fn
if self.product_name != None:
self.resource_conf.auth_product_name = self.product_name
if self.container_id != None:
self.resource_conf.auth_container_id = self.container_id
def _write_pb_str(self, filepath, pb_obj):
with open(filepath, "w") as fout:
......@@ -540,7 +556,6 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
results, tag = ret
resp.tag = tag
resp.err_code = 0
if not self.is_multi_model_:
results = {'general_infer_0': results}
for model_name, model_result in results.items():
......
......@@ -58,6 +58,16 @@ def parse_args(): # pylint: disable=doc-string-missing
default=False,
action="store_true",
help="Use Multi-language-service")
parser.add_argument(
"--product_name",
type=str,
default=None,
help="product_name for authentication")
parser.add_argument(
"--container_id",
type=str,
default=None,
help="container_id for authentication")
return parser.parse_args()
......@@ -101,6 +111,10 @@ def start_standard_model(): # pylint: disable=doc-string-missing
server.use_mkl(use_mkl)
server.set_max_body_size(max_body_size)
server.set_port(port)
if args.product_name != None:
server.set_product_name(args.product_name)
if args.container_id != None:
server.set_container_id(args.container_id)
server.load_model_config(model)
server.prepare_server(workdir=workdir, port=port, device=device)
......
......@@ -73,6 +73,16 @@ def serve_args():
default=False,
action="store_true",
help="Use Multi-language-service")
parser.add_argument(
"--product_name",
type=str,
default=None,
help="product_name for authentication")
parser.add_argument(
"--container_id",
type=str,
default=None,
help="container_id for authentication")
return parser.parse_args()
......@@ -196,6 +206,8 @@ class Server(object):
self.use_local_bin = False
self.gpuid = 0
self.model_config_paths = None # for multi-model in a workflow
self.product_name = None
self.container_id = None
def set_max_concurrency(self, concurrency):
self.max_concurrency = concurrency
......@@ -229,6 +241,16 @@ class Server(object):
def set_ir_optimize(self, flag=False):
self.ir_optimization = flag
def set_product_name(self, product_name=None):
if product_name == None:
raise ValueError("product_name can't be None.")
self.product_name = product_name
def set_container_id(self, container_id):
if container_id == None:
raise ValueError("container_id can't be None.")
self.container_id = container_id
def check_local_bin(self):
if "SERVING_BIN" in os.environ:
self.use_local_bin = True
......@@ -302,6 +324,10 @@ class Server(object):
self.resource_conf.model_toolkit_file = self.model_toolkit_fn
self.resource_conf.general_model_path = workdir
self.resource_conf.general_model_file = self.general_model_config_fn
if self.product_name != None:
self.resource_conf.auth_product_name = self.product_name
if self.container_id != None:
self.resource_conf.auth_container_id = self.container_id
def _write_pb_str(self, filepath, pb_obj):
with open(filepath, "w") as fout:
......
......@@ -34,7 +34,7 @@ def start_gpu_card_model(index, gpuid, args): # pylint: disable=doc-string-miss
port = args.port + index
thread_num = args.thread
model = args.model
mem_optim = args.mem_optim_off is False
mem_optim = args.mem_optim_off
ir_optim = args.ir_optim
max_body_size = args.max_body_size
use_multilang = args.use_multilang
......@@ -65,6 +65,11 @@ def start_gpu_card_model(index, gpuid, args): # pylint: disable=doc-string-miss
server.set_ir_optimize(ir_optim)
server.set_max_body_size(max_body_size)
if args.product_name != None:
server.set_product_name(args.product_name)
if args.container_id != None:
server.set_container_id(args.container_id)
server.load_model_config(model)
server.prepare_server(workdir=workdir, port=port, device=device)
if gpuid >= 0:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册