未验证 提交 8408631b 编写于 作者: S ShiningZhang 提交者: GitHub

Merge pull request #1657 from ShiningZhang/develop

Update README & Prometheus_CN
......@@ -30,13 +30,14 @@ The goal of Paddle Serving is to provide high-performance, flexible and easy-to-
- Integrate high-performance server-side inference engine paddle Inference and mobile-side engine paddle Lite. Models of other machine learning platforms (Caffe/TensorFlow/ONNX/PyTorch) can be migrated to paddle through [x2paddle](https://github.com/PaddlePaddle/X2Paddle).
- There are two frameworks, namely high-performance C++ Serving and high-easy-to-use Python pipeline. The C++ Serving is based on the bRPC network framework to create a high-throughput, low-latency inference service, and its performance indicators are ahead of competing products. The Python pipeline is based on the gRPC/gRPC-Gateway network framework and the Python language to build a highly easy-to-use and high-throughput inference service. How to choose which one please see [Techinical Selection](doc/Serving_Design_EN.md#21-design-selection).
- Support multiple [protocols](doc/C++_Serving/Inference_Protocols_CN.md) such as HTTP, gRPC, bRPC, and provide C++, Python, Java language SDK.
- Design and implement a high-performance inference service framework for asynchronous pipelines based on directed acyclic graph (DAG), with features such as multi-model combination, asynchronous scheduling, concurrent inference, dynamic batch, multi-card multi-stream inference, etc.
- Design and implement a high-performance inference service framework for asynchronous pipelines based on directed acyclic graph (DAG), with features such as multi-model combination, asynchronous scheduling, concurrent inference, dynamic batch, multi-card multi-stream inference, request cache, etc.
- Adapt to a variety of commonly used computing hardwares, such as x86 (Intel) CPU, ARM CPU, Nvidia GPU, Kunlun XPU, HUAWEI Ascend 310/910, HYGON DCU、Nvidia Jetson etc.
- Integrate acceleration libraries of Intel MKLDNN and Nvidia TensorRT, and low-precision and quantitative inference.
- Provide a model security deployment solution, including encryption model deployment, and authentication mechanism, HTTPs security gateway, which is used in practice.
- Support cloud deployment, provide a deployment case of Baidu Cloud Intelligent Cloud kubernetes cluster.
- Provide more than 40 classic pre-model deployment examples, such as PaddleOCR, PaddleClas, PaddleDetection, PaddleSeg, PaddleNLP, PaddleRec and other suites, and more models continue to expand.
- Supports distributed deployment of large-scale sparse parameter index models, with features such as multiple tables, multiple shards, multiple copies, local high-frequency cache, etc., and can be deployed on a single machine or clouds.
- Support service monitoring, provide prometheus-based performance statistics and port access
<h2 align="center">Tutorial</h2>
......@@ -75,6 +76,7 @@ The first step is to call the model save interface to generate a model parameter
- [Guide for RESTful/gRPC/bRPC APIs(Chinese)](doc/C++_Serving/Introduction_CN.md#42-多语言多协议Client)
- [Infer on quantizative models](doc/Low_Precision_EN.md)
- [Data format of classic models(Chinese)](doc/Process_data_CN.md)
- [Prometheus(Chinese)](doc/Prometheus_CN.md)
- [C++ Serving(Chinese)](doc/C++_Serving/Introduction_CN.md)
- [Protocols(Chinese)](doc/C++_Serving/Inference_Protocols_CN.md)
- [Hot loading models](doc/C++_Serving/Hot_Loading_EN.md)
......@@ -83,6 +85,7 @@ The first step is to call the model save interface to generate a model parameter
- [Analyze and optimize performance(Chinese)](doc/C++_Serving/Performance_Tuning_CN.md)
- [Benchmark(Chinese)](doc/C++_Serving/Benchmark_CN.md)
- [Multiple models in series(Chinese)](doc/C++_Serving/2+_model.md)
- [Request Cache(Chinese)](doc/C++_Serving/Request_Cache_CN.md)
- [Python Pipeline](doc/Python_Pipeline/Pipeline_Design_EN.md)
- [Analyze and optimize performance](doc/Python_Pipeline/Performance_Tuning_EN.md)
- [TensorRT dynamic Shape](doc/TensorRT_Dynamic_Shape_EN.md)
......
......@@ -29,13 +29,14 @@ Paddle Serving依托深度学习框架PaddlePaddle旨在帮助深度学习开发
- 集成高性能服务端推理引擎paddle Inference和移动端引擎paddle Lite,其他机器学习平台(Caffe/TensorFlow/ONNX/PyTorch)可通过[x2paddle](https://github.com/PaddlePaddle/X2Paddle)工具迁移模型
- 具有高性能C++和高易用Python 2套框架。C++框架基于高性能bRPC网络框架打造高吞吐、低延迟的推理服务,性能领先竞品。Python框架基于gRPC/gRPC-Gateway网络框架和Python语言构建高易用、高吞吐推理服务框架。技术选型参考[技术选型](doc/Serving_Design_CN.md#21-设计选型)
- 支持HTTP、gRPC、bRPC等多种[协议](doc/C++_Serving/Inference_Protocols_CN.md);提供C++、Python、Java语言SDK
- 设计并实现基于有向无环图(DAG)的异步流水线高性能推理框架,具有多模型组合、异步调度、并发推理、动态批量、多卡多流推理等特性
- 设计并实现基于有向无环图(DAG)的异步流水线高性能推理框架,具有多模型组合、异步调度、并发推理、动态批量、多卡多流推理、请求缓存等特性
- 适配x86(Intel) CPU、ARM CPU、Nvidia GPU、昆仑XPU、华为昇腾310/910、海光DCU、Nvidia Jetson等多种硬件
- 集成Intel MKLDNN、Nvidia TensorRT加速库,以及低精度和量化推理
- 提供一套模型安全部署解决方案,包括加密模型部署、鉴权校验、HTTPs安全网关,并在实际项目中应用
- 支持云端部署,提供百度云智能云kubernetes集群部署Paddle Serving案例
- 提供丰富的经典预模型部署示例,如PaddleOCR、PaddleClas、PaddleDetection、PaddleSeg、PaddleNLP、PaddleRec等套件,共计40+个预训练精品模型
- 支持大规模稀疏参数索引模型分布式部署,具有多表、多分片、多副本、本地高频cache等特性、可单机或云端部署
- 支持服务监控,提供基于普罗米修斯的性能数据统计及端口访问
<h2 align="center">教程</h2>
......@@ -70,6 +71,7 @@ Paddle Serving依托深度学习框架PaddlePaddle旨在帮助深度学习开发
- [RESTful/gRPC/bRPC API指南](doc/C++_Serving/Introduction_CN.md#42-多语言多协议Client)
- [低精度推理](doc/Low_Precision_CN.md)
- [常见模型数据处理](doc/Process_data_CN.md)
- [普罗米修斯](doc/Prometheus_CN.md)
- [C++ Serving简介](doc/C++_Serving/Introduction_CN.md)
- [协议](doc/C++_Serving/Inference_Protocols_CN.md)
- [模型热加载](doc/C++_Serving/Hot_Loading_CN.md)
......@@ -78,6 +80,7 @@ Paddle Serving依托深度学习框架PaddlePaddle旨在帮助深度学习开发
- [性能优化指南](doc/C++_Serving/Performance_Tuning_CN.md)
- [性能指标](doc/C++_Serving/Benchmark_CN.md)
- [多模型串联](doc/C++_Serving/2+_model.md)
- [请求缓存](doc/C++_Serving/Request_Cache_CN.md)
- [Python Pipeline设计](doc/Python_Pipeline/Pipeline_Design_CN.md)
- [性能优化指南](doc/Python_Pipeline/Performance_Tuning_CN.md)
- [TensorRT动态shape](doc/TensorRT_Dynamic_Shape_CN.md)
......
......@@ -7,7 +7,7 @@ curl http://localhost:19393/metrics
## 配置使用
### C+ Server
### C++ Server
对于 C++ Server 来说,启动服务时请添加如下参数
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册