提交 8f5aadc1 编写于 作者: B barrierye

add NEW_WEB_SERVICE doc

上级 d46264fa
......@@ -256,6 +256,7 @@ curl -H "Content-Type:application/json" -X POST -d '{"url": "https://paddle-serv
### Developers
- [How to config Serving native operators on server side?](doc/SERVER_DAG.md)
- [How to develop a new Serving operator?](doc/NEW_OPERATOR.md)
- [How to develop a new Web Service?](doc/NEW_WEB_SERVICE.md)
- [Golang client](doc/IMDB_GO_CLIENT.md)
- [Compile from source code](doc/COMPILE.md)
......
......@@ -262,6 +262,7 @@ curl -H "Content-Type:application/json" -X POST -d '{"url": "https://paddle-serv
### 开发者教程
- [如何配置Server端的计算图?](doc/SERVER_DAG_CN.md)
- [如何开发一个新的General Op?](doc/NEW_OPERATOR_CN.md)
- [如何开发一个新的Web Service?](doc/NEW_WEB_SERVICE_CN.md)
- [如何在Paddle Serving使用Go Client?](doc/IMDB_GO_CLIENT_CN.md)
- [如何编译PaddleServing?](doc/COMPILE_CN.md)
......
# How to develop a new Web service?
([简体中文](NEW_WEB_SERVICE_CN.md)|English)
This document will take the image classification service based on the Imagenet data set as an example to introduce how to develop a new web service. The complete code can be visited at [here](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/imagenet/image_classification_service.py).
## WebService base class
Paddle Serving implements the [WebService](https://github.com/PaddlePaddle/Serving/blob/develop/python/paddle_serving_server/web_service.py#L23) base class. You need to override its `preprocess` and `postprocess` method. The default implementation is as follows:
```python
class WebService(object):
def preprocess(self, feed={}, fetch=[]):
return feed, fetch
def postprocess(self, feed={}, fetch=[], fetch_map=None):
return fetch_map
```
### preprocess
The preprocess method has two input parameters, `feed` and `fetch`. For an HTTP request `request`:
- The value of `feed` is request data `request.json`
- The value of `fetch` is the fetch part `request.json["fetch"]` in the request data
The return values are the feed and fetch values used in the prediction.
### postprocess
The postprocess method has three input parameters, `feed`, `fetch` and `fetch_map`:
- The value of `feed` is request data `request.json`
- The value of `fetch` is the fetch part `request.json["fetch"]` in the request data
- The value of `fetch_map` is the model output value.
The return value will be processed as `{"reslut": fetch_map}` as the return of the HTTP request.
## Develop ImageService class
```python
class ImageService(WebService):
def preprocess(self, feed={}, fetch=[]):
reader = ImageReader()
if "image" not in feed:
raise ("feed data error!")
if isinstance(feed["image"], list):
feed_batch = []
for image in feed["image"]:
sample = base64.b64decode(image)
img = reader.process_image(sample)
res_feed = {}
res_feed["image"] = img.reshape(-1)
feed_batch.append(res_feed)
return feed_batch, fetch
else:
sample = base64.b64decode(feed["image"])
img = reader.process_image(sample)
res_feed = {}
res_feed["image"] = img.reshape(-1)
return res_feed, fetch
```
For the above `ImageService`, only the `preprocess` method is rewritten to process the image data in Base64 format into the data format required by prediction.
# 如何开发一个新的Web Service?
(简体中文|[English](NEW_WEB_SERVICE.md))
本文档将以Imagenet图像分类服务为例,来介绍如何开发一个新的Web Service。您可以在[这里](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/imagenet/image_classification_service.py)查阅完整的代码。
## WebService基类
Paddle Serving实现了[WebService](https://github.com/PaddlePaddle/Serving/blob/develop/python/paddle_serving_server/web_service.py#L23)基类,您需要重写它的`preprocess`方法和`postprocess`方法,默认实现如下:
```python
class WebService(object):
def preprocess(self, feed={}, fetch=[]):
return feed, fetch
def postprocess(self, feed={}, fetch=[], fetch_map=None):
return fetch_map
```
###preprocess方法
preprocess方法有两个输入参数,`feed``fetch`。对于一个HTTP请求`request`
- `feed`的值为请求数据`request.json`
- `fetch`的值为请求数据中的fetch部分`request.json["fetch"]`
返回值分别是预测过程中用到的feed和fetch值。
###postprocess方法
postprocess方法有三个输入参数,`feed``fetch``fetch_map`
- `feed`的值为请求数据`request.json`
- `fetch`的值为请求数据中的fetch部分`request.json["fetch"]`
- `fetch_map`的值为fetch到的模型输出值
返回值将会被处理成`{"reslut": fetch_map}`作为HTTP请求的返回。
## 开发ImageService类
```python
class ImageService(WebService):
def preprocess(self, feed={}, fetch=[]):
reader = ImageReader()
if "image" not in feed:
raise ("feed data error!")
if isinstance(feed["image"], list):
feed_batch = []
for image in feed["image"]:
sample = base64.b64decode(image)
img = reader.process_image(sample)
res_feed = {}
res_feed["image"] = img.reshape(-1)
feed_batch.append(res_feed)
return feed_batch, fetch
else:
sample = base64.b64decode(feed["image"])
img = reader.process_image(sample)
res_feed = {}
res_feed["image"] = img.reshape(-1)
return res_feed, fetch
```
对于上述的`ImageService`,只重写了前处理方法,将base64格式的图片数据处理成模型预测需要的数据格式。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册