diff --git a/README.md b/README.md index 6027d1fd5b32fee64ffd1a67442f08fd7c50499e..289a48b05c33a09fef91d32b526720fa40a56bbd 100644 --- a/README.md +++ b/README.md @@ -31,6 +31,13 @@ We consider deploying deep learning inference service online to be a user-facing application in the future. **The goal of this project**: When you have trained a deep neural net with [Paddle](https://github.com/PaddlePaddle/Paddle), you are also capable to deploy the model online easily. A demo of Paddle Serving is as follows: +

Some Key Features of Paddle Serving

+ +- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed **with one line command**. +- **Industrial serving features** supported, such as models management, online loading, online A/B testing etc. +- **Highly concurrent and efficient communication** between clients and servers supported. +- **Multiple programming languages** supported on client side, such as C++, python and Java. + - Any model trained by [PaddlePaddle](https://github.com/paddlepaddle/paddle) can be directly used or [Model Conversion Interface](./doc/SAVE_CN.md) for online deployment of Paddle Serving. - Support [Multi-model Pipeline Deployment](./doc/PIPELINE_SERVING.md), and provide the requirements of the REST interface and RPC interface itself, [Pipeline example](./python/examples/pipeline). - Support the model zoos from the Paddle ecosystem, such as [PaddleDetection](./python/examples/detection), [PaddleOCR](./python/examples/ocr), [PaddleRec](https://github.com/PaddlePaddle/PaddleRec/tree/master/tools/recserving/movie_recommender). @@ -197,14 +204,6 @@ the response is {"result":{"price":[[18.901151657104492]]}} ``` -

Some Key Features of Paddle Serving

- -- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed **with one line command**. -- **Industrial serving features** supported, such as models management, online loading, online A/B testing etc. -- **Distributed Key-Value indexing** supported which is especially useful for large scale sparse features as model inputs. -- **Highly concurrent and efficient communication** between clients and servers supported. -- **Multiple programming languages** supported on client side, such as Golang, C++ and python. -

Document

### New to Paddle Serving diff --git a/README_CN.md b/README_CN.md index cf9fb5de7113edea60c12bb58e720bfa4251b7a7..935e6ae9ce068308e8d5fc5d26d9830f8f1ef6d0 100644 --- a/README_CN.md +++ b/README_CN.md @@ -33,6 +33,13 @@ Paddle Serving 旨在帮助深度学习开发者轻易部署在线预测服务。 **本项目目标**: 当用户使用 [Paddle](https://github.com/PaddlePaddle/Paddle) 训练了一个深度神经网络,就同时拥有了该模型的预测服务。 +

Paddle Serving的核心功能

+ +- 与Paddle训练紧密连接,绝大部分Paddle模型可以 **一键部署**. +- 支持 **工业级的服务能力** 例如模型管理,在线加载,在线A/B测试等. +- 支持客户端和服务端之间 **高并发和高效通信**. +- 支持 **多种编程语言** 开发客户端,例如C++, Python和Java. + - 任何经过[PaddlePaddle](https://github.com/paddlepaddle/paddle)训练的模型,都可以经过直接保存或是[模型转换接口](./doc/SAVE_CN.md),用于Paddle Serving在线部署。 - 支持[多模型串联服务部署](./doc/PIPELINE_SERVING_CN.md), 同时提供Rest接口和RPC接口以满足您的需求,[Pipeline示例](./python/examples/pipeline)。 - 支持Paddle生态的各大模型库, 例如[PaddleDetection](./python/examples/detection),[PaddleOCR](./python/examples/ocr),[PaddleRec](https://github.com/PaddlePaddle/PaddleRec/tree/master/tools/recserving/movie_recommender)。 @@ -198,14 +205,6 @@ curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1 {"result":{"price":[[18.901151657104492]]}} ``` -

Paddle Serving的核心功能

- -- 与Paddle训练紧密连接,绝大部分Paddle模型可以 **一键部署**. -- 支持 **工业级的服务能力** 例如模型管理,在线加载,在线A/B测试等. -- 支持 **分布式键值对索引** 助力于大规模稀疏特征作为模型输入. -- 支持客户端和服务端之间 **高并发和高效通信**. -- 支持 **多种编程语言** 开发客户端,例如Golang,C++和Python. -

文档

### 新手教程