未验证 提交 8e623d2b 编写于 作者: T TeslaZhao 提交者: GitHub

Merge pull request #866 from barrierye/faq

[WIP] Update FAQ
# FAQ
- Q: 如何调整RPC服务的等待时间,避免超时?
A: 使用set_rpc_timeout_ms设置更长的等待时间,单位为毫秒,默认时间为20秒。
示例:
```
from paddle_serving_client import Client
## 基础知识
client = Client()
client.load_client_config(sys.argv[1])
client.set_rpc_timeout_ms(100000)
client.connect(["127.0.0.1:9393"])
```
- Q: 如何使用自己编译的Paddle Serving进行预测?
A: 通过pip命令安装自己编译出的whl包,并设置SERVING_BIN环境变量为编译出的serving二进制文件路径。
## 编译问题
- Q: 执行GPU预测时遇到InvalidArgumentError: Device id must be less than GPU count, but received id is: 0. GPU count is: 0.
#### Q: 如何使用自己编译的Paddle Serving进行预测?
A: 将显卡驱动对应的libcuda.so的目录添加到LD_LIBRARY_PATH环境变量中
**A:** 通过pip命令安装自己编译出的whl包,并设置SERVING_BIN环境变量为编译出的serving二进制文件路径。
- Q: 执行GPU预测时遇到ExternalError: Cudnn error, CUDNN_STATUS_BAD_PARAM at (/home/scmbuild/workspaces_cluster.dev/baidu.lib.paddlepaddle/baidu/lib/paddlepaddle/Paddle/paddle/fluid/operators/batch_norm_op.cu:198)
A: 将cudnn的lib64路径添加到LD_LIBRARY_PATH,安装自pypi的Paddle Serving中post9版使用的是cudnn 7.3,post10使用的是cudnn 7.5。如果是使用自己编译的Paddle Serving,可以在log/serving.INFO日志文件中查看对应的cudnn版本。
- Q: 执行GPU预测时遇到Error: Failed to find dynamic library: libcublas.so
## 部署问题
A: 将cuda的lib64路径添加到LD_LIBRARY_PATH, post9版本的Paddle Serving使用的是cuda 9.0,post10版本使用的cuda 10.0。
#### Q: GPU环境运行Serving报错,GPU count is: 0。
- Q: 部署和预测中的日志信息在哪里查看?
```
terminate called after throwing an instance of 'paddle::platform::EnforceNotMet'
what():
--------------------------------------------
C++ Call Stacks (More useful to developers):
--------------------------------------------
0 std::string paddle::platform::GetTraceBackString<std::string const&>(std::string const&, char const*, int)
1 paddle::platform::SetDeviceId(int)
2 paddle::AnalysisConfig::fraction_of_gpu_memory_for_pool() const
3 std::unique_ptr<paddle::PaddlePredictor, std::default_delete<paddle::PaddlePredictor> > paddle::CreatePaddlePredictor<paddle::AnalysisConfig, (paddle::PaddleEngineKind)2>(paddle::AnalysisConfig const&)
4 std::unique_ptr<paddle::PaddlePredictor, std::default_delete<paddle::PaddlePredictor> > paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(paddle::AnalysisConfig const&)
----------------------
Error Message Summary:
----------------------
InvalidArgumentError: Device id must be less than GPU count, but received id is: 0. GPU count is: 0.
[Hint: Expected id < GetCUDADeviceCount(), but received id:0 >= GetCUDADeviceCount():0.] at (/home/scmbuild/workspaces_cluster.dev/baidu.lib.paddlepaddle/baidu/lib/paddlepaddle/Paddle/paddle/fluid/platform/gpu_info.cc:211)
```
- A: server端的日志分为两部分,一部分打印到标准输出,一部分打印到启动服务时的目录下的log/serving.INFO文件中。
**A:** libcuda.so没有链接成功。首先在机器上找到libcuda.so,ldd检查libnvidia版本与nvidia-smi中版本一致(libnvidia-fatbinaryloader.so.418.39,与NVIDIA-SMI 418.39 Driver Version: 418.39),然后用export导出libcuda.so的路径即可(例如libcuda.so在/usr/lib64/,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib64/)
client端的日志直接打印到标准输出。
#### Q: 遇到 GPU not found, please check your environment or use cpu version by "pip install paddle_serving_server"
通过在部署服务之前 'export GLOG_v=3'可以输出更为详细的日志信息。
**A:** 检查环境中是否有N卡:ls /dev/ | grep nvidia
- Q: GPU环境运行Serving报错,GPU count is: 0。
```
terminate called after throwing an instance of 'paddle::platform::EnforceNotMet'
what():
--------------------------------------------
C++ Call Stacks (More useful to developers):
--------------------------------------------
0 std::string paddle::platform::GetTraceBackString<std::string const&>(std::string const&, char const*, int)
1 paddle::platform::SetDeviceId(int)
2 paddle::AnalysisConfig::fraction_of_gpu_memory_for_pool() const
3 std::unique_ptr<paddle::PaddlePredictor, std::default_delete<paddle::PaddlePredictor> > paddle::CreatePaddlePredictor<paddle::AnalysisConfig, (paddle::PaddleEngineKind)2>(paddle::AnalysisConfig const&)
4 std::unique_ptr<paddle::PaddlePredictor, std::default_delete<paddle::PaddlePredictor> > paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(paddle::AnalysisConfig const&)
----------------------
Error Message Summary:
----------------------
InvalidArgumentError: Device id must be less than GPU count, but received id is: 0. GPU count is: 0.
[Hint: Expected id < GetCUDADeviceCount(), but received id:0 >= GetCUDADeviceCount():0.] at (/home/scmbuild/workspaces_cluster.dev/baidu.lib.paddlepaddle/baidu/lib/paddlepaddle/Paddle/paddle/fluid/platform/gpu_info.cc:211)
```
A: libcuda.so没有链接成功。首先在机器上找到libcuda.so,ldd检查libnvidia版本与nvidia-smi中版本一致(libnvidia-fatbinaryloader.so.418.39,与NVIDIA-SMI 418.39 Driver Version: 418.39),然后用export导出libcuda.so的路径即可(例如libcuda.so在/usr/lib64/,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib64/)
#### Q: 目前Paddle Serving支持哪些镜像环境?
**A:** 目前(0.4.0)仅支持CentOS,具体列表查阅[这里](https://github.com/PaddlePaddle/Serving/blob/develop/doc/DOCKER_IMAGES.md)
## 预测问题
#### Q: 使用GPU第一次预测时特别慢,如何调整RPC服务的等待时间避免超时?
**A:** GPU第一次预测需要初始化。使用set_rpc_timeout_ms设置更长的等待时间,单位为毫秒,默认时间为20秒。
示例:
```
from paddle_serving_client import Client
client = Client()
client.load_client_config(sys.argv[1])
client.set_rpc_timeout_ms(100000)
client.connect(["127.0.0.1:9393"])
```
#### Q: 执行GPU预测时遇到InvalidArgumentError: Device id must be less than GPU count, but received id is: 0. GPU count is: 0.
**A:** 将显卡驱动对应的libcuda.so的目录添加到LD_LIBRARY_PATH环境变量中
#### Q: 执行GPU预测时遇到ExternalError: Cudnn error, CUDNN_STATUS_BAD_PARAM at (../batch_norm_op.cu:198)
**A:** 将cudnn的lib64路径添加到LD_LIBRARY_PATH,安装自pypi的Paddle Serving中post9版使用的是cudnn 7.3,post10使用的是cudnn 7.5。如果是使用自己编译的Paddle Serving,可以在log/serving.INFO日志文件中查看对应的cudnn版本。
#### Q: 执行GPU预测时遇到Error: Failed to find dynamic library: libcublas.so
**A:** 将cuda的lib64路径添加到LD_LIBRARY_PATH, post9版本的Paddle Serving使用的是cuda 9.0,post10版本使用的cuda 10.0。
#### Q: Client端fetch的变量名如何设置
**A:** 可以查看配置文件serving_server_conf.prototxt,获取需要的变量名
#### Q: 如何使用多语言客户端
**A:** 多语言客户端要与多语言服务端配套使用。当前版本下(0.4.0),服务端需要将Server改为MultiLangServer(如果是以命令行启动的话只需要添加--use_multilang参数),Python客户端需要将Client改为MultiLangClient,同时去除load_client_config的过程。[Java客户端参考文档](https://github.com/PaddlePaddle/Serving/blob/develop/doc/JAVA_SDK_CN.md)
#### Q: 如何在Windows下使用Paddle Serving
**A:** 当前版本(0.4.0)在Windows上可以运行多语言RPC客户端,或使用HTTP方式访问。如果使用多语言RPC客户端,需要在Linux环境(比如本机容器,或远程Linux机器)中运行多语言服务端;如果使用HTTP方式,需要在Linux环境中运行普通服务端
#### Q: libnvinfer.so: cannot open shared object file: No such file or directory)
**A:** 参考该文档安装TensorRT: https://blog.csdn.net/hesongzefairy/article/details/105343525
## 日志排查
#### Q: 部署和预测中的日志信息在哪里查看?
**A:** server端的日志分为两部分,一部分打印到标准输出,一部分打印到启动服务时的目录下的log/serving.INFO文件中。
client端的日志直接打印到标准输出。
通过在部署服务之前 'export GLOG_v=3'可以输出更为详细的日志信息。
#### Q: (GLOG_v=2下)Server端日志一切正常,但Client端始终得不到正确的预测结果
**A:** 可能是配置文件有问题,检查下配置文件(is_load_tensor,fetch_type等有没有问题)
#### Q: 如何给Server传递Logid
**A:** Logid默认为0(后续应该有自动生成Logid的计划,当前版本0.4.0),Client端通过在predict函数中指定log_id参数传递
## 性能优化
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册