提交 991f7efb 编写于 作者: M MRXLT

fix conflict

......@@ -84,6 +84,7 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
| `model` | str | `""` | Path of paddle model directory to be served |
| `mem_optim` | bool | `False` | Enable memory / graphic memory optimization |
| `ir_optim` | bool | `False` | Enable analysis and optimization of calculation graph |
| `use_mkl` (Only for cpu version) | bool | `False` | Run inference with MKL |
Here, we use `curl` to send a HTTP POST request to the service we just started. Users can use any python library to send HTTP POST as well, e.g, [requests](https://requests.readthedocs.io/en/master/).
</center>
......
......@@ -88,6 +88,7 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
| `model` | str | `""` | Path of paddle model directory to be served |
| `mem_optim` | bool | `False` | Enable memory optimization |
| `ir_optim` | bool | `False` | Enable analysis and optimization of calculation graph |
| `use_mkl` (Only for cpu version) | bool | `False` | Run inference with MKL |
我们使用 `curl` 命令来发送HTTP POST请求给刚刚启动的服务。用户也可以调用python库来发送HTTP POST请求,请参考英文文档 [requests](https://requests.readthedocs.io/en/master/)。
</center>
......
......@@ -83,9 +83,6 @@ func JsonReq(method, requrl string, timeout int, kv *map[string]string,
}
func GetHdfsMeta(src string) (master, ugi, path string, err error) {
//src = "hdfs://root:rootpasst@st1-inf-platform0.st01.baidu.com:54310/user/mis_user/news_dnn_ctr_cube_1/1501836820/news_dnn_ctr_cube_1_part54.tar"
//src = "hdfs://st1-inf-platform0.st01.baidu.com:54310/user/mis_user/news_dnn_ctr_cube_1/1501836820/news_dnn_ctr_cube_1_part54.tar"
ugiBegin := strings.Index(src, "//")
ugiPos := strings.LastIndex(src, "@")
if ugiPos != -1 && ugiBegin != -1 {
......
......@@ -69,9 +69,15 @@ class ModelRes {
const std::vector<int64_t>& get_int64_by_name(const std::string& name) {
return _int64_value_map[name];
}
std::vector<int64_t>&& get_int64_by_name_with_rv(const std::string& name) {
return std::move(_int64_value_map[name]);
}
const std::vector<float>& get_float_by_name(const std::string& name) {
return _float_value_map[name];
}
std::vector<float>&& get_float_by_name_with_rv(const std::string& name) {
return std::move(_float_value_map[name]);
}
const std::vector<int>& get_shape(const std::string& name) {
return _shape_map[name];
}
......@@ -121,10 +127,18 @@ class PredictorRes {
const std::string& name) {
return _models[model_idx].get_int64_by_name(name);
}
std::vector<int64_t>&& get_int64_by_name_with_rv(const int model_idx,
const std::string& name) {
return std::move(_models[model_idx].get_int64_by_name_with_rv(name));
}
const std::vector<float>& get_float_by_name(const int model_idx,
const std::string& name) {
return _models[model_idx].get_float_by_name(name);
}
std::vector<float>&& get_float_by_name_with_rv(const int model_idx,
const std::string& name) {
return std::move(_models[model_idx].get_float_by_name_with_rv(name));
}
const std::vector<int>& get_shape(const int model_idx,
const std::string& name) {
return _models[model_idx].get_shape(name);
......
......@@ -258,9 +258,10 @@ int PredictorClient::batch_predict(
ModelRes model;
model.set_engine_name(output.engine_name());
int idx = 0;
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
int idx = 0;
int shape_size = output.insts(0).tensor_array(idx).shape_size();
VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
<< shape_size;
......@@ -279,9 +280,9 @@ int PredictorClient::batch_predict(
idx += 1;
}
idx = 0;
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
int idx = 0;
if (_fetch_name_to_type[name] == 0) {
VLOG(2) << "ferch var " << name << "type int";
model._int64_value_map[name].resize(
......@@ -345,7 +346,7 @@ int PredictorClient::numpy_predict(
PredictorRes &predict_res_batch,
const int &pid) {
int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
VLOG(2) << "batch size: " << batch_size;
predict_res_batch.clear();
Timer timeline;
int64_t preprocess_start = timeline.TimeStampUS();
......@@ -462,7 +463,7 @@ int PredictorClient::numpy_predict(
for (ssize_t j = 0; j < int_array.shape(1); j++) {
for (ssize_t k = 0; k < int_array.shape(2); k++) {
for (ssize_t l = 0; k < int_array.shape(3); l++) {
tensor->add_float_data(int_array(i, j, k, l));
tensor->add_int64_data(int_array(i, j, k, l));
}
}
}
......@@ -474,7 +475,7 @@ int PredictorClient::numpy_predict(
for (ssize_t i = 0; i < int_array.shape(0); i++) {
for (ssize_t j = 0; j < int_array.shape(1); j++) {
for (ssize_t k = 0; k < int_array.shape(2); k++) {
tensor->add_float_data(int_array(i, j, k));
tensor->add_int64_data(int_array(i, j, k));
}
}
}
......@@ -484,7 +485,7 @@ int PredictorClient::numpy_predict(
auto int_array = int_feed[vec_idx].unchecked<2>();
for (ssize_t i = 0; i < int_array.shape(0); i++) {
for (ssize_t j = 0; j < int_array.shape(1); j++) {
tensor->add_float_data(int_array(i, j));
tensor->add_int64_data(int_array(i, j));
}
}
break;
......@@ -492,7 +493,7 @@ int PredictorClient::numpy_predict(
case 1: {
auto int_array = int_feed[vec_idx].unchecked<1>();
for (ssize_t i = 0; i < int_array.shape(0); i++) {
tensor->add_float_data(int_array(i));
tensor->add_int64_data(int_array(i));
}
break;
}
......@@ -536,9 +537,9 @@ int PredictorClient::numpy_predict(
ModelRes model;
model.set_engine_name(output.engine_name());
int idx = 0;
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
int idx = 0;
int shape_size = output.insts(0).tensor_array(idx).shape_size();
VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
<< shape_size;
......@@ -557,9 +558,10 @@ int PredictorClient::numpy_predict(
idx += 1;
}
idx = 0;
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
int idx = 0;
if (_fetch_name_to_type[name] == 0) {
VLOG(2) << "ferch var " << name << "type int";
model._int64_value_map[name].resize(
......
......@@ -32,14 +32,23 @@ PYBIND11_MODULE(serving_client, m) {
.def(py::init())
.def("get_int64_by_name",
[](PredictorRes &self, int model_idx, std::string &name) {
return self.get_int64_by_name(model_idx, name);
},
py::return_value_policy::reference)
// see more: https://github.com/pybind/pybind11/issues/1042
std::vector<int64_t> *ptr = new std::vector<int64_t>(
std::move(self.get_int64_by_name_with_rv(model_idx, name)));
auto capsule = py::capsule(ptr, [](void *p) {
delete reinterpret_cast<std::vector<int64_t> *>(p);
});
return py::array(ptr->size(), ptr->data(), capsule);
})
.def("get_float_by_name",
[](PredictorRes &self, int model_idx, std::string &name) {
return self.get_float_by_name(model_idx, name);
},
py::return_value_policy::reference)
std::vector<float> *ptr = new std::vector<float>(
std::move(self.get_float_by_name_with_rv(model_idx, name)));
auto capsule = py::capsule(ptr, [](void *p) {
delete reinterpret_cast<std::vector<float> *>(p);
});
return py::array(ptr->size(), ptr->data(), capsule);
})
.def("get_shape",
[](PredictorRes &self, int model_idx, std::string &name) {
return self.get_shape(model_idx, name);
......
......@@ -16,7 +16,11 @@ It is recommended to use Docker for compilation. We have prepared the Paddle Ser
- CPU: `hub.baidubce.com/paddlepaddle/serving:0.2.0-devel`,dockerfile: [Dockerfile.devel](../tools/Dockerfile.devel)
- GPU: `hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu-devel`,dockerfile: [Dockerfile.gpu.devel](../tools/Dockerfile.gpu.devel)
This document will take Python2 as an example to show how to compile Paddle Serving. If you want to compile with Python 3, just adjust the Python options of cmake.
This document will take Python2 as an example to show how to compile Paddle Serving. If you want to compile with Python3, just adjust the Python options of cmake:
- Set `DPYTHON_INCLUDE_DIR` to `$PYTHONROOT/include/python3.6m/`
- Set `DPYTHON_LIBRARIES` to `$PYTHONROOT/lib64/libpython3.6.so`
- Set `DPYTHON_EXECUTABLE` to `$PYTHONROOT/bin/python3`
## Get Code
......@@ -54,7 +58,7 @@ make -j10
execute `make install` to put targets under directory `./output`
**Attention:**After the compilation is successful, the serving binary file will be generated in the ./core/general-server directory. Before starting the server, export SERVING_BIN = $ {path / to / serving / bin} is required to allow the server to use the compiled serving binary file.
**Attention:** After the compilation is successful, you need to set the path of `SERVING_BIN`. See [Note](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE.md#Note) for details.
## Compile Client
......
......@@ -16,7 +16,11 @@
- CPU: `hub.baidubce.com/paddlepaddle/serving:0.2.0-devel`,dockerfile: [Dockerfile.devel](../tools/Dockerfile.devel)
- GPU: `hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu-devel`,dockerfile: [Dockerfile.gpu.devel](../tools/Dockerfile.gpu.devel)
本文档将以Python2为例介绍如何编译Paddle Serving。如果您想用Python3进行编译,只需要调整cmake的Python相关选项即可。
本文档将以Python2为例介绍如何编译Paddle Serving。如果您想用Python3进行编译,只需要调整cmake的Python相关选项即可:
-`DPYTHON_INCLUDE_DIR`设置为`$PYTHONROOT/include/python3.6m/`
-`DPYTHON_LIBRARIES`设置为`$PYTHONROOT/lib64/libpython3.6.so`
-`DPYTHON_EXECUTABLE`设置为`$PYTHONROOT/bin/python3`
## 获取代码
......@@ -54,7 +58,7 @@ make -j10
执行`make install`可以把目标产出放在`./output`目录下。
**注意:** 编译成功后,在./core/general-server目录下会产出serving二进制文件。启动server前需要export SERVING_BIN=${path/to/serving/bin} 来让server端使用编译出的serving二进制文件
**注意:** 编译成功后,需要设置`SERVING_BIN`路径,详见后面的[注意事项](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE_CN.md#注意事项)
## 编译Client部分
......
# Cascade RCNN model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get The Cascade RCNN Model
```
sh get_data.sh
```
If you want to have more detection models, please refer to [Paddle Detection Model Zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.2/docs/MODEL_ZOO_cn.md)
### Start the service
```
python -m paddle_serving_server_gpu.serve --model serving_server --port 9292 --gpu_id 0
```
### Perform prediction
```
python test_client.py
```
Image with bounding boxes and json result would be saved in `output` folder.
# 使用Paddle Serving部署Cascade RCNN模型
(简体中文|[English](./README.md))
## 获得Cascade RCNN模型
```
sh get_data.sh
```
如果你想要更多的检测模型,请参考[Paddle检测模型库](https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.2/docs/MODEL_ZOO_cn.md)
### 启动服务
```
python -m paddle_serving_server_gpu.serve --model serving_server --port 9292 --gpu_id 0
```
### 执行预测
```
python test_client.py
```
客户端已经为图片做好了后处理,在`output`文件夹下存放各个框的json格式信息还有后处理结果图片。
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/cascade_rcnn_r50_fpx_1x_serving.tar.gz
tar xf cascade_rcnn_r50_fpx_1x_serving.tar.gz
......@@ -2,16 +2,6 @@
([简体中文](./README_CN.md)|English)
### Compile Source Code
in the root directory of this git project
```
mkdir build_server
cd build_server
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib64/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON ..
make -j10
make install -j10
```
### Get Sample Dataset
go to directory `python/examples/criteo_ctr_with_cube`
......
## 带稀疏参数索引服务的CTR预测服务
(简体中文|[English](./README.md))
### 编译源代码
在本项目的根目录下,执行
```
mkdir build_server
cd build_server
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib64/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON ..
make -j10
make install -j10
```
### 获取样例数据
进入目录 `python/examples/criteo_ctr_with_cube`
```
......
......@@ -15,34 +15,35 @@ sh get_model.sh
pip install paddle_serving_app
```
### HTTP Infer
### HTTP Service
launch server side
```
python image_classification_service.py ResNet50_vd_model workdir 9393 #cpu inference service
python resnet50_web_service.py ResNet50_vd_model cpu 9696 #cpu inference service
```
```
python image_classification_service_gpu.py ResNet50_vd_model workdir 9393 #gpu inference service
python resnet50_web_service.py ResNet50_vd_model gpu 9696 #gpu inference service
```
client send inference request
```
python image_http_client.py
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"image": "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"}], "fetch": ["score"]}' http://127.0.0.1:9696/image/prediction
```
### RPC Infer
### RPC Service
launch server side
```
python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9393 #cpu inference service
python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9696 #cpu inference service
```
```
python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9393 --gpu_ids 0 #gpu inference service
python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9696 --gpu_ids 0 #gpu inference service
```
client send inference request
```
python image_rpc_client.py ResNet50_vd_client_config/serving_client_conf.prototxt
```
*the port of server side in this example is 9393, the sample data used by client side is in the folder ./data. These parameter can be modified in practice*
*the port of server side in this example is 9696
......@@ -15,34 +15,35 @@ sh get_model.sh
pip install paddle_serving_app
```
### 执行HTTP预测服务
### HTTP服务
启动server端
```
python image_classification_service.py ResNet50_vd_model workdir 9393 #cpu预测服务
python image_classification_service.py ResNet50_vd_model cpu 9696 #cpu预测服务
```
```
python image_classification_service_gpu.py ResNet50_vd_model workdir 9393 #gpu预测服务
python image_classification_service.py ResNet50_vd_model gpu 9696 #gpu预测服务
```
client端进行预测
发送HTTP POST请求
```
python image_http_client.py
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"image": "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"}], "fetch": ["score"]}' http://127.0.0.1:9696/image/prediction
```
### 执行RPC预测服务
### RPC服务
启动server端
```
python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9393 #cpu预测服务
python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9696 #cpu预测服务
```
```
python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9393 --gpu_ids 0 #gpu预测服务
python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9696 --gpu_ids 0 #gpu预测服务
```
client端进行预测
```
python image_rpc_client.py ResNet50_vd_client_config/serving_client_conf.prototxt
```
*server端示例中服务端口为9393端口,client端示例中数据来自./data文件夹,server端地址为本地9393端口,可根据实际情况更改脚本。*
*server端示例中服务端口为9696端口
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import cv2
import base64
import numpy as np
from paddle_serving_app import ImageReader
from paddle_serving_server_gpu.web_service import WebService
class ImageService(WebService):
def preprocess(self, feed={}, fetch=[]):
reader = ImageReader()
feed_batch = []
for ins in feed:
if "image" not in ins:
raise ("feed data error!")
sample = base64.b64decode(ins["image"])
img = reader.process_image(sample)
feed_batch.append({"image": img})
return feed_batch, fetch
image_service = ImageService(name="image")
image_service.load_model_config(sys.argv[1])
image_service.set_gpus("0,1")
image_service.prepare_server(
workdir=sys.argv[2], port=int(sys.argv[3]), device="gpu")
image_service.run_server()
image_service.run_flask()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import requests
import base64
import json
import time
import os
import sys
py_version = sys.version_info[0]
def predict(image_path, server):
if py_version == 2:
image = base64.b64encode(open(image_path).read())
else:
image = base64.b64encode(open(image_path, "rb").read()).decode("utf-8")
req = json.dumps({"feed": [{"image": image}], "fetch": ["score"]})
r = requests.post(
server, data=req, headers={"Content-Type": "application/json"})
try:
print(r.json()["result"]["score"])
except ValueError:
print(r.text)
return r
if __name__ == "__main__":
server = "http://127.0.0.1:9393/image/prediction"
image_list = os.listdir("./image_data/n01440764/")
start = time.time()
for img in image_list:
image_file = "./image_data/n01440764/" + img
res = predict(image_file, server)
end = time.time()
print(end - start)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
class ImageReader():
def __init__(self):
self.image_mean = [0.485, 0.456, 0.406]
self.image_std = [0.229, 0.224, 0.225]
self.image_shape = [3, 224, 224]
self.resize_short_size = 256
self.interpolation = None
def resize_short(self, img, target_size, interpolation=None):
"""resize image
Args:
img: image data
target_size: resize short target size
interpolation: interpolation mode
Returns:
resized image data
"""
percent = float(target_size) / min(img.shape[0], img.shape[1])
resized_width = int(round(img.shape[1] * percent))
resized_height = int(round(img.shape[0] * percent))
if interpolation:
resized = cv2.resize(
img, (resized_width, resized_height),
interpolation=interpolation)
else:
resized = cv2.resize(img, (resized_width, resized_height))
return resized
def crop_image(self, img, target_size, center):
"""crop image
Args:
img: images data
target_size: crop target size
center: crop mode
Returns:
img: cropped image data
"""
height, width = img.shape[:2]
size = target_size
if center == True:
w_start = (width - size) // 2
h_start = (height - size) // 2
else:
w_start = np.random.randint(0, width - size + 1)
h_start = np.random.randint(0, height - size + 1)
w_end = w_start + size
h_end = h_start + size
img = img[h_start:h_end, w_start:w_end, :]
return img
def process_image(self, sample):
""" process_image """
mean = self.image_mean
std = self.image_std
crop_size = self.image_shape[1]
data = np.fromstring(sample, np.uint8)
img = cv2.imdecode(data, cv2.IMREAD_COLOR)
if img is None:
print("img is None, pass it.")
return None
if crop_size > 0:
target_size = self.resize_short_size
img = self.resize_short(
img, target_size, interpolation=self.interpolation)
img = self.crop_image(img, target_size=crop_size, center=True)
img = img[:, :, ::-1]
img = img.astype('float32').transpose((2, 0, 1)) / 255
img_mean = np.array(mean).reshape((3, 1, 1))
img_std = np.array(std).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img
tench, Tinca tinca,
goldfish, Carassius auratus,
great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias,
tiger shark, Galeocerdo cuvieri,
hammerhead, hammerhead shark,
electric ray, crampfish, numbfish, torpedo,
stingray,
cock,
hen,
ostrich, Struthio camelus,
brambling, Fringilla montifringilla,
goldfinch, Carduelis carduelis,
house finch, linnet, Carpodacus mexicanus,
junco, snowbird,
indigo bunting, indigo finch, indigo bird, Passerina cyanea,
robin, American robin, Turdus migratorius,
bulbul,
jay,
magpie,
chickadee,
water ouzel, dipper,
kite,
bald eagle, American eagle, Haliaeetus leucocephalus,
vulture,
great grey owl, great gray owl, Strix nebulosa,
European fire salamander, Salamandra salamandra,
common newt, Triturus vulgaris,
eft,
spotted salamander, Ambystoma maculatum,
axolotl, mud puppy, Ambystoma mexicanum,
bullfrog, Rana catesbeiana,
tree frog, tree-frog,
tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui,
loggerhead, loggerhead turtle, Caretta caretta,
leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea,
mud turtle,
terrapin,
box turtle, box tortoise,
banded gecko,
common iguana, iguana, Iguana iguana,
American chameleon, anole, Anolis carolinensis,
whiptail, whiptail lizard,
agama,
frilled lizard, Chlamydosaurus kingi,
alligator lizard,
Gila monster, Heloderma suspectum,
green lizard, Lacerta viridis,
African chameleon, Chamaeleo chamaeleon,
Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis,
African crocodile, Nile crocodile, Crocodylus niloticus,
American alligator, Alligator mississipiensis,
triceratops,
thunder snake, worm snake, Carphophis amoenus,
ringneck snake, ring-necked snake, ring snake,
hognose snake, puff adder, sand viper,
green snake, grass snake,
king snake, kingsnake,
garter snake, grass snake,
water snake,
vine snake,
night snake, Hypsiglena torquata,
boa constrictor, Constrictor constrictor,
rock python, rock snake, Python sebae,
Indian cobra, Naja naja,
green mamba,
sea snake,
horned viper, cerastes, sand viper, horned asp, Cerastes cornutus,
diamondback, diamondback rattlesnake, Crotalus adamanteus,
sidewinder, horned rattlesnake, Crotalus cerastes,
trilobite,
harvestman, daddy longlegs, Phalangium opilio,
scorpion,
black and gold garden spider, Argiope aurantia,
barn spider, Araneus cavaticus,
garden spider, Aranea diademata,
black widow, Latrodectus mactans,
tarantula,
wolf spider, hunting spider,
tick,
centipede,
black grouse,
ptarmigan,
ruffed grouse, partridge, Bonasa umbellus,
prairie chicken, prairie grouse, prairie fowl,
peacock,
quail,
partridge,
African grey, African gray, Psittacus erithacus,
macaw,
sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita,
lorikeet,
coucal,
bee eater,
hornbill,
hummingbird,
jacamar,
toucan,
drake,
red-breasted merganser, Mergus serrator,
goose,
black swan, Cygnus atratus,
tusker,
echidna, spiny anteater, anteater,
platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus,
wallaby, brush kangaroo,
koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus,
wombat,
jellyfish,
sea anemone, anemone,
brain coral,
flatworm, platyhelminth,
nematode, nematode worm, roundworm,
conch,
snail,
slug,
sea slug, nudibranch,
chiton, coat-of-mail shell, sea cradle, polyplacophore,
chambered nautilus, pearly nautilus, nautilus,
Dungeness crab, Cancer magister,
rock crab, Cancer irroratus,
fiddler crab,
king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica,
American lobster, Northern lobster, Maine lobster, Homarus americanus,
spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish,
crayfish, crawfish, crawdad, crawdaddy,
hermit crab,
isopod,
white stork, Ciconia ciconia,
black stork, Ciconia nigra,
spoonbill,
flamingo,
little blue heron, Egretta caerulea,
American egret, great white heron, Egretta albus,
bittern,
crane,
limpkin, Aramus pictus,
European gallinule, Porphyrio porphyrio,
American coot, marsh hen, mud hen, water hen, Fulica americana,
bustard,
ruddy turnstone, Arenaria interpres,
red-backed sandpiper, dunlin, Erolia alpina,
redshank, Tringa totanus,
dowitcher,
oystercatcher, oyster catcher,
pelican,
king penguin, Aptenodytes patagonica,
albatross, mollymawk,
grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus,
killer whale, killer, orca, grampus, sea wolf, Orcinus orca,
dugong, Dugong dugon,
sea lion,
Chihuahua,
Japanese spaniel,
Maltese dog, Maltese terrier, Maltese,
Pekinese, Pekingese, Peke,
Shih-Tzu,
Blenheim spaniel,
papillon,
toy terrier,
Rhodesian ridgeback,
Afghan hound, Afghan,
basset, basset hound,
beagle,
bloodhound, sleuthhound,
bluetick,
black-and-tan coonhound,
Walker hound, Walker foxhound,
English foxhound,
redbone,
borzoi, Russian wolfhound,
Irish wolfhound,
Italian greyhound,
whippet,
Ibizan hound, Ibizan Podenco,
Norwegian elkhound, elkhound,
otterhound, otter hound,
Saluki, gazelle hound,
Scottish deerhound, deerhound,
Weimaraner,
Staffordshire bullterrier, Staffordshire bull terrier,
American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier,
Bedlington terrier,
Border terrier,
Kerry blue terrier,
Irish terrier,
Norfolk terrier,
Norwich terrier,
Yorkshire terrier,
wire-haired fox terrier,
Lakeland terrier,
Sealyham terrier, Sealyham,
Airedale, Airedale terrier,
cairn, cairn terrier,
Australian terrier,
Dandie Dinmont, Dandie Dinmont terrier,
Boston bull, Boston terrier,
miniature schnauzer,
giant schnauzer,
standard schnauzer,
Scotch terrier, Scottish terrier, Scottie,
Tibetan terrier, chrysanthemum dog,
silky terrier, Sydney silky,
soft-coated wheaten terrier,
West Highland white terrier,
Lhasa, Lhasa apso,
flat-coated retriever,
curly-coated retriever,
golden retriever,
Labrador retriever,
Chesapeake Bay retriever,
German short-haired pointer,
vizsla, Hungarian pointer,
English setter,
Irish setter, red setter,
Gordon setter,
Brittany spaniel,
clumber, clumber spaniel,
English springer, English springer spaniel,
Welsh springer spaniel,
cocker spaniel, English cocker spaniel, cocker,
Sussex spaniel,
Irish water spaniel,
kuvasz,
schipperke,
groenendael,
malinois,
briard,
kelpie,
komondor,
Old English sheepdog, bobtail,
Shetland sheepdog, Shetland sheep dog, Shetland,
collie,
Border collie,
Bouvier des Flandres, Bouviers des Flandres,
Rottweiler,
German shepherd, German shepherd dog, German police dog, alsatian,
Doberman, Doberman pinscher,
miniature pinscher,
Greater Swiss Mountain dog,
Bernese mountain dog,
Appenzeller,
EntleBucher,
boxer,
bull mastiff,
Tibetan mastiff,
French bulldog,
Great Dane,
Saint Bernard, St Bernard,
Eskimo dog, husky,
malamute, malemute, Alaskan malamute,
Siberian husky,
dalmatian, coach dog, carriage dog,
affenpinscher, monkey pinscher, monkey dog,
basenji,
pug, pug-dog,
Leonberg,
Newfoundland, Newfoundland dog,
Great Pyrenees,
Samoyed, Samoyede,
Pomeranian,
chow, chow chow,
keeshond,
Brabancon griffon,
Pembroke, Pembroke Welsh corgi,
Cardigan, Cardigan Welsh corgi,
toy poodle,
miniature poodle,
standard poodle,
Mexican hairless,
timber wolf, grey wolf, gray wolf, Canis lupus,
white wolf, Arctic wolf, Canis lupus tundrarum,
red wolf, maned wolf, Canis rufus, Canis niger,
coyote, prairie wolf, brush wolf, Canis latrans,
dingo, warrigal, warragal, Canis dingo,
dhole, Cuon alpinus,
African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus,
hyena, hyaena,
red fox, Vulpes vulpes,
kit fox, Vulpes macrotis,
Arctic fox, white fox, Alopex lagopus,
grey fox, gray fox, Urocyon cinereoargenteus,
tabby, tabby cat,
tiger cat,
Persian cat,
Siamese cat, Siamese,
Egyptian cat,
cougar, puma, catamount, mountain lion, painter, panther, Felis concolor,
lynx, catamount,
leopard, Panthera pardus,
snow leopard, ounce, Panthera uncia,
jaguar, panther, Panthera onca, Felis onca,
lion, king of beasts, Panthera leo,
tiger, Panthera tigris,
cheetah, chetah, Acinonyx jubatus,
brown bear, bruin, Ursus arctos,
American black bear, black bear, Ursus americanus, Euarctos americanus,
ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus,
sloth bear, Melursus ursinus, Ursus ursinus,
mongoose,
meerkat, mierkat,
tiger beetle,
ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle,
ground beetle, carabid beetle,
long-horned beetle, longicorn, longicorn beetle,
leaf beetle, chrysomelid,
dung beetle,
rhinoceros beetle,
weevil,
fly,
bee,
ant, emmet, pismire,
grasshopper, hopper,
cricket,
walking stick, walkingstick, stick insect,
cockroach, roach,
mantis, mantid,
cicada, cicala,
leafhopper,
lacewing, lacewing fly,
"dragonfly, darning needle, devils darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
damselfly,
admiral,
ringlet, ringlet butterfly,
monarch, monarch butterfly, milkweed butterfly, Danaus plexippus,
cabbage butterfly,
sulphur butterfly, sulfur butterfly,
lycaenid, lycaenid butterfly,
starfish, sea star,
sea urchin,
sea cucumber, holothurian,
wood rabbit, cottontail, cottontail rabbit,
hare,
Angora, Angora rabbit,
hamster,
porcupine, hedgehog,
fox squirrel, eastern fox squirrel, Sciurus niger,
marmot,
beaver,
guinea pig, Cavia cobaya,
sorrel,
zebra,
hog, pig, grunter, squealer, Sus scrofa,
wild boar, boar, Sus scrofa,
warthog,
hippopotamus, hippo, river horse, Hippopotamus amphibius,
ox,
water buffalo, water ox, Asiatic buffalo, Bubalus bubalis,
bison,
ram, tup,
bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis,
ibex, Capra ibex,
hartebeest,
impala, Aepyceros melampus,
gazelle,
Arabian camel, dromedary, Camelus dromedarius,
llama,
weasel,
mink,
polecat, fitch, foulmart, foumart, Mustela putorius,
black-footed ferret, ferret, Mustela nigripes,
otter,
skunk, polecat, wood pussy,
badger,
armadillo,
three-toed sloth, ai, Bradypus tridactylus,
orangutan, orang, orangutang, Pongo pygmaeus,
gorilla, Gorilla gorilla,
chimpanzee, chimp, Pan troglodytes,
gibbon, Hylobates lar,
siamang, Hylobates syndactylus, Symphalangus syndactylus,
guenon, guenon monkey,
patas, hussar monkey, Erythrocebus patas,
baboon,
macaque,
langur,
colobus, colobus monkey,
proboscis monkey, Nasalis larvatus,
marmoset,
capuchin, ringtail, Cebus capucinus,
howler monkey, howler,
titi, titi monkey,
spider monkey, Ateles geoffroyi,
squirrel monkey, Saimiri sciureus,
Madagascar cat, ring-tailed lemur, Lemur catta,
indri, indris, Indri indri, Indri brevicaudatus,
Indian elephant, Elephas maximus,
African elephant, Loxodonta africana,
lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens,
giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca,
barracouta, snoek,
eel,
coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch,
rock beauty, Holocanthus tricolor,
anemone fish,
sturgeon,
gar, garfish, garpike, billfish, Lepisosteus osseus,
lionfish,
puffer, pufferfish, blowfish, globefish,
abacus,
abaya,
"academic gown, academic robe, judges robe",
accordion, piano accordion, squeeze box,
acoustic guitar,
aircraft carrier, carrier, flattop, attack aircraft carrier,
airliner,
airship, dirigible,
altar,
ambulance,
amphibian, amphibious vehicle,
analog clock,
apiary, bee house,
apron,
ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin,
assault rifle, assault gun,
backpack, back pack, knapsack, packsack, rucksack, haversack,
bakery, bakeshop, bakehouse,
balance beam, beam,
balloon,
ballpoint, ballpoint pen, ballpen, Biro,
Band Aid,
banjo,
bannister, banister, balustrade, balusters, handrail,
barbell,
barber chair,
barbershop,
barn,
barometer,
barrel, cask,
barrow, garden cart, lawn cart, wheelbarrow,
baseball,
basketball,
bassinet,
bassoon,
bathing cap, swimming cap,
bath towel,
bathtub, bathing tub, bath, tub,
beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon,
beacon, lighthouse, beacon light, pharos,
beaker,
bearskin, busby, shako,
beer bottle,
beer glass,
bell cote, bell cot,
bib,
bicycle-built-for-two, tandem bicycle, tandem,
bikini, two-piece,
binder, ring-binder,
binoculars, field glasses, opera glasses,
birdhouse,
boathouse,
bobsled, bobsleigh, bob,
bolo tie, bolo, bola tie, bola,
bonnet, poke bonnet,
bookcase,
bookshop, bookstore, bookstall,
bottlecap,
bow,
bow tie, bow-tie, bowtie,
brass, memorial tablet, plaque,
brassiere, bra, bandeau,
breakwater, groin, groyne, mole, bulwark, seawall, jetty,
breastplate, aegis, egis,
broom,
bucket, pail,
buckle,
bulletproof vest,
bullet train, bullet,
butcher shop, meat market,
cab, hack, taxi, taxicab,
caldron, cauldron,
candle, taper, wax light,
cannon,
canoe,
can opener, tin opener,
cardigan,
car mirror,
carousel, carrousel, merry-go-round, roundabout, whirligig,
"carpenters kit, tool kit",
carton,
car wheel,
cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM,
cassette,
cassette player,
castle,
catamaran,
CD player,
cello, violoncello,
cellular telephone, cellular phone, cellphone, cell, mobile phone,
chain,
chainlink fence,
chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour,
chain saw, chainsaw,
chest,
chiffonier, commode,
chime, bell, gong,
china cabinet, china closet,
Christmas stocking,
church, church building,
cinema, movie theater, movie theatre, movie house, picture palace,
cleaver, meat cleaver, chopper,
cliff dwelling,
cloak,
clog, geta, patten, sabot,
cocktail shaker,
coffee mug,
coffeepot,
coil, spiral, volute, whorl, helix,
combination lock,
computer keyboard, keypad,
confectionery, confectionary, candy store,
container ship, containership, container vessel,
convertible,
corkscrew, bottle screw,
cornet, horn, trumpet, trump,
cowboy boot,
cowboy hat, ten-gallon hat,
cradle,
crane,
crash helmet,
crate,
crib, cot,
Crock Pot,
croquet ball,
crutch,
cuirass,
dam, dike, dyke,
desk,
desktop computer,
dial telephone, dial phone,
diaper, nappy, napkin,
digital clock,
digital watch,
dining table, board,
dishrag, dishcloth,
dishwasher, dish washer, dishwashing machine,
disk brake, disc brake,
dock, dockage, docking facility,
dogsled, dog sled, dog sleigh,
dome,
doormat, welcome mat,
drilling platform, offshore rig,
drum, membranophone, tympan,
drumstick,
dumbbell,
Dutch oven,
electric fan, blower,
electric guitar,
electric locomotive,
entertainment center,
envelope,
espresso maker,
face powder,
feather boa, boa,
file, file cabinet, filing cabinet,
fireboat,
fire engine, fire truck,
fire screen, fireguard,
flagpole, flagstaff,
flute, transverse flute,
folding chair,
football helmet,
forklift,
fountain,
fountain pen,
four-poster,
freight car,
French horn, horn,
frying pan, frypan, skillet,
fur coat,
garbage truck, dustcart,
gasmask, respirator, gas helmet,
gas pump, gasoline pump, petrol pump, island dispenser,
goblet,
go-kart,
golf ball,
golfcart, golf cart,
gondola,
gong, tam-tam,
gown,
grand piano, grand,
greenhouse, nursery, glasshouse,
grille, radiator grille,
grocery store, grocery, food market, market,
guillotine,
hair slide,
hair spray,
half track,
hammer,
hamper,
hand blower, blow dryer, blow drier, hair dryer, hair drier,
hand-held computer, hand-held microcomputer,
handkerchief, hankie, hanky, hankey,
hard disc, hard disk, fixed disk,
harmonica, mouth organ, harp, mouth harp,
harp,
harvester, reaper,
hatchet,
holster,
home theater, home theatre,
honeycomb,
hook, claw,
hoopskirt, crinoline,
horizontal bar, high bar,
horse cart, horse-cart,
hourglass,
iPod,
iron, smoothing iron,
"jack-o-lantern",
jean, blue jean, denim,
jeep, landrover,
jersey, T-shirt, tee shirt,
jigsaw puzzle,
jinrikisha, ricksha, rickshaw,
joystick,
kimono,
knee pad,
knot,
lab coat, laboratory coat,
ladle,
lampshade, lamp shade,
laptop, laptop computer,
lawn mower, mower,
lens cap, lens cover,
letter opener, paper knife, paperknife,
library,
lifeboat,
lighter, light, igniter, ignitor,
limousine, limo,
liner, ocean liner,
lipstick, lip rouge,
Loafer,
lotion,
loudspeaker, speaker, speaker unit, loudspeaker system, speaker system,
"loupe, jewelers loupe",
lumbermill, sawmill,
magnetic compass,
mailbag, postbag,
mailbox, letter box,
maillot,
maillot, tank suit,
manhole cover,
maraca,
marimba, xylophone,
mask,
matchstick,
maypole,
maze, labyrinth,
measuring cup,
medicine chest, medicine cabinet,
megalith, megalithic structure,
microphone, mike,
microwave, microwave oven,
military uniform,
milk can,
minibus,
miniskirt, mini,
minivan,
missile,
mitten,
mixing bowl,
mobile home, manufactured home,
Model T,
modem,
monastery,
monitor,
moped,
mortar,
mortarboard,
mosque,
mosquito net,
motor scooter, scooter,
mountain bike, all-terrain bike, off-roader,
mountain tent,
mouse, computer mouse,
mousetrap,
moving van,
muzzle,
nail,
neck brace,
necklace,
nipple,
notebook, notebook computer,
obelisk,
oboe, hautboy, hautbois,
ocarina, sweet potato,
odometer, hodometer, mileometer, milometer,
oil filter,
organ, pipe organ,
oscilloscope, scope, cathode-ray oscilloscope, CRO,
overskirt,
oxcart,
oxygen mask,
packet,
paddle, boat paddle,
paddlewheel, paddle wheel,
padlock,
paintbrush,
"pajama, pyjama, pjs, jammies",
palace,
panpipe, pandean pipe, syrinx,
paper towel,
parachute, chute,
parallel bars, bars,
park bench,
parking meter,
passenger car, coach, carriage,
patio, terrace,
pay-phone, pay-station,
pedestal, plinth, footstall,
pencil box, pencil case,
pencil sharpener,
perfume, essence,
Petri dish,
photocopier,
pick, plectrum, plectron,
pickelhaube,
picket fence, paling,
pickup, pickup truck,
pier,
piggy bank, penny bank,
pill bottle,
pillow,
ping-pong ball,
pinwheel,
pirate, pirate ship,
pitcher, ewer,
"plane, carpenters plane, woodworking plane",
planetarium,
plastic bag,
plate rack,
plow, plough,
"plunger, plumbers helper",
Polaroid camera, Polaroid Land camera,
pole,
police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria,
poncho,
pool table, billiard table, snooker table,
pop bottle, soda bottle,
pot, flowerpot,
"potters wheel",
power drill,
prayer rug, prayer mat,
printer,
prison, prison house,
projectile, missile,
projector,
puck, hockey puck,
punching bag, punch bag, punching ball, punchball,
purse,
quill, quill pen,
quilt, comforter, comfort, puff,
racer, race car, racing car,
racket, racquet,
radiator,
radio, wireless,
radio telescope, radio reflector,
rain barrel,
recreational vehicle, RV, R.V.,
reel,
reflex camera,
refrigerator, icebox,
remote control, remote,
restaurant, eating house, eating place, eatery,
revolver, six-gun, six-shooter,
rifle,
rocking chair, rocker,
rotisserie,
rubber eraser, rubber, pencil eraser,
rugby ball,
rule, ruler,
running shoe,
safe,
safety pin,
saltshaker, salt shaker,
sandal,
sarong,
sax, saxophone,
scabbard,
scale, weighing machine,
school bus,
schooner,
scoreboard,
screen, CRT screen,
screw,
screwdriver,
seat belt, seatbelt,
sewing machine,
shield, buckler,
shoe shop, shoe-shop, shoe store,
shoji,
shopping basket,
shopping cart,
shovel,
shower cap,
shower curtain,
ski,
ski mask,
sleeping bag,
slide rule, slipstick,
sliding door,
slot, one-armed bandit,
snorkel,
snowmobile,
snowplow, snowplough,
soap dispenser,
soccer ball,
sock,
solar dish, solar collector, solar furnace,
sombrero,
soup bowl,
space bar,
space heater,
space shuttle,
spatula,
speedboat,
"spider web, spiders web",
spindle,
sports car, sport car,
spotlight, spot,
stage,
steam locomotive,
steel arch bridge,
steel drum,
stethoscope,
stole,
stone wall,
stopwatch, stop watch,
stove,
strainer,
streetcar, tram, tramcar, trolley, trolley car,
stretcher,
studio couch, day bed,
stupa, tope,
submarine, pigboat, sub, U-boat,
suit, suit of clothes,
sundial,
sunglass,
sunglasses, dark glasses, shades,
sunscreen, sunblock, sun blocker,
suspension bridge,
swab, swob, mop,
sweatshirt,
swimming trunks, bathing trunks,
swing,
switch, electric switch, electrical switch,
syringe,
table lamp,
tank, army tank, armored combat vehicle, armoured combat vehicle,
tape player,
teapot,
teddy, teddy bear,
television, television system,
tennis ball,
thatch, thatched roof,
theater curtain, theatre curtain,
thimble,
thresher, thrasher, threshing machine,
throne,
tile roof,
toaster,
tobacco shop, tobacconist shop, tobacconist,
toilet seat,
torch,
totem pole,
tow truck, tow car, wrecker,
toyshop,
tractor,
trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi,
tray,
trench coat,
tricycle, trike, velocipede,
trimaran,
tripod,
triumphal arch,
trolleybus, trolley coach, trackless trolley,
trombone,
tub, vat,
turnstile,
typewriter keyboard,
umbrella,
unicycle, monocycle,
upright, upright piano,
vacuum, vacuum cleaner,
vase,
vault,
velvet,
vending machine,
vestment,
viaduct,
violin, fiddle,
volleyball,
waffle iron,
wall clock,
wallet, billfold, notecase, pocketbook,
wardrobe, closet, press,
warplane, military plane,
washbasin, handbasin, washbowl, lavabo, wash-hand basin,
washer, automatic washer, washing machine,
water bottle,
water jug,
water tower,
whiskey jug,
whistle,
wig,
window screen,
window shade,
Windsor tie,
wine bottle,
wing,
wok,
wooden spoon,
wool, woolen, woollen,
worm fence, snake fence, snake-rail fence, Virginia fence,
wreck,
yawl,
yurt,
web site, website, internet site, site,
comic book,
crossword puzzle, crossword,
street sign,
traffic light, traffic signal, stoplight,
book jacket, dust cover, dust jacket, dust wrapper,
menu,
plate,
guacamole,
consomme,
hot pot, hotpot,
trifle,
ice cream, icecream,
ice lolly, lolly, lollipop, popsicle,
French loaf,
bagel, beigel,
pretzel,
cheeseburger,
hotdog, hot dog, red hot,
mashed potato,
head cabbage,
broccoli,
cauliflower,
zucchini, courgette,
spaghetti squash,
acorn squash,
butternut squash,
cucumber, cuke,
artichoke, globe artichoke,
bell pepper,
cardoon,
mushroom,
Granny Smith,
strawberry,
orange,
lemon,
fig,
pineapple, ananas,
banana,
jackfruit, jak, jack,
custard apple,
pomegranate,
hay,
carbonara,
chocolate sauce, chocolate syrup,
dough,
meat loaf, meatloaf,
pizza, pizza pie,
potpie,
burrito,
red wine,
espresso,
cup,
eggnog,
alp,
bubble,
cliff, drop, drop-off,
coral reef,
geyser,
lakeside, lakeshore,
promontory, headland, head, foreland,
sandbar, sand bar,
seashore, coast, seacoast, sea-coast,
valley, vale,
volcano,
ballplayer, baseball player,
groom, bridegroom,
scuba diver,
rapeseed,
daisy,
"yellow ladys slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
corn,
acorn,
hip, rose hip, rosehip,
buckeye, horse chestnut, conker,
coral fungus,
agaric,
gyromitra,
stinkhorn, carrion fungus,
earthstar,
hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa,
bolete,
ear, spike, capitulum,
toilet tissue, toilet paper, bathroom tissue
......@@ -14,23 +14,35 @@
import sys
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize
from paddle_serving_app.reader import Sequential, URL2Image, Resize
from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
import time
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9393"])
client.connect(["127.0.0.1:9696"])
label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
for line in fin:
label_dict[label_idx] = line.strip()
label_idx += 1
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
print(seq)
start = time.time()
image_file = "daisy.jpg"
for i in range(1000):
image_file = "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"
for i in range(10):
img = seq(image_file)
fetch_map = client.predict(feed={"image": img}, fetch=["score"])
prob = max(fetch_map["score"][0])
label = label_dict[fetch_map["score"][0].tolist().index(prob)].strip(
).replace(",", "")
print("prediction: {}, probability: {}".format(label, prob))
end = time.time()
print(end - start)
......@@ -11,29 +11,62 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService
from paddle_serving_app import ImageReader
import sys
import base64
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize
if len(sys.argv) != 4:
print("python resnet50_web_service.py model device port")
sys.exit(-1)
device = sys.argv[2]
if device == "cpu":
from paddle_serving_server.web_service import WebService
else:
from paddle_serving_server_gpu.web_service import WebService
class ImageService(WebService):
def preprocess(self, feed={}, fetch=[]):
reader = ImageReader()
def init_imagenet_setting(self):
self.seq = Sequential([
URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose(
(2, 0, 1)), Div(255), Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225], True)
])
self.label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
for line in fin:
self.label_dict[label_idx] = line.strip()
label_idx += 1
def preprocess(self, feed=[], fetch=[]):
feed_batch = []
for ins in feed:
if "image" not in ins:
raise ("feed data error!")
sample = base64.b64decode(ins["image"])
img = reader.process_image(sample)
img = self.seq(ins["image"])
feed_batch.append({"image": img})
return feed_batch, fetch
def postprocess(self, feed=[], fetch=[], fetch_map={}):
score_list = fetch_map["score"]
result = {"label": [], "prob": []}
for score in score_list:
max_score = max(score)
result["label"].append(self.label_dict[score.index(max_score)]
.strip().replace(",", ""))
result["prob"].append(max_score)
return result
image_service = ImageService(name="image")
image_service.load_model_config(sys.argv[1])
image_service.init_imagenet_setting()
if device == "gpu":
image_service.set_gpus("0,1")
image_service.prepare_server(
workdir=sys.argv[2], port=int(sys.argv[3]), device="cpu")
workdir="workdir", port=int(sys.argv[3]), device=device)
image_service.run_server()
image_service.run_flask()
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .reader.chinese_bert_reader import ChineseBertReader
from .reader.image_reader import ImageReader, File2Image, URL2Image, Sequential, Normalize, CenterCrop, Resize
from .reader.image_reader import ImageReader, File2Image, URL2Image, Sequential, Normalize, CenterCrop, Resize, PadStride
from .reader.lac_reader import LACReader
from .reader.senta_reader import SentaReader
from .reader.imdb_reader import IMDBDataset
......
......@@ -71,6 +71,7 @@ class Debugger(object):
if profile:
config.enable_profile()
config.set_cpu_math_library_num_threads(cpu_num)
config.switch_ir_optim(False)
self.predictor = create_paddle_predictor(config)
......
......@@ -465,6 +465,24 @@ class Resize(object):
_cv2_interpolation_to_str[self.interpolation])
class PadStride(object):
def __init__(self, stride):
self.coarsest_stride = stride
def __call__(self, img):
coarsest_stride = self.coarsest_stride
if coarsest_stride == 0:
return img
im_c, im_h, im_w = img.shape
pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
padding_im[:, :im_h, :im_w] = img
im_info = {}
im_info['resize_shape'] = padding_im.shape[1:]
return padding_im
class Transpose(object):
def __init__(self, transpose_target):
self.transpose_target = transpose_target
......
......@@ -329,9 +329,9 @@ class Client(object):
# result map needs to be a numpy array
for i, name in enumerate(fetch_names):
if self.fetch_names_to_type_[name] == int_type:
# result_map[name] will be py::array(numpy array)
result_map[name] = result_batch.get_int64_by_name(mi, name)
shape = result_batch.get_shape(mi, name)
result_map[name] = np.array(result_map[name], dtype='int64')
result_map[name].shape = shape
if name in self.lod_tensor_set:
result_map["{}.lod".format(name)] = np.array(
......@@ -339,8 +339,6 @@ class Client(object):
elif self.fetch_names_to_type_[name] == float_type:
result_map[name] = result_batch.get_float_by_name(mi, name)
shape = result_batch.get_shape(mi, name)
result_map[name] = np.array(
result_map[name], dtype='float32')
result_map[name].shape = shape
if name in self.lod_tensor_set:
result_map["{}.lod".format(name)] = np.array(
......
......@@ -290,8 +290,8 @@ class Server(object):
# check config here
# print config here
def use_mkl(self):
self.mkl_flag = True
def use_mkl(self, flag):
self.mkl_flag = flag
def get_device_version(self):
avx_flag = False
......@@ -306,6 +306,10 @@ class Server(object):
else:
device_version = "serving-cpu-avx-openblas-"
else:
if mkl_flag:
print(
"Your CPU does not support AVX, server will running with noavx-openblas mode."
)
device_version = "serving-cpu-noavx-openblas-"
return device_version
......
......@@ -43,6 +43,7 @@ def parse_args(): # pylint: disable=doc-string-missing
"--mem_optim", type=bool, default=False, help="Memory optimize")
parser.add_argument(
"--ir_optim", type=bool, default=False, help="Graph optimize")
parser.add_argument("--use_mkl", type=bool, default=False, help="Use MKL")
parser.add_argument(
"--max_body_size",
type=int,
......@@ -61,6 +62,7 @@ def start_standard_model(): # pylint: disable=doc-string-missing
mem_optim = args.mem_optim
ir_optim = args.ir_optim
max_body_size = args.max_body_size
use_mkl = args.use_mkl
if model == "":
print("You must specify your serving model")
......@@ -82,6 +84,7 @@ def start_standard_model(): # pylint: disable=doc-string-missing
server.set_num_threads(thread_num)
server.set_memory_optimize(mem_optim)
server.set_ir_optimize(ir_optim)
server.use_mkl(use_mkl)
server.set_max_body_size(max_body_size)
server.set_port(port)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册