Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
9f8265a0
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9f8265a0
编写于
3月 21, 2020
作者:
D
Dong Daxiang
提交者:
GitHub
3月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update DESIGN_DOC.md
上级
65ba79bb
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
11 addition
and
1 deletion
+11
-1
doc/DESIGN_DOC.md
doc/DESIGN_DOC.md
+11
-1
未找到文件。
doc/DESIGN_DOC.md
浏览文件 @
9f8265a0
...
@@ -115,7 +115,17 @@ Paddle Serving的核心执行引擎是一个有向无环图,图中的每个节
...
@@ -115,7 +115,17 @@ Paddle Serving的核心执行引擎是一个有向无环图,图中的每个节
## 3. 工业级特性
## 3. 工业级特性
### 3.1 分布式稀疏索引
### 3.1 分布式稀疏参数索引
分布式稀疏参数索引通常在广告推荐中出现,并与分布式训练配合形成完整的离线-在线一体化部署。下图解释了其中的流程,产品的在线服务接受用户请求后将请求发送给预估服务,同时系统会记录用户的请求以进行相应的训练日志处理和拼接。离线分布式训练系统会针对流式产出的训练日志进行模型增量训练,而增量产生的模型会配送至分布式稀疏参数索引服务,同时对应的稠密的模型参数也会配送至在线的预估服务。在线服务由两部分组成,一部分是针对用户的请求提取特征后,将需要进行模型的稀疏参数索引的特征发送请求给分布式稀疏参数索引服务,针对分布式稀疏参数索引服务返回的稀疏参数再进行后续深度学习模型的计算流程,从而完成预估。
<p
align=
"center"
>
<br>
<img
src=
'cube.png'
"
>
<br>
<p>
为什么要使用Paddle Serving提供的分布式稀疏参数索引服务?1)在一些推荐场景中,模型的输入特征规模通常可以达到上千亿,单台机器无法支撑T级别模型在内存的保存,因此需要进行分布式存储。2)Paddle Serving提供的分布式稀疏参数索引服务,具有并发请求多个节点的能力,从而以较低的延时完成预估服务。
### 3.2 模型管理、在线A/B流量测试、模型热加载
### 3.2 模型管理、在线A/B流量测试、模型热加载
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录