提交 7efb4a3b 编写于 作者: H HexToString

fix bug on ocr

上级 dff86f23
......@@ -19,7 +19,9 @@ set(PADDLE_SERVING_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR})
SET(PADDLE_SERVING_INSTALL_DIR ${CMAKE_BINARY_DIR}/output)
SET(CMAKE_INSTALL_RPATH "\$ORIGIN" "${CMAKE_INSTALL_RPATH}")
include(system)
SET(CMAKE_BUILD_TYPE "Debug")
SET(CMAKE_CXX_FLAGS_DEBUG "$ENV{CXXFLAGS} -O0 -Wall -g2 -ggdb")
SET(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} -O3 -Wall")
project(paddle-serving CXX C)
message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: "
"${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION}")
......
......@@ -88,7 +88,7 @@ int GeneralInferOp::inference() {
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
std::cout<<"I am GeneralInferOp finish"<<std::endl;
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_ysl_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
/*
#include "opencv2/imgcodecs/legacy/constants_c.h"
#include "opencv2/imgproc/types_c.h"
*/
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralYSLOp::inference() {
VLOG(2) << "Going to run inference";
std::cout<< "i am GeneralYSLOp"<<std::endl;
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
//for input_data = string(ocr-base64,TensorVector.size == 1)
const TensorVector *in = &input_blob->tensor_vector;
TensorVector* out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
std::vector<int> input_shape;
int in_num =0;
void* databuf_data = NULL;
char* databuf_char = NULL;
size_t databuf_size = 0;
std::string* input_ptr = static_cast<std::string*>(in->at(0).data.data());
std::string base64str = input_ptr[0];
float ratio_h{};
float ratio_w{};
cv::Mat img = Base2Mat(base64str);
cv::Mat srcimg;
cv::Mat resize_img;
cv::Mat resize_img_rec;
cv::Mat crop_img;
img.copyTo(srcimg);
this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
this->use_tensorrt_);
this->normalize_op_.Run(&resize_img, this->mean_det, this->scale_det,
this->is_scale_);
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data());
TensorVector* real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
for (int i = 0; i < in->size(); ++i) {
input_shape = {1, 3, resize_img.rows, resize_img.cols};
std::cout<< "i am thomas young and i want to know the out info name : "<<",shapesize:" <<input_shape.size()<<std::endl;
in_num = std::accumulate(input_shape.begin(), input_shape.end(), 1, std::multiplies<int>());
databuf_size = in_num*sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data,input.data(),databuf_size);
std::cout<< "the out num: "<<in_num<<std::endl;
databuf_char = reinterpret_cast<char*>(databuf_data);
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in;
tensor_in.name = in->at(i).name;
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
tensor_in.shape = {1, 3, resize_img.rows, resize_img.cols};
tensor_in.lod = in->at(i).lod;
tensor_in.data = paddleBuf;
real_in->push_back(tensor_in);
}
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
if (InferManager::instance().infer(
engine_name().c_str(), real_in, out, batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
std::cout<< "success after infer "<<std::endl;
std::vector<int> output_shape;
int out_num =0;
void* databuf_data_out = NULL;
char* databuf_char_out = NULL;
size_t databuf_size_out = 0;
//this is special add for PaddleOCR postprecess
int infer_outnum = out->size();
for (int k = 0;k <infer_outnum; ++k) {
int n2 = out->at(k).shape[2];
int n3 = out->at(k).shape[3];
int n = n2 * n3;
float* out_data = static_cast<float*>(out->at(k).data.data());
std::vector<float> pred(n, 0.0);
std::vector<unsigned char> cbuf(n, ' ');
for (int i = 0; i < n; i++) {
pred[i] = float(out_data[i]);
cbuf[i] = (unsigned char)((out_data[i]) * 255);
}
cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data());
cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data());
const double threshold = this->det_db_thresh_ * 255;
const double maxvalue = 255;
cv::Mat bit_map;
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
cv::Mat dilation_map;
cv::Mat dila_ele = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
cv::dilate(bit_map, dilation_map, dila_ele);
boxes = post_processor_.BoxesFromBitmap(pred_map, dilation_map,
this->det_db_box_thresh_,
this->det_db_unclip_ratio_);
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
for (int i = boxes.size() - 1; i >= 0; i--) {
crop_img = GetRotateCropImage(img, boxes[i]);
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
this->resize_op_rec.Run(crop_img, resize_img_rec, wh_ratio, this->use_tensorrt_);
this->normalize_op_.Run(&resize_img_rec, this->mean_rec, this->scale_rec,
this->is_scale_);
std::vector<float> output_rec(1 * 3 * resize_img_rec.rows * resize_img_rec.cols, 0.0f);
this->permute_op_.Run(&resize_img_rec, output_rec.data());
// Inference.
output_shape = {1, 3, resize_img_rec.rows, resize_img_rec.cols};
std::cout<< "i am thomas young and i want to know the out info name : "<<",shapesize:" <<output_shape.size()<<"shape :";
out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies<int>());
databuf_size_out = out_num*sizeof(float);
databuf_data_out = MempoolWrapper::instance().malloc(databuf_size_out);
if (!databuf_data_out) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size_out;
return -1;
}
memcpy(databuf_data_out,output_rec.data(),databuf_size_out);
std::cout<< "the out num: "<<out_num<<" value = "<<" ,"<<std::endl;
databuf_char_out = reinterpret_cast<char*>(databuf_data_out);
paddle::PaddleBuf paddleBuf(databuf_char_out, databuf_size_out);
paddle::PaddleTensor tensor_out;
tensor_out.name = "image";
tensor_out.dtype = paddle::PaddleDType::FLOAT32;
tensor_out.shape = {1, 3, resize_img_rec.rows, resize_img_rec.cols};
//tensor_in.lod = in->at(i).lod;
tensor_out.data = paddleBuf;
out->push_back(tensor_out);
}
}
out->erase(out->begin(),out->begin()+infer_outnum);
std::cout<< "success after out process "<<std::endl;
/*this is special add for two fit a line InferOPTest
int var_num = in->size();
out->clear();
for (int k =0; k<var_num; ++k){
out->push_back(in->at(k));
}
*/
/*
for (int k = 0;k <out->size(); ++k) {
out->at(k).data.Resize(13 * sizeof(float));
out->at(k).shape[1] = 13;
out->at(k).name = "x";
float *dst_ptr = static_cast<float *>(out->at(k).data.data());
for(int l =0; l<13; ++l){dst_ptr[l] = (0.1+l);}
}*/
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
cv::Mat GeneralYSLOp::Base2Mat(std::string &base64_data)
{
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR);//CV_LOAD_IMAGE_COLOR
return img;
}
std::string GeneralYSLOp::base64Decode(const char* Data, int DataByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
//返回值
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte)
{
if (*Data != '\r' && *Data != '\n')
{
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=')
{
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=')
{
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
}
else// 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
cv::Mat GeneralYSLOp::GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box) {
cv::Mat image;
srcimage.copyTo(image);
std::vector<std::vector<int>> points = box;
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
int left = int(*std::min_element(x_collect, x_collect + 4));
int right = int(*std::max_element(x_collect, x_collect + 4));
int top = int(*std::min_element(y_collect, y_collect + 4));
int bottom = int(*std::max_element(y_collect, y_collect + 4));
cv::Mat img_crop;
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
for (int i = 0; i < points.size(); i++) {
points[i][0] -= left;
points[i][1] -= top;
}
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
pow(points[0][1] - points[1][1], 2)));
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
pow(points[0][1] - points[3][1], 2)));
cv::Point2f pts_std[4];
pts_std[0] = cv::Point2f(0., 0.);
pts_std[1] = cv::Point2f(img_crop_width, 0.);
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
pts_std[3] = cv::Point2f(0.f, img_crop_height);
cv::Point2f pointsf[4];
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
cv::Mat dst_img;
cv::warpPerspective(img_crop, dst_img, M,
cv::Size(img_crop_width, img_crop_height),
cv::BORDER_REPLICATE);
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
cv::transpose(dst_img, srcCopy);
cv::flip(srcCopy, srcCopy, 0);
return srcCopy;
} else {
return dst_img;
}
}
DEFINE_OP(GeneralYSLOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
\ No newline at end of file
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include <numeric>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/tools/ocrtools/postprocess_op.h"
#include "core/predictor/tools/ocrtools/preprocess_op.h"
#include "paddle_inference_api.h" // NOLINT
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
namespace baidu {
namespace paddle_serving {
namespace serving {
class GeneralYSLOp
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralYSLOp);
int inference();
private:
//config info
bool use_gpu_ = false;
int gpu_id_ = 0;
int gpu_mem_ = 4000;
int cpu_math_library_num_threads_ = 4;
bool use_mkldnn_ = false;
// pre-process
PaddleOCR::ResizeImgType0 resize_op_;
PaddleOCR::Normalize normalize_op_;
PaddleOCR::Permute permute_op_;
PaddleOCR::CrnnResizeImg resize_op_rec;
bool use_tensorrt_ = false;
bool use_fp16_ = false;
// post-process
PaddleOCR::PostProcessor post_processor_;
//det config info
int max_side_len_ = 960;
double det_db_thresh_ = 0.3;
double det_db_box_thresh_ = 0.5;
double det_db_unclip_ratio_ = 2.0;
std::vector<float> mean_det = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_det = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
bool is_scale_ = true;
//rec config info
std::vector<std::string> label_list_;
std::vector<float> mean_rec = {0.5f, 0.5f, 0.5f};
std::vector<float> scale_rec = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box);
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char* Data, int DataByte);
std::vector<std::vector<std::vector<int>>> boxes;
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 6.4.2 *
* Date : 27 February 2017 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2017 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 24-28, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
/*******************************************************************************
* *
* This is a translation of the Delphi Clipper library and the naming style *
* used has retained a Delphi flavour. *
* *
*******************************************************************************/
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <ostream>
#include <stdexcept>
#include <vector>
#include "clipper.h"
namespace ClipperLib {
static double const pi = 3.141592653589793238;
static double const two_pi = pi * 2;
static double const def_arc_tolerance = 0.25;
enum Direction { dRightToLeft, dLeftToRight };
static int const Unassigned = -1; // edge not currently 'owning' a solution
static int const Skip = -2; // edge that would otherwise close a path
#define HORIZONTAL (-1.0E+40)
#define TOLERANCE (1.0e-20)
#define NEAR_ZERO(val) (((val) > -TOLERANCE) && ((val) < TOLERANCE))
struct TEdge {
IntPoint Bot;
IntPoint Curr; // current (updated for every new scanbeam)
IntPoint Top;
double Dx;
PolyType PolyTyp;
EdgeSide Side; // side only refers to current side of solution poly
int WindDelta; // 1 or -1 depending on winding direction
int WindCnt;
int WindCnt2; // winding count of the opposite polytype
int OutIdx;
TEdge *Next;
TEdge *Prev;
TEdge *NextInLML;
TEdge *NextInAEL;
TEdge *PrevInAEL;
TEdge *NextInSEL;
TEdge *PrevInSEL;
};
struct IntersectNode {
TEdge *Edge1;
TEdge *Edge2;
IntPoint Pt;
};
struct LocalMinimum {
cInt Y;
TEdge *LeftBound;
TEdge *RightBound;
};
struct OutPt;
// OutRec: contains a path in the clipping solution. Edges in the AEL will
// carry a pointer to an OutRec when they are part of the clipping solution.
struct OutRec {
int Idx;
bool IsHole;
bool IsOpen;
OutRec *FirstLeft; // see comments in clipper.pas
PolyNode *PolyNd;
OutPt *Pts;
OutPt *BottomPt;
};
struct OutPt {
int Idx;
IntPoint Pt;
OutPt *Next;
OutPt *Prev;
};
struct Join {
OutPt *OutPt1;
OutPt *OutPt2;
IntPoint OffPt;
};
struct LocMinSorter {
inline bool operator()(const LocalMinimum &locMin1,
const LocalMinimum &locMin2) {
return locMin2.Y < locMin1.Y;
}
};
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
inline cInt Round(double val) {
if ((val < 0))
return static_cast<cInt>(val - 0.5);
else
return static_cast<cInt>(val + 0.5);
}
//------------------------------------------------------------------------------
inline cInt Abs(cInt val) { return val < 0 ? -val : val; }
//------------------------------------------------------------------------------
// PolyTree methods ...
//------------------------------------------------------------------------------
void PolyTree::Clear() {
for (PolyNodes::size_type i = 0; i < AllNodes.size(); ++i)
delete AllNodes[i];
AllNodes.resize(0);
Childs.resize(0);
}
//------------------------------------------------------------------------------
PolyNode *PolyTree::GetFirst() const {
if (!Childs.empty())
return Childs[0];
else
return 0;
}
//------------------------------------------------------------------------------
int PolyTree::Total() const {
int result = (int)AllNodes.size();
// with negative offsets, ignore the hidden outer polygon ...
if (result > 0 && Childs[0] != AllNodes[0])
result--;
return result;
}
//------------------------------------------------------------------------------
// PolyNode methods ...
//------------------------------------------------------------------------------
PolyNode::PolyNode() : Parent(0), Index(0), m_IsOpen(false) {}
//------------------------------------------------------------------------------
int PolyNode::ChildCount() const { return (int)Childs.size(); }
//------------------------------------------------------------------------------
void PolyNode::AddChild(PolyNode &child) {
unsigned cnt = (unsigned)Childs.size();
Childs.push_back(&child);
child.Parent = this;
child.Index = cnt;
}
//------------------------------------------------------------------------------
PolyNode *PolyNode::GetNext() const {
if (!Childs.empty())
return Childs[0];
else
return GetNextSiblingUp();
}
//------------------------------------------------------------------------------
PolyNode *PolyNode::GetNextSiblingUp() const {
if (!Parent) // protects against PolyTree.GetNextSiblingUp()
return 0;
else if (Index == Parent->Childs.size() - 1)
return Parent->GetNextSiblingUp();
else
return Parent->Childs[Index + 1];
}
//------------------------------------------------------------------------------
bool PolyNode::IsHole() const {
bool result = true;
PolyNode *node = Parent;
while (node) {
result = !result;
node = node->Parent;
}
return result;
}
//------------------------------------------------------------------------------
bool PolyNode::IsOpen() const { return m_IsOpen; }
//------------------------------------------------------------------------------
#ifndef use_int32
//------------------------------------------------------------------------------
// Int128 class (enables safe math on signed 64bit integers)
// eg Int128 val1((long64)9223372036854775807); //ie 2^63 -1
// Int128 val2((long64)9223372036854775807);
// Int128 val3 = val1 * val2;
// val3.AsString => "85070591730234615847396907784232501249" (8.5e+37)
//------------------------------------------------------------------------------
class Int128 {
public:
ulong64 lo;
long64 hi;
Int128(long64 _lo = 0) {
lo = (ulong64)_lo;
if (_lo < 0)
hi = -1;
else
hi = 0;
}
Int128(const Int128 &val) : lo(val.lo), hi(val.hi) {}
Int128(const long64 &_hi, const ulong64 &_lo) : lo(_lo), hi(_hi) {}
Int128 &operator=(const long64 &val) {
lo = (ulong64)val;
if (val < 0)
hi = -1;
else
hi = 0;
return *this;
}
bool operator==(const Int128 &val) const {
return (hi == val.hi && lo == val.lo);
}
bool operator!=(const Int128 &val) const { return !(*this == val); }
bool operator>(const Int128 &val) const {
if (hi != val.hi)
return hi > val.hi;
else
return lo > val.lo;
}
bool operator<(const Int128 &val) const {
if (hi != val.hi)
return hi < val.hi;
else
return lo < val.lo;
}
bool operator>=(const Int128 &val) const { return !(*this < val); }
bool operator<=(const Int128 &val) const { return !(*this > val); }
Int128 &operator+=(const Int128 &rhs) {
hi += rhs.hi;
lo += rhs.lo;
if (lo < rhs.lo)
hi++;
return *this;
}
Int128 operator+(const Int128 &rhs) const {
Int128 result(*this);
result += rhs;
return result;
}
Int128 &operator-=(const Int128 &rhs) {
*this += -rhs;
return *this;
}
Int128 operator-(const Int128 &rhs) const {
Int128 result(*this);
result -= rhs;
return result;
}
Int128 operator-() const // unary negation
{
if (lo == 0)
return Int128(-hi, 0);
else
return Int128(~hi, ~lo + 1);
}
operator double() const {
const double shift64 = 18446744073709551616.0; // 2^64
if (hi < 0) {
if (lo == 0)
return (double)hi * shift64;
else
return -(double)(~lo + ~hi * shift64);
} else
return (double)(lo + hi * shift64);
}
};
//------------------------------------------------------------------------------
Int128 Int128Mul(long64 lhs, long64 rhs) {
bool negate = (lhs < 0) != (rhs < 0);
if (lhs < 0)
lhs = -lhs;
ulong64 int1Hi = ulong64(lhs) >> 32;
ulong64 int1Lo = ulong64(lhs & 0xFFFFFFFF);
if (rhs < 0)
rhs = -rhs;
ulong64 int2Hi = ulong64(rhs) >> 32;
ulong64 int2Lo = ulong64(rhs & 0xFFFFFFFF);
// nb: see comments in clipper.pas
ulong64 a = int1Hi * int2Hi;
ulong64 b = int1Lo * int2Lo;
ulong64 c = int1Hi * int2Lo + int1Lo * int2Hi;
Int128 tmp;
tmp.hi = long64(a + (c >> 32));
tmp.lo = long64(c << 32);
tmp.lo += long64(b);
if (tmp.lo < b)
tmp.hi++;
if (negate)
tmp = -tmp;
return tmp;
};
#endif
//------------------------------------------------------------------------------
// Miscellaneous global functions
//------------------------------------------------------------------------------
bool Orientation(const Path &poly) { return Area(poly) >= 0; }
//------------------------------------------------------------------------------
double Area(const Path &poly) {
int size = (int)poly.size();
if (size < 3)
return 0;
double a = 0;
for (int i = 0, j = size - 1; i < size; ++i) {
a += ((double)poly[j].X + poly[i].X) * ((double)poly[j].Y - poly[i].Y);
j = i;
}
return -a * 0.5;
}
//------------------------------------------------------------------------------
double Area(const OutPt *op) {
const OutPt *startOp = op;
if (!op)
return 0;
double a = 0;
do {
a += (double)(op->Prev->Pt.X + op->Pt.X) *
(double)(op->Prev->Pt.Y - op->Pt.Y);
op = op->Next;
} while (op != startOp);
return a * 0.5;
}
//------------------------------------------------------------------------------
double Area(const OutRec &outRec) { return Area(outRec.Pts); }
//------------------------------------------------------------------------------
bool PointIsVertex(const IntPoint &Pt, OutPt *pp) {
OutPt *pp2 = pp;
do {
if (pp2->Pt == Pt)
return true;
pp2 = pp2->Next;
} while (pp2 != pp);
return false;
}
//------------------------------------------------------------------------------
// See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann &
// Agathos
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf
int PointInPolygon(const IntPoint &pt, const Path &path) {
// returns 0 if false, +1 if true, -1 if pt ON polygon boundary
int result = 0;
size_t cnt = path.size();
if (cnt < 3)
return 0;
IntPoint ip = path[0];
for (size_t i = 1; i <= cnt; ++i) {
IntPoint ipNext = (i == cnt ? path[0] : path[i]);
if (ipNext.Y == pt.Y) {
if ((ipNext.X == pt.X) ||
(ip.Y == pt.Y && ((ipNext.X > pt.X) == (ip.X < pt.X))))
return -1;
}
if ((ip.Y < pt.Y) != (ipNext.Y < pt.Y)) {
if (ip.X >= pt.X) {
if (ipNext.X > pt.X)
result = 1 - result;
else {
double d = (double)(ip.X - pt.X) * (ipNext.Y - pt.Y) -
(double)(ipNext.X - pt.X) * (ip.Y - pt.Y);
if (!d)
return -1;
if ((d > 0) == (ipNext.Y > ip.Y))
result = 1 - result;
}
} else {
if (ipNext.X > pt.X) {
double d = (double)(ip.X - pt.X) * (ipNext.Y - pt.Y) -
(double)(ipNext.X - pt.X) * (ip.Y - pt.Y);
if (!d)
return -1;
if ((d > 0) == (ipNext.Y > ip.Y))
result = 1 - result;
}
}
}
ip = ipNext;
}
return result;
}
//------------------------------------------------------------------------------
int PointInPolygon(const IntPoint &pt, OutPt *op) {
// returns 0 if false, +1 if true, -1 if pt ON polygon boundary
int result = 0;
OutPt *startOp = op;
for (;;) {
if (op->Next->Pt.Y == pt.Y) {
if ((op->Next->Pt.X == pt.X) ||
(op->Pt.Y == pt.Y && ((op->Next->Pt.X > pt.X) == (op->Pt.X < pt.X))))
return -1;
}
if ((op->Pt.Y < pt.Y) != (op->Next->Pt.Y < pt.Y)) {
if (op->Pt.X >= pt.X) {
if (op->Next->Pt.X > pt.X)
result = 1 - result;
else {
double d = (double)(op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) -
(double)(op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y);
if (!d)
return -1;
if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y))
result = 1 - result;
}
} else {
if (op->Next->Pt.X > pt.X) {
double d = (double)(op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) -
(double)(op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y);
if (!d)
return -1;
if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y))
result = 1 - result;
}
}
}
op = op->Next;
if (startOp == op)
break;
}
return result;
}
//------------------------------------------------------------------------------
bool Poly2ContainsPoly1(OutPt *OutPt1, OutPt *OutPt2) {
OutPt *op = OutPt1;
do {
// nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon
int res = PointInPolygon(op->Pt, OutPt2);
if (res >= 0)
return res > 0;
op = op->Next;
} while (op != OutPt1);
return true;
}
//----------------------------------------------------------------------
bool SlopesEqual(const TEdge &e1, const TEdge &e2, bool UseFullInt64Range) {
#ifndef use_int32
if (UseFullInt64Range)
return Int128Mul(e1.Top.Y - e1.Bot.Y, e2.Top.X - e2.Bot.X) ==
Int128Mul(e1.Top.X - e1.Bot.X, e2.Top.Y - e2.Bot.Y);
else
#endif
return (e1.Top.Y - e1.Bot.Y) * (e2.Top.X - e2.Bot.X) ==
(e1.Top.X - e1.Bot.X) * (e2.Top.Y - e2.Bot.Y);
}
//------------------------------------------------------------------------------
bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, const IntPoint pt3,
bool UseFullInt64Range) {
#ifndef use_int32
if (UseFullInt64Range)
return Int128Mul(pt1.Y - pt2.Y, pt2.X - pt3.X) ==
Int128Mul(pt1.X - pt2.X, pt2.Y - pt3.Y);
else
#endif
return (pt1.Y - pt2.Y) * (pt2.X - pt3.X) ==
(pt1.X - pt2.X) * (pt2.Y - pt3.Y);
}
//------------------------------------------------------------------------------
bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, const IntPoint pt3,
const IntPoint pt4, bool UseFullInt64Range) {
#ifndef use_int32
if (UseFullInt64Range)
return Int128Mul(pt1.Y - pt2.Y, pt3.X - pt4.X) ==
Int128Mul(pt1.X - pt2.X, pt3.Y - pt4.Y);
else
#endif
return (pt1.Y - pt2.Y) * (pt3.X - pt4.X) ==
(pt1.X - pt2.X) * (pt3.Y - pt4.Y);
}
//------------------------------------------------------------------------------
inline bool IsHorizontal(TEdge &e) { return e.Dx == HORIZONTAL; }
//------------------------------------------------------------------------------
inline double GetDx(const IntPoint pt1, const IntPoint pt2) {
return (pt1.Y == pt2.Y) ? HORIZONTAL
: (double)(pt2.X - pt1.X) / (pt2.Y - pt1.Y);
}
//---------------------------------------------------------------------------
inline void SetDx(TEdge &e) {
cInt dy = (e.Top.Y - e.Bot.Y);
if (dy == 0)
e.Dx = HORIZONTAL;
else
e.Dx = (double)(e.Top.X - e.Bot.X) / dy;
}
//---------------------------------------------------------------------------
inline void SwapSides(TEdge &Edge1, TEdge &Edge2) {
EdgeSide Side = Edge1.Side;
Edge1.Side = Edge2.Side;
Edge2.Side = Side;
}
//------------------------------------------------------------------------------
inline void SwapPolyIndexes(TEdge &Edge1, TEdge &Edge2) {
int OutIdx = Edge1.OutIdx;
Edge1.OutIdx = Edge2.OutIdx;
Edge2.OutIdx = OutIdx;
}
//------------------------------------------------------------------------------
inline cInt TopX(TEdge &edge, const cInt currentY) {
return (currentY == edge.Top.Y)
? edge.Top.X
: edge.Bot.X + Round(edge.Dx * (currentY - edge.Bot.Y));
}
//------------------------------------------------------------------------------
void IntersectPoint(TEdge &Edge1, TEdge &Edge2, IntPoint &ip) {
#ifdef use_xyz
ip.Z = 0;
#endif
double b1, b2;
if (Edge1.Dx == Edge2.Dx) {
ip.Y = Edge1.Curr.Y;
ip.X = TopX(Edge1, ip.Y);
return;
} else if (Edge1.Dx == 0) {
ip.X = Edge1.Bot.X;
if (IsHorizontal(Edge2))
ip.Y = Edge2.Bot.Y;
else {
b2 = Edge2.Bot.Y - (Edge2.Bot.X / Edge2.Dx);
ip.Y = Round(ip.X / Edge2.Dx + b2);
}
} else if (Edge2.Dx == 0) {
ip.X = Edge2.Bot.X;
if (IsHorizontal(Edge1))
ip.Y = Edge1.Bot.Y;
else {
b1 = Edge1.Bot.Y - (Edge1.Bot.X / Edge1.Dx);
ip.Y = Round(ip.X / Edge1.Dx + b1);
}
} else {
b1 = Edge1.Bot.X - Edge1.Bot.Y * Edge1.Dx;
b2 = Edge2.Bot.X - Edge2.Bot.Y * Edge2.Dx;
double q = (b2 - b1) / (Edge1.Dx - Edge2.Dx);
ip.Y = Round(q);
if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx))
ip.X = Round(Edge1.Dx * q + b1);
else
ip.X = Round(Edge2.Dx * q + b2);
}
if (ip.Y < Edge1.Top.Y || ip.Y < Edge2.Top.Y) {
if (Edge1.Top.Y > Edge2.Top.Y)
ip.Y = Edge1.Top.Y;
else
ip.Y = Edge2.Top.Y;
if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx))
ip.X = TopX(Edge1, ip.Y);
else
ip.X = TopX(Edge2, ip.Y);
}
// finally, don't allow 'ip' to be BELOW curr.Y (ie bottom of scanbeam) ...
if (ip.Y > Edge1.Curr.Y) {
ip.Y = Edge1.Curr.Y;
// use the more vertical edge to derive X ...
if (std::fabs(Edge1.Dx) > std::fabs(Edge2.Dx))
ip.X = TopX(Edge2, ip.Y);
else
ip.X = TopX(Edge1, ip.Y);
}
}
//------------------------------------------------------------------------------
void ReversePolyPtLinks(OutPt *pp) {
if (!pp)
return;
OutPt *pp1, *pp2;
pp1 = pp;
do {
pp2 = pp1->Next;
pp1->Next = pp1->Prev;
pp1->Prev = pp2;
pp1 = pp2;
} while (pp1 != pp);
}
//------------------------------------------------------------------------------
void DisposeOutPts(OutPt *&pp) {
if (pp == 0)
return;
pp->Prev->Next = 0;
while (pp) {
OutPt *tmpPp = pp;
pp = pp->Next;
delete tmpPp;
}
}
//------------------------------------------------------------------------------
inline void InitEdge(TEdge *e, TEdge *eNext, TEdge *ePrev, const IntPoint &Pt) {
std::memset(e, 0, sizeof(TEdge));
e->Next = eNext;
e->Prev = ePrev;
e->Curr = Pt;
e->OutIdx = Unassigned;
}
//------------------------------------------------------------------------------
void InitEdge2(TEdge &e, PolyType Pt) {
if (e.Curr.Y >= e.Next->Curr.Y) {
e.Bot = e.Curr;
e.Top = e.Next->Curr;
} else {
e.Top = e.Curr;
e.Bot = e.Next->Curr;
}
SetDx(e);
e.PolyTyp = Pt;
}
//------------------------------------------------------------------------------
TEdge *RemoveEdge(TEdge *e) {
// removes e from double_linked_list (but without removing from memory)
e->Prev->Next = e->Next;
e->Next->Prev = e->Prev;
TEdge *result = e->Next;
e->Prev = 0; // flag as removed (see ClipperBase.Clear)
return result;
}
//------------------------------------------------------------------------------
inline void ReverseHorizontal(TEdge &e) {
// swap horizontal edges' Top and Bottom x's so they follow the natural
// progression of the bounds - ie so their xbots will align with the
// adjoining lower edge. [Helpful in the ProcessHorizontal() method.]
std::swap(e.Top.X, e.Bot.X);
#ifdef use_xyz
std::swap(e.Top.Z, e.Bot.Z);
#endif
}
//------------------------------------------------------------------------------
void SwapPoints(IntPoint &pt1, IntPoint &pt2) {
IntPoint tmp = pt1;
pt1 = pt2;
pt2 = tmp;
}
//------------------------------------------------------------------------------
bool GetOverlapSegment(IntPoint pt1a, IntPoint pt1b, IntPoint pt2a,
IntPoint pt2b, IntPoint &pt1, IntPoint &pt2) {
// precondition: segments are Collinear.
if (Abs(pt1a.X - pt1b.X) > Abs(pt1a.Y - pt1b.Y)) {
if (pt1a.X > pt1b.X)
SwapPoints(pt1a, pt1b);
if (pt2a.X > pt2b.X)
SwapPoints(pt2a, pt2b);
if (pt1a.X > pt2a.X)
pt1 = pt1a;
else
pt1 = pt2a;
if (pt1b.X < pt2b.X)
pt2 = pt1b;
else
pt2 = pt2b;
return pt1.X < pt2.X;
} else {
if (pt1a.Y < pt1b.Y)
SwapPoints(pt1a, pt1b);
if (pt2a.Y < pt2b.Y)
SwapPoints(pt2a, pt2b);
if (pt1a.Y < pt2a.Y)
pt1 = pt1a;
else
pt1 = pt2a;
if (pt1b.Y > pt2b.Y)
pt2 = pt1b;
else
pt2 = pt2b;
return pt1.Y > pt2.Y;
}
}
//------------------------------------------------------------------------------
bool FirstIsBottomPt(const OutPt *btmPt1, const OutPt *btmPt2) {
OutPt *p = btmPt1->Prev;
while ((p->Pt == btmPt1->Pt) && (p != btmPt1))
p = p->Prev;
double dx1p = std::fabs(GetDx(btmPt1->Pt, p->Pt));
p = btmPt1->Next;
while ((p->Pt == btmPt1->Pt) && (p != btmPt1))
p = p->Next;
double dx1n = std::fabs(GetDx(btmPt1->Pt, p->Pt));
p = btmPt2->Prev;
while ((p->Pt == btmPt2->Pt) && (p != btmPt2))
p = p->Prev;
double dx2p = std::fabs(GetDx(btmPt2->Pt, p->Pt));
p = btmPt2->Next;
while ((p->Pt == btmPt2->Pt) && (p != btmPt2))
p = p->Next;
double dx2n = std::fabs(GetDx(btmPt2->Pt, p->Pt));
if (std::max(dx1p, dx1n) == std::max(dx2p, dx2n) &&
std::min(dx1p, dx1n) == std::min(dx2p, dx2n))
return Area(btmPt1) > 0; // if otherwise identical use orientation
else
return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n);
}
//------------------------------------------------------------------------------
OutPt *GetBottomPt(OutPt *pp) {
OutPt *dups = 0;
OutPt *p = pp->Next;
while (p != pp) {
if (p->Pt.Y > pp->Pt.Y) {
pp = p;
dups = 0;
} else if (p->Pt.Y == pp->Pt.Y && p->Pt.X <= pp->Pt.X) {
if (p->Pt.X < pp->Pt.X) {
dups = 0;
pp = p;
} else {
if (p->Next != pp && p->Prev != pp)
dups = p;
}
}
p = p->Next;
}
if (dups) {
// there appears to be at least 2 vertices at BottomPt so ...
while (dups != p) {
if (!FirstIsBottomPt(p, dups))
pp = dups;
dups = dups->Next;
while (dups->Pt != pp->Pt)
dups = dups->Next;
}
}
return pp;
}
//------------------------------------------------------------------------------
bool Pt2IsBetweenPt1AndPt3(const IntPoint pt1, const IntPoint pt2,
const IntPoint pt3) {
if ((pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2))
return false;
else if (pt1.X != pt3.X)
return (pt2.X > pt1.X) == (pt2.X < pt3.X);
else
return (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y);
}
//------------------------------------------------------------------------------
bool HorzSegmentsOverlap(cInt seg1a, cInt seg1b, cInt seg2a, cInt seg2b) {
if (seg1a > seg1b)
std::swap(seg1a, seg1b);
if (seg2a > seg2b)
std::swap(seg2a, seg2b);
return (seg1a < seg2b) && (seg2a < seg1b);
}
//------------------------------------------------------------------------------
// ClipperBase class methods ...
//------------------------------------------------------------------------------
ClipperBase::ClipperBase() // constructor
{
m_CurrentLM = m_MinimaList.begin(); // begin() == end() here
m_UseFullRange = false;
}
//------------------------------------------------------------------------------
ClipperBase::~ClipperBase() // destructor
{
Clear();
}
//------------------------------------------------------------------------------
void RangeTest(const IntPoint &Pt, bool &useFullRange) {
if (useFullRange) {
if (Pt.X > hiRange || Pt.Y > hiRange || -Pt.X > hiRange || -Pt.Y > hiRange)
throw clipperException("Coordinate outside allowed range");
} else if (Pt.X > loRange || Pt.Y > loRange || -Pt.X > loRange ||
-Pt.Y > loRange) {
useFullRange = true;
RangeTest(Pt, useFullRange);
}
}
//------------------------------------------------------------------------------
TEdge *FindNextLocMin(TEdge *E) {
for (;;) {
while (E->Bot != E->Prev->Bot || E->Curr == E->Top)
E = E->Next;
if (!IsHorizontal(*E) && !IsHorizontal(*E->Prev))
break;
while (IsHorizontal(*E->Prev))
E = E->Prev;
TEdge *E2 = E;
while (IsHorizontal(*E))
E = E->Next;
if (E->Top.Y == E->Prev->Bot.Y)
continue; // ie just an intermediate horz.
if (E2->Prev->Bot.X < E->Bot.X)
E = E2;
break;
}
return E;
}
//------------------------------------------------------------------------------
TEdge *ClipperBase::ProcessBound(TEdge *E, bool NextIsForward) {
TEdge *Result = E;
TEdge *Horz = 0;
if (E->OutIdx == Skip) {
// if edges still remain in the current bound beyond the skip edge then
// create another LocMin and call ProcessBound once more
if (NextIsForward) {
while (E->Top.Y == E->Next->Bot.Y)
E = E->Next;
// don't include top horizontals when parsing a bound a second time,
// they will be contained in the opposite bound ...
while (E != Result && IsHorizontal(*E))
E = E->Prev;
} else {
while (E->Top.Y == E->Prev->Bot.Y)
E = E->Prev;
while (E != Result && IsHorizontal(*E))
E = E->Next;
}
if (E == Result) {
if (NextIsForward)
Result = E->Next;
else
Result = E->Prev;
} else {
// there are more edges in the bound beyond result starting with E
if (NextIsForward)
E = Result->Next;
else
E = Result->Prev;
MinimaList::value_type locMin;
locMin.Y = E->Bot.Y;
locMin.LeftBound = 0;
locMin.RightBound = E;
E->WindDelta = 0;
Result = ProcessBound(E, NextIsForward);
m_MinimaList.push_back(locMin);
}
return Result;
}
TEdge *EStart;
if (IsHorizontal(*E)) {
// We need to be careful with open paths because this may not be a
// true local minima (ie E may be following a skip edge).
// Also, consecutive horz. edges may start heading left before going right.
if (NextIsForward)
EStart = E->Prev;
else
EStart = E->Next;
if (IsHorizontal(*EStart)) // ie an adjoining horizontal skip edge
{
if (EStart->Bot.X != E->Bot.X && EStart->Top.X != E->Bot.X)
ReverseHorizontal(*E);
} else if (EStart->Bot.X != E->Bot.X)
ReverseHorizontal(*E);
}
EStart = E;
if (NextIsForward) {
while (Result->Top.Y == Result->Next->Bot.Y && Result->Next->OutIdx != Skip)
Result = Result->Next;
if (IsHorizontal(*Result) && Result->Next->OutIdx != Skip) {
// nb: at the top of a bound, horizontals are added to the bound
// only when the preceding edge attaches to the horizontal's left vertex
// unless a Skip edge is encountered when that becomes the top divide
Horz = Result;
while (IsHorizontal(*Horz->Prev))
Horz = Horz->Prev;
if (Horz->Prev->Top.X > Result->Next->Top.X)
Result = Horz->Prev;
}
while (E != Result) {
E->NextInLML = E->Next;
if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Prev->Top.X)
ReverseHorizontal(*E);
E = E->Next;
}
if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Prev->Top.X)
ReverseHorizontal(*E);
Result = Result->Next; // move to the edge just beyond current bound
} else {
while (Result->Top.Y == Result->Prev->Bot.Y && Result->Prev->OutIdx != Skip)
Result = Result->Prev;
if (IsHorizontal(*Result) && Result->Prev->OutIdx != Skip) {
Horz = Result;
while (IsHorizontal(*Horz->Next))
Horz = Horz->Next;
if (Horz->Next->Top.X == Result->Prev->Top.X ||
Horz->Next->Top.X > Result->Prev->Top.X)
Result = Horz->Next;
}
while (E != Result) {
E->NextInLML = E->Prev;
if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X)
ReverseHorizontal(*E);
E = E->Prev;
}
if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X)
ReverseHorizontal(*E);
Result = Result->Prev; // move to the edge just beyond current bound
}
return Result;
}
//------------------------------------------------------------------------------
bool ClipperBase::AddPath(const Path &pg, PolyType PolyTyp, bool Closed) {
#ifdef use_lines
if (!Closed && PolyTyp == ptClip)
throw clipperException("AddPath: Open paths must be subject.");
#else
if (!Closed)
throw clipperException("AddPath: Open paths have been disabled.");
#endif
int highI = (int)pg.size() - 1;
if (Closed)
while (highI > 0 && (pg[highI] == pg[0]))
--highI;
while (highI > 0 && (pg[highI] == pg[highI - 1]))
--highI;
if ((Closed && highI < 2) || (!Closed && highI < 1))
return false;
// create a new edge array ...
TEdge *edges = new TEdge[highI + 1];
bool IsFlat = true;
// 1. Basic (first) edge initialization ...
try {
edges[1].Curr = pg[1];
RangeTest(pg[0], m_UseFullRange);
RangeTest(pg[highI], m_UseFullRange);
InitEdge(&edges[0], &edges[1], &edges[highI], pg[0]);
InitEdge(&edges[highI], &edges[0], &edges[highI - 1], pg[highI]);
for (int i = highI - 1; i >= 1; --i) {
RangeTest(pg[i], m_UseFullRange);
InitEdge(&edges[i], &edges[i + 1], &edges[i - 1], pg[i]);
}
} catch (...) {
delete[] edges;
throw; // range test fails
}
TEdge *eStart = &edges[0];
// 2. Remove duplicate vertices, and (when closed) collinear edges ...
TEdge *E = eStart, *eLoopStop = eStart;
for (;;) {
// nb: allows matching start and end points when not Closed ...
if (E->Curr == E->Next->Curr && (Closed || E->Next != eStart)) {
if (E == E->Next)
break;
if (E == eStart)
eStart = E->Next;
E = RemoveEdge(E);
eLoopStop = E;
continue;
}
if (E->Prev == E->Next)
break; // only two vertices
else if (Closed && SlopesEqual(E->Prev->Curr, E->Curr, E->Next->Curr,
m_UseFullRange) &&
(!m_PreserveCollinear ||
!Pt2IsBetweenPt1AndPt3(E->Prev->Curr, E->Curr, E->Next->Curr))) {
// Collinear edges are allowed for open paths but in closed paths
// the default is to merge adjacent collinear edges into a single edge.
// However, if the PreserveCollinear property is enabled, only overlapping
// collinear edges (ie spikes) will be removed from closed paths.
if (E == eStart)
eStart = E->Next;
E = RemoveEdge(E);
E = E->Prev;
eLoopStop = E;
continue;
}
E = E->Next;
if ((E == eLoopStop) || (!Closed && E->Next == eStart))
break;
}
if ((!Closed && (E == E->Next)) || (Closed && (E->Prev == E->Next))) {
delete[] edges;
return false;
}
if (!Closed) {
m_HasOpenPaths = true;
eStart->Prev->OutIdx = Skip;
}
// 3. Do second stage of edge initialization ...
E = eStart;
do {
InitEdge2(*E, PolyTyp);
E = E->Next;
if (IsFlat && E->Curr.Y != eStart->Curr.Y)
IsFlat = false;
} while (E != eStart);
// 4. Finally, add edge bounds to LocalMinima list ...
// Totally flat paths must be handled differently when adding them
// to LocalMinima list to avoid endless loops etc ...
if (IsFlat) {
if (Closed) {
delete[] edges;
return false;
}
E->Prev->OutIdx = Skip;
MinimaList::value_type locMin;
locMin.Y = E->Bot.Y;
locMin.LeftBound = 0;
locMin.RightBound = E;
locMin.RightBound->Side = esRight;
locMin.RightBound->WindDelta = 0;
for (;;) {
if (E->Bot.X != E->Prev->Top.X)
ReverseHorizontal(*E);
if (E->Next->OutIdx == Skip)
break;
E->NextInLML = E->Next;
E = E->Next;
}
m_MinimaList.push_back(locMin);
m_edges.push_back(edges);
return true;
}
m_edges.push_back(edges);
bool leftBoundIsForward;
TEdge *EMin = 0;
// workaround to avoid an endless loop in the while loop below when
// open paths have matching start and end points ...
if (E->Prev->Bot == E->Prev->Top)
E = E->Next;
for (;;) {
E = FindNextLocMin(E);
if (E == EMin)
break;
else if (!EMin)
EMin = E;
// E and E.Prev now share a local minima (left aligned if horizontal).
// Compare their slopes to find which starts which bound ...
MinimaList::value_type locMin;
locMin.Y = E->Bot.Y;
if (E->Dx < E->Prev->Dx) {
locMin.LeftBound = E->Prev;
locMin.RightBound = E;
leftBoundIsForward = false; // Q.nextInLML = Q.prev
} else {
locMin.LeftBound = E;
locMin.RightBound = E->Prev;
leftBoundIsForward = true; // Q.nextInLML = Q.next
}
if (!Closed)
locMin.LeftBound->WindDelta = 0;
else if (locMin.LeftBound->Next == locMin.RightBound)
locMin.LeftBound->WindDelta = -1;
else
locMin.LeftBound->WindDelta = 1;
locMin.RightBound->WindDelta = -locMin.LeftBound->WindDelta;
E = ProcessBound(locMin.LeftBound, leftBoundIsForward);
if (E->OutIdx == Skip)
E = ProcessBound(E, leftBoundIsForward);
TEdge *E2 = ProcessBound(locMin.RightBound, !leftBoundIsForward);
if (E2->OutIdx == Skip)
E2 = ProcessBound(E2, !leftBoundIsForward);
if (locMin.LeftBound->OutIdx == Skip)
locMin.LeftBound = 0;
else if (locMin.RightBound->OutIdx == Skip)
locMin.RightBound = 0;
m_MinimaList.push_back(locMin);
if (!leftBoundIsForward)
E = E2;
}
return true;
}
//------------------------------------------------------------------------------
bool ClipperBase::AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed) {
bool result = false;
for (Paths::size_type i = 0; i < ppg.size(); ++i)
if (AddPath(ppg[i], PolyTyp, Closed))
result = true;
return result;
}
//------------------------------------------------------------------------------
void ClipperBase::Clear() {
DisposeLocalMinimaList();
for (EdgeList::size_type i = 0; i < m_edges.size(); ++i) {
TEdge *edges = m_edges[i];
delete[] edges;
}
m_edges.clear();
m_UseFullRange = false;
m_HasOpenPaths = false;
}
//------------------------------------------------------------------------------
void ClipperBase::Reset() {
m_CurrentLM = m_MinimaList.begin();
if (m_CurrentLM == m_MinimaList.end())
return; // ie nothing to process
std::sort(m_MinimaList.begin(), m_MinimaList.end(), LocMinSorter());
m_Scanbeam = ScanbeamList(); // clears/resets priority_queue
// reset all edges ...
for (MinimaList::iterator lm = m_MinimaList.begin(); lm != m_MinimaList.end();
++lm) {
InsertScanbeam(lm->Y);
TEdge *e = lm->LeftBound;
if (e) {
e->Curr = e->Bot;
e->Side = esLeft;
e->OutIdx = Unassigned;
}
e = lm->RightBound;
if (e) {
e->Curr = e->Bot;
e->Side = esRight;
e->OutIdx = Unassigned;
}
}
m_ActiveEdges = 0;
m_CurrentLM = m_MinimaList.begin();
}
//------------------------------------------------------------------------------
void ClipperBase::DisposeLocalMinimaList() {
m_MinimaList.clear();
m_CurrentLM = m_MinimaList.begin();
}
//------------------------------------------------------------------------------
bool ClipperBase::PopLocalMinima(cInt Y, const LocalMinimum *&locMin) {
if (m_CurrentLM == m_MinimaList.end() || (*m_CurrentLM).Y != Y)
return false;
locMin = &(*m_CurrentLM);
++m_CurrentLM;
return true;
}
//------------------------------------------------------------------------------
IntRect ClipperBase::GetBounds() {
IntRect result;
MinimaList::iterator lm = m_MinimaList.begin();
if (lm == m_MinimaList.end()) {
result.left = result.top = result.right = result.bottom = 0;
return result;
}
result.left = lm->LeftBound->Bot.X;
result.top = lm->LeftBound->Bot.Y;
result.right = lm->LeftBound->Bot.X;
result.bottom = lm->LeftBound->Bot.Y;
while (lm != m_MinimaList.end()) {
// todo - needs fixing for open paths
result.bottom = std::max(result.bottom, lm->LeftBound->Bot.Y);
TEdge *e = lm->LeftBound;
for (;;) {
TEdge *bottomE = e;
while (e->NextInLML) {
if (e->Bot.X < result.left)
result.left = e->Bot.X;
if (e->Bot.X > result.right)
result.right = e->Bot.X;
e = e->NextInLML;
}
result.left = std::min(result.left, e->Bot.X);
result.right = std::max(result.right, e->Bot.X);
result.left = std::min(result.left, e->Top.X);
result.right = std::max(result.right, e->Top.X);
result.top = std::min(result.top, e->Top.Y);
if (bottomE == lm->LeftBound)
e = lm->RightBound;
else
break;
}
++lm;
}
return result;
}
//------------------------------------------------------------------------------
void ClipperBase::InsertScanbeam(const cInt Y) { m_Scanbeam.push(Y); }
//------------------------------------------------------------------------------
bool ClipperBase::PopScanbeam(cInt &Y) {
if (m_Scanbeam.empty())
return false;
Y = m_Scanbeam.top();
m_Scanbeam.pop();
while (!m_Scanbeam.empty() && Y == m_Scanbeam.top()) {
m_Scanbeam.pop();
} // Pop duplicates.
return true;
}
//------------------------------------------------------------------------------
void ClipperBase::DisposeAllOutRecs() {
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i)
DisposeOutRec(i);
m_PolyOuts.clear();
}
//------------------------------------------------------------------------------
void ClipperBase::DisposeOutRec(PolyOutList::size_type index) {
OutRec *outRec = m_PolyOuts[index];
if (outRec->Pts)
DisposeOutPts(outRec->Pts);
delete outRec;
m_PolyOuts[index] = 0;
}
//------------------------------------------------------------------------------
void ClipperBase::DeleteFromAEL(TEdge *e) {
TEdge *AelPrev = e->PrevInAEL;
TEdge *AelNext = e->NextInAEL;
if (!AelPrev && !AelNext && (e != m_ActiveEdges))
return; // already deleted
if (AelPrev)
AelPrev->NextInAEL = AelNext;
else
m_ActiveEdges = AelNext;
if (AelNext)
AelNext->PrevInAEL = AelPrev;
e->NextInAEL = 0;
e->PrevInAEL = 0;
}
//------------------------------------------------------------------------------
OutRec *ClipperBase::CreateOutRec() {
OutRec *result = new OutRec;
result->IsHole = false;
result->IsOpen = false;
result->FirstLeft = 0;
result->Pts = 0;
result->BottomPt = 0;
result->PolyNd = 0;
m_PolyOuts.push_back(result);
result->Idx = (int)m_PolyOuts.size() - 1;
return result;
}
//------------------------------------------------------------------------------
void ClipperBase::SwapPositionsInAEL(TEdge *Edge1, TEdge *Edge2) {
// check that one or other edge hasn't already been removed from AEL ...
if (Edge1->NextInAEL == Edge1->PrevInAEL ||
Edge2->NextInAEL == Edge2->PrevInAEL)
return;
if (Edge1->NextInAEL == Edge2) {
TEdge *Next = Edge2->NextInAEL;
if (Next)
Next->PrevInAEL = Edge1;
TEdge *Prev = Edge1->PrevInAEL;
if (Prev)
Prev->NextInAEL = Edge2;
Edge2->PrevInAEL = Prev;
Edge2->NextInAEL = Edge1;
Edge1->PrevInAEL = Edge2;
Edge1->NextInAEL = Next;
} else if (Edge2->NextInAEL == Edge1) {
TEdge *Next = Edge1->NextInAEL;
if (Next)
Next->PrevInAEL = Edge2;
TEdge *Prev = Edge2->PrevInAEL;
if (Prev)
Prev->NextInAEL = Edge1;
Edge1->PrevInAEL = Prev;
Edge1->NextInAEL = Edge2;
Edge2->PrevInAEL = Edge1;
Edge2->NextInAEL = Next;
} else {
TEdge *Next = Edge1->NextInAEL;
TEdge *Prev = Edge1->PrevInAEL;
Edge1->NextInAEL = Edge2->NextInAEL;
if (Edge1->NextInAEL)
Edge1->NextInAEL->PrevInAEL = Edge1;
Edge1->PrevInAEL = Edge2->PrevInAEL;
if (Edge1->PrevInAEL)
Edge1->PrevInAEL->NextInAEL = Edge1;
Edge2->NextInAEL = Next;
if (Edge2->NextInAEL)
Edge2->NextInAEL->PrevInAEL = Edge2;
Edge2->PrevInAEL = Prev;
if (Edge2->PrevInAEL)
Edge2->PrevInAEL->NextInAEL = Edge2;
}
if (!Edge1->PrevInAEL)
m_ActiveEdges = Edge1;
else if (!Edge2->PrevInAEL)
m_ActiveEdges = Edge2;
}
//------------------------------------------------------------------------------
void ClipperBase::UpdateEdgeIntoAEL(TEdge *&e) {
if (!e->NextInLML)
throw clipperException("UpdateEdgeIntoAEL: invalid call");
e->NextInLML->OutIdx = e->OutIdx;
TEdge *AelPrev = e->PrevInAEL;
TEdge *AelNext = e->NextInAEL;
if (AelPrev)
AelPrev->NextInAEL = e->NextInLML;
else
m_ActiveEdges = e->NextInLML;
if (AelNext)
AelNext->PrevInAEL = e->NextInLML;
e->NextInLML->Side = e->Side;
e->NextInLML->WindDelta = e->WindDelta;
e->NextInLML->WindCnt = e->WindCnt;
e->NextInLML->WindCnt2 = e->WindCnt2;
e = e->NextInLML;
e->Curr = e->Bot;
e->PrevInAEL = AelPrev;
e->NextInAEL = AelNext;
if (!IsHorizontal(*e))
InsertScanbeam(e->Top.Y);
}
//------------------------------------------------------------------------------
bool ClipperBase::LocalMinimaPending() {
return (m_CurrentLM != m_MinimaList.end());
}
//------------------------------------------------------------------------------
// TClipper methods ...
//------------------------------------------------------------------------------
Clipper::Clipper(int initOptions)
: ClipperBase() // constructor
{
m_ExecuteLocked = false;
m_UseFullRange = false;
m_ReverseOutput = ((initOptions & ioReverseSolution) != 0);
m_StrictSimple = ((initOptions & ioStrictlySimple) != 0);
m_PreserveCollinear = ((initOptions & ioPreserveCollinear) != 0);
m_HasOpenPaths = false;
#ifdef use_xyz
m_ZFill = 0;
#endif
}
//------------------------------------------------------------------------------
#ifdef use_xyz
void Clipper::ZFillFunction(ZFillCallback zFillFunc) { m_ZFill = zFillFunc; }
//------------------------------------------------------------------------------
#endif
bool Clipper::Execute(ClipType clipType, Paths &solution,
PolyFillType fillType) {
return Execute(clipType, solution, fillType, fillType);
}
//------------------------------------------------------------------------------
bool Clipper::Execute(ClipType clipType, PolyTree &polytree,
PolyFillType fillType) {
return Execute(clipType, polytree, fillType, fillType);
}
//------------------------------------------------------------------------------
bool Clipper::Execute(ClipType clipType, Paths &solution,
PolyFillType subjFillType, PolyFillType clipFillType) {
if (m_ExecuteLocked)
return false;
if (m_HasOpenPaths)
throw clipperException(
"Error: PolyTree struct is needed for open path clipping.");
m_ExecuteLocked = true;
solution.resize(0);
m_SubjFillType = subjFillType;
m_ClipFillType = clipFillType;
m_ClipType = clipType;
m_UsingPolyTree = false;
bool succeeded = ExecuteInternal();
if (succeeded)
BuildResult(solution);
DisposeAllOutRecs();
m_ExecuteLocked = false;
return succeeded;
}
//------------------------------------------------------------------------------
bool Clipper::Execute(ClipType clipType, PolyTree &polytree,
PolyFillType subjFillType, PolyFillType clipFillType) {
if (m_ExecuteLocked)
return false;
m_ExecuteLocked = true;
m_SubjFillType = subjFillType;
m_ClipFillType = clipFillType;
m_ClipType = clipType;
m_UsingPolyTree = true;
bool succeeded = ExecuteInternal();
if (succeeded)
BuildResult2(polytree);
DisposeAllOutRecs();
m_ExecuteLocked = false;
return succeeded;
}
//------------------------------------------------------------------------------
void Clipper::FixHoleLinkage(OutRec &outrec) {
// skip OutRecs that (a) contain outermost polygons or
//(b) already have the correct owner/child linkage ...
if (!outrec.FirstLeft ||
(outrec.IsHole != outrec.FirstLeft->IsHole && outrec.FirstLeft->Pts))
return;
OutRec *orfl = outrec.FirstLeft;
while (orfl && ((orfl->IsHole == outrec.IsHole) || !orfl->Pts))
orfl = orfl->FirstLeft;
outrec.FirstLeft = orfl;
}
//------------------------------------------------------------------------------
bool Clipper::ExecuteInternal() {
bool succeeded = true;
try {
Reset();
m_Maxima = MaximaList();
m_SortedEdges = 0;
succeeded = true;
cInt botY, topY;
if (!PopScanbeam(botY))
return false;
InsertLocalMinimaIntoAEL(botY);
while (PopScanbeam(topY) || LocalMinimaPending()) {
ProcessHorizontals();
ClearGhostJoins();
if (!ProcessIntersections(topY)) {
succeeded = false;
break;
}
ProcessEdgesAtTopOfScanbeam(topY);
botY = topY;
InsertLocalMinimaIntoAEL(botY);
}
} catch (...) {
succeeded = false;
}
if (succeeded) {
// fix orientations ...
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
OutRec *outRec = m_PolyOuts[i];
if (!outRec->Pts || outRec->IsOpen)
continue;
if ((outRec->IsHole ^ m_ReverseOutput) == (Area(*outRec) > 0))
ReversePolyPtLinks(outRec->Pts);
}
if (!m_Joins.empty())
JoinCommonEdges();
// unfortunately FixupOutPolygon() must be done after JoinCommonEdges()
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
OutRec *outRec = m_PolyOuts[i];
if (!outRec->Pts)
continue;
if (outRec->IsOpen)
FixupOutPolyline(*outRec);
else
FixupOutPolygon(*outRec);
}
if (m_StrictSimple)
DoSimplePolygons();
}
ClearJoins();
ClearGhostJoins();
return succeeded;
}
//------------------------------------------------------------------------------
void Clipper::SetWindingCount(TEdge &edge) {
TEdge *e = edge.PrevInAEL;
// find the edge of the same polytype that immediately preceeds 'edge' in AEL
while (e && ((e->PolyTyp != edge.PolyTyp) || (e->WindDelta == 0)))
e = e->PrevInAEL;
if (!e) {
if (edge.WindDelta == 0) {
PolyFillType pft =
(edge.PolyTyp == ptSubject ? m_SubjFillType : m_ClipFillType);
edge.WindCnt = (pft == pftNegative ? -1 : 1);
} else
edge.WindCnt = edge.WindDelta;
edge.WindCnt2 = 0;
e = m_ActiveEdges; // ie get ready to calc WindCnt2
} else if (edge.WindDelta == 0 && m_ClipType != ctUnion) {
edge.WindCnt = 1;
edge.WindCnt2 = e->WindCnt2;
e = e->NextInAEL; // ie get ready to calc WindCnt2
} else if (IsEvenOddFillType(edge)) {
// EvenOdd filling ...
if (edge.WindDelta == 0) {
// are we inside a subj polygon ...
bool Inside = true;
TEdge *e2 = e->PrevInAEL;
while (e2) {
if (e2->PolyTyp == e->PolyTyp && e2->WindDelta != 0)
Inside = !Inside;
e2 = e2->PrevInAEL;
}
edge.WindCnt = (Inside ? 0 : 1);
} else {
edge.WindCnt = edge.WindDelta;
}
edge.WindCnt2 = e->WindCnt2;
e = e->NextInAEL; // ie get ready to calc WindCnt2
} else {
// nonZero, Positive or Negative filling ...
if (e->WindCnt * e->WindDelta < 0) {
// prev edge is 'decreasing' WindCount (WC) toward zero
// so we're outside the previous polygon ...
if (Abs(e->WindCnt) > 1) {
// outside prev poly but still inside another.
// when reversing direction of prev poly use the same WC
if (e->WindDelta * edge.WindDelta < 0)
edge.WindCnt = e->WindCnt;
// otherwise continue to 'decrease' WC ...
else
edge.WindCnt = e->WindCnt + edge.WindDelta;
} else
// now outside all polys of same polytype so set own WC ...
edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta);
} else {
// prev edge is 'increasing' WindCount (WC) away from zero
// so we're inside the previous polygon ...
if (edge.WindDelta == 0)
edge.WindCnt = (e->WindCnt < 0 ? e->WindCnt - 1 : e->WindCnt + 1);
// if wind direction is reversing prev then use same WC
else if (e->WindDelta * edge.WindDelta < 0)
edge.WindCnt = e->WindCnt;
// otherwise add to WC ...
else
edge.WindCnt = e->WindCnt + edge.WindDelta;
}
edge.WindCnt2 = e->WindCnt2;
e = e->NextInAEL; // ie get ready to calc WindCnt2
}
// update WindCnt2 ...
if (IsEvenOddAltFillType(edge)) {
// EvenOdd filling ...
while (e != &edge) {
if (e->WindDelta != 0)
edge.WindCnt2 = (edge.WindCnt2 == 0 ? 1 : 0);
e = e->NextInAEL;
}
} else {
// nonZero, Positive or Negative filling ...
while (e != &edge) {
edge.WindCnt2 += e->WindDelta;
e = e->NextInAEL;
}
}
}
//------------------------------------------------------------------------------
bool Clipper::IsEvenOddFillType(const TEdge &edge) const {
if (edge.PolyTyp == ptSubject)
return m_SubjFillType == pftEvenOdd;
else
return m_ClipFillType == pftEvenOdd;
}
//------------------------------------------------------------------------------
bool Clipper::IsEvenOddAltFillType(const TEdge &edge) const {
if (edge.PolyTyp == ptSubject)
return m_ClipFillType == pftEvenOdd;
else
return m_SubjFillType == pftEvenOdd;
}
//------------------------------------------------------------------------------
bool Clipper::IsContributing(const TEdge &edge) const {
PolyFillType pft, pft2;
if (edge.PolyTyp == ptSubject) {
pft = m_SubjFillType;
pft2 = m_ClipFillType;
} else {
pft = m_ClipFillType;
pft2 = m_SubjFillType;
}
switch (pft) {
case pftEvenOdd:
// return false if a subj line has been flagged as inside a subj polygon
if (edge.WindDelta == 0 && edge.WindCnt != 1)
return false;
break;
case pftNonZero:
if (Abs(edge.WindCnt) != 1)
return false;
break;
case pftPositive:
if (edge.WindCnt != 1)
return false;
break;
default: // pftNegative
if (edge.WindCnt != -1)
return false;
}
switch (m_ClipType) {
case ctIntersection:
switch (pft2) {
case pftEvenOdd:
case pftNonZero:
return (edge.WindCnt2 != 0);
case pftPositive:
return (edge.WindCnt2 > 0);
default:
return (edge.WindCnt2 < 0);
}
break;
case ctUnion:
switch (pft2) {
case pftEvenOdd:
case pftNonZero:
return (edge.WindCnt2 == 0);
case pftPositive:
return (edge.WindCnt2 <= 0);
default:
return (edge.WindCnt2 >= 0);
}
break;
case ctDifference:
if (edge.PolyTyp == ptSubject)
switch (pft2) {
case pftEvenOdd:
case pftNonZero:
return (edge.WindCnt2 == 0);
case pftPositive:
return (edge.WindCnt2 <= 0);
default:
return (edge.WindCnt2 >= 0);
}
else
switch (pft2) {
case pftEvenOdd:
case pftNonZero:
return (edge.WindCnt2 != 0);
case pftPositive:
return (edge.WindCnt2 > 0);
default:
return (edge.WindCnt2 < 0);
}
break;
case ctXor:
if (edge.WindDelta == 0) // XOr always contributing unless open
switch (pft2) {
case pftEvenOdd:
case pftNonZero:
return (edge.WindCnt2 == 0);
case pftPositive:
return (edge.WindCnt2 <= 0);
default:
return (edge.WindCnt2 >= 0);
}
else
return true;
break;
default:
return true;
}
}
//------------------------------------------------------------------------------
OutPt *Clipper::AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt) {
OutPt *result;
TEdge *e, *prevE;
if (IsHorizontal(*e2) || (e1->Dx > e2->Dx)) {
result = AddOutPt(e1, Pt);
e2->OutIdx = e1->OutIdx;
e1->Side = esLeft;
e2->Side = esRight;
e = e1;
if (e->PrevInAEL == e2)
prevE = e2->PrevInAEL;
else
prevE = e->PrevInAEL;
} else {
result = AddOutPt(e2, Pt);
e1->OutIdx = e2->OutIdx;
e1->Side = esRight;
e2->Side = esLeft;
e = e2;
if (e->PrevInAEL == e1)
prevE = e1->PrevInAEL;
else
prevE = e->PrevInAEL;
}
if (prevE && prevE->OutIdx >= 0 && prevE->Top.Y < Pt.Y && e->Top.Y < Pt.Y) {
cInt xPrev = TopX(*prevE, Pt.Y);
cInt xE = TopX(*e, Pt.Y);
if (xPrev == xE && (e->WindDelta != 0) && (prevE->WindDelta != 0) &&
SlopesEqual(IntPoint(xPrev, Pt.Y), prevE->Top, IntPoint(xE, Pt.Y),
e->Top, m_UseFullRange)) {
OutPt *outPt = AddOutPt(prevE, Pt);
AddJoin(result, outPt, e->Top);
}
}
return result;
}
//------------------------------------------------------------------------------
void Clipper::AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt) {
AddOutPt(e1, Pt);
if (e2->WindDelta == 0)
AddOutPt(e2, Pt);
if (e1->OutIdx == e2->OutIdx) {
e1->OutIdx = Unassigned;
e2->OutIdx = Unassigned;
} else if (e1->OutIdx < e2->OutIdx)
AppendPolygon(e1, e2);
else
AppendPolygon(e2, e1);
}
//------------------------------------------------------------------------------
void Clipper::AddEdgeToSEL(TEdge *edge) {
// SEL pointers in PEdge are reused to build a list of horizontal edges.
// However, we don't need to worry about order with horizontal edge
// processing.
if (!m_SortedEdges) {
m_SortedEdges = edge;
edge->PrevInSEL = 0;
edge->NextInSEL = 0;
} else {
edge->NextInSEL = m_SortedEdges;
edge->PrevInSEL = 0;
m_SortedEdges->PrevInSEL = edge;
m_SortedEdges = edge;
}
}
//------------------------------------------------------------------------------
bool Clipper::PopEdgeFromSEL(TEdge *&edge) {
if (!m_SortedEdges)
return false;
edge = m_SortedEdges;
DeleteFromSEL(m_SortedEdges);
return true;
}
//------------------------------------------------------------------------------
void Clipper::CopyAELToSEL() {
TEdge *e = m_ActiveEdges;
m_SortedEdges = e;
while (e) {
e->PrevInSEL = e->PrevInAEL;
e->NextInSEL = e->NextInAEL;
e = e->NextInAEL;
}
}
//------------------------------------------------------------------------------
void Clipper::AddJoin(OutPt *op1, OutPt *op2, const IntPoint OffPt) {
Join *j = new Join;
j->OutPt1 = op1;
j->OutPt2 = op2;
j->OffPt = OffPt;
m_Joins.push_back(j);
}
//------------------------------------------------------------------------------
void Clipper::ClearJoins() {
for (JoinList::size_type i = 0; i < m_Joins.size(); i++)
delete m_Joins[i];
m_Joins.resize(0);
}
//------------------------------------------------------------------------------
void Clipper::ClearGhostJoins() {
for (JoinList::size_type i = 0; i < m_GhostJoins.size(); i++)
delete m_GhostJoins[i];
m_GhostJoins.resize(0);
}
//------------------------------------------------------------------------------
void Clipper::AddGhostJoin(OutPt *op, const IntPoint OffPt) {
Join *j = new Join;
j->OutPt1 = op;
j->OutPt2 = 0;
j->OffPt = OffPt;
m_GhostJoins.push_back(j);
}
//------------------------------------------------------------------------------
void Clipper::InsertLocalMinimaIntoAEL(const cInt botY) {
const LocalMinimum *lm;
while (PopLocalMinima(botY, lm)) {
TEdge *lb = lm->LeftBound;
TEdge *rb = lm->RightBound;
OutPt *Op1 = 0;
if (!lb) {
// nb: don't insert LB into either AEL or SEL
InsertEdgeIntoAEL(rb, 0);
SetWindingCount(*rb);
if (IsContributing(*rb))
Op1 = AddOutPt(rb, rb->Bot);
} else if (!rb) {
InsertEdgeIntoAEL(lb, 0);
SetWindingCount(*lb);
if (IsContributing(*lb))
Op1 = AddOutPt(lb, lb->Bot);
InsertScanbeam(lb->Top.Y);
} else {
InsertEdgeIntoAEL(lb, 0);
InsertEdgeIntoAEL(rb, lb);
SetWindingCount(*lb);
rb->WindCnt = lb->WindCnt;
rb->WindCnt2 = lb->WindCnt2;
if (IsContributing(*lb))
Op1 = AddLocalMinPoly(lb, rb, lb->Bot);
InsertScanbeam(lb->Top.Y);
}
if (rb) {
if (IsHorizontal(*rb)) {
AddEdgeToSEL(rb);
if (rb->NextInLML)
InsertScanbeam(rb->NextInLML->Top.Y);
} else
InsertScanbeam(rb->Top.Y);
}
if (!lb || !rb)
continue;
// if any output polygons share an edge, they'll need joining later ...
if (Op1 && IsHorizontal(*rb) && m_GhostJoins.size() > 0 &&
(rb->WindDelta != 0)) {
for (JoinList::size_type i = 0; i < m_GhostJoins.size(); ++i) {
Join *jr = m_GhostJoins[i];
// if the horizontal Rb and a 'ghost' horizontal overlap, then convert
// the 'ghost' join to a real join ready for later ...
if (HorzSegmentsOverlap(jr->OutPt1->Pt.X, jr->OffPt.X, rb->Bot.X,
rb->Top.X))
AddJoin(jr->OutPt1, Op1, jr->OffPt);
}
}
if (lb->OutIdx >= 0 && lb->PrevInAEL &&
lb->PrevInAEL->Curr.X == lb->Bot.X && lb->PrevInAEL->OutIdx >= 0 &&
SlopesEqual(lb->PrevInAEL->Bot, lb->PrevInAEL->Top, lb->Curr, lb->Top,
m_UseFullRange) &&
(lb->WindDelta != 0) && (lb->PrevInAEL->WindDelta != 0)) {
OutPt *Op2 = AddOutPt(lb->PrevInAEL, lb->Bot);
AddJoin(Op1, Op2, lb->Top);
}
if (lb->NextInAEL != rb) {
if (rb->OutIdx >= 0 && rb->PrevInAEL->OutIdx >= 0 &&
SlopesEqual(rb->PrevInAEL->Curr, rb->PrevInAEL->Top, rb->Curr,
rb->Top, m_UseFullRange) &&
(rb->WindDelta != 0) && (rb->PrevInAEL->WindDelta != 0)) {
OutPt *Op2 = AddOutPt(rb->PrevInAEL, rb->Bot);
AddJoin(Op1, Op2, rb->Top);
}
TEdge *e = lb->NextInAEL;
if (e) {
while (e != rb) {
// nb: For calculating winding counts etc, IntersectEdges() assumes
// that param1 will be to the Right of param2 ABOVE the intersection
// ...
IntersectEdges(rb, e, lb->Curr); // order important here
e = e->NextInAEL;
}
}
}
}
}
//------------------------------------------------------------------------------
void Clipper::DeleteFromSEL(TEdge *e) {
TEdge *SelPrev = e->PrevInSEL;
TEdge *SelNext = e->NextInSEL;
if (!SelPrev && !SelNext && (e != m_SortedEdges))
return; // already deleted
if (SelPrev)
SelPrev->NextInSEL = SelNext;
else
m_SortedEdges = SelNext;
if (SelNext)
SelNext->PrevInSEL = SelPrev;
e->NextInSEL = 0;
e->PrevInSEL = 0;
}
//------------------------------------------------------------------------------
#ifdef use_xyz
void Clipper::SetZ(IntPoint &pt, TEdge &e1, TEdge &e2) {
if (pt.Z != 0 || !m_ZFill)
return;
else if (pt == e1.Bot)
pt.Z = e1.Bot.Z;
else if (pt == e1.Top)
pt.Z = e1.Top.Z;
else if (pt == e2.Bot)
pt.Z = e2.Bot.Z;
else if (pt == e2.Top)
pt.Z = e2.Top.Z;
else
(*m_ZFill)(e1.Bot, e1.Top, e2.Bot, e2.Top, pt);
}
//------------------------------------------------------------------------------
#endif
void Clipper::IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &Pt) {
bool e1Contributing = (e1->OutIdx >= 0);
bool e2Contributing = (e2->OutIdx >= 0);
#ifdef use_xyz
SetZ(Pt, *e1, *e2);
#endif
#ifdef use_lines
// if either edge is on an OPEN path ...
if (e1->WindDelta == 0 || e2->WindDelta == 0) {
// ignore subject-subject open path intersections UNLESS they
// are both open paths, AND they are both 'contributing maximas' ...
if (e1->WindDelta == 0 && e2->WindDelta == 0)
return;
// if intersecting a subj line with a subj poly ...
else if (e1->PolyTyp == e2->PolyTyp && e1->WindDelta != e2->WindDelta &&
m_ClipType == ctUnion) {
if (e1->WindDelta == 0) {
if (e2Contributing) {
AddOutPt(e1, Pt);
if (e1Contributing)
e1->OutIdx = Unassigned;
}
} else {
if (e1Contributing) {
AddOutPt(e2, Pt);
if (e2Contributing)
e2->OutIdx = Unassigned;
}
}
} else if (e1->PolyTyp != e2->PolyTyp) {
// toggle subj open path OutIdx on/off when Abs(clip.WndCnt) == 1 ...
if ((e1->WindDelta == 0) && abs(e2->WindCnt) == 1 &&
(m_ClipType != ctUnion || e2->WindCnt2 == 0)) {
AddOutPt(e1, Pt);
if (e1Contributing)
e1->OutIdx = Unassigned;
} else if ((e2->WindDelta == 0) && (abs(e1->WindCnt) == 1) &&
(m_ClipType != ctUnion || e1->WindCnt2 == 0)) {
AddOutPt(e2, Pt);
if (e2Contributing)
e2->OutIdx = Unassigned;
}
}
return;
}
#endif
// update winding counts...
// assumes that e1 will be to the Right of e2 ABOVE the intersection
if (e1->PolyTyp == e2->PolyTyp) {
if (IsEvenOddFillType(*e1)) {
int oldE1WindCnt = e1->WindCnt;
e1->WindCnt = e2->WindCnt;
e2->WindCnt = oldE1WindCnt;
} else {
if (e1->WindCnt + e2->WindDelta == 0)
e1->WindCnt = -e1->WindCnt;
else
e1->WindCnt += e2->WindDelta;
if (e2->WindCnt - e1->WindDelta == 0)
e2->WindCnt = -e2->WindCnt;
else
e2->WindCnt -= e1->WindDelta;
}
} else {
if (!IsEvenOddFillType(*e2))
e1->WindCnt2 += e2->WindDelta;
else
e1->WindCnt2 = (e1->WindCnt2 == 0) ? 1 : 0;
if (!IsEvenOddFillType(*e1))
e2->WindCnt2 -= e1->WindDelta;
else
e2->WindCnt2 = (e2->WindCnt2 == 0) ? 1 : 0;
}
PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2;
if (e1->PolyTyp == ptSubject) {
e1FillType = m_SubjFillType;
e1FillType2 = m_ClipFillType;
} else {
e1FillType = m_ClipFillType;
e1FillType2 = m_SubjFillType;
}
if (e2->PolyTyp == ptSubject) {
e2FillType = m_SubjFillType;
e2FillType2 = m_ClipFillType;
} else {
e2FillType = m_ClipFillType;
e2FillType2 = m_SubjFillType;
}
cInt e1Wc, e2Wc;
switch (e1FillType) {
case pftPositive:
e1Wc = e1->WindCnt;
break;
case pftNegative:
e1Wc = -e1->WindCnt;
break;
default:
e1Wc = Abs(e1->WindCnt);
}
switch (e2FillType) {
case pftPositive:
e2Wc = e2->WindCnt;
break;
case pftNegative:
e2Wc = -e2->WindCnt;
break;
default:
e2Wc = Abs(e2->WindCnt);
}
if (e1Contributing && e2Contributing) {
if ((e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) ||
(e1->PolyTyp != e2->PolyTyp && m_ClipType != ctXor)) {
AddLocalMaxPoly(e1, e2, Pt);
} else {
AddOutPt(e1, Pt);
AddOutPt(e2, Pt);
SwapSides(*e1, *e2);
SwapPolyIndexes(*e1, *e2);
}
} else if (e1Contributing) {
if (e2Wc == 0 || e2Wc == 1) {
AddOutPt(e1, Pt);
SwapSides(*e1, *e2);
SwapPolyIndexes(*e1, *e2);
}
} else if (e2Contributing) {
if (e1Wc == 0 || e1Wc == 1) {
AddOutPt(e2, Pt);
SwapSides(*e1, *e2);
SwapPolyIndexes(*e1, *e2);
}
} else if ((e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1)) {
// neither edge is currently contributing ...
cInt e1Wc2, e2Wc2;
switch (e1FillType2) {
case pftPositive:
e1Wc2 = e1->WindCnt2;
break;
case pftNegative:
e1Wc2 = -e1->WindCnt2;
break;
default:
e1Wc2 = Abs(e1->WindCnt2);
}
switch (e2FillType2) {
case pftPositive:
e2Wc2 = e2->WindCnt2;
break;
case pftNegative:
e2Wc2 = -e2->WindCnt2;
break;
default:
e2Wc2 = Abs(e2->WindCnt2);
}
if (e1->PolyTyp != e2->PolyTyp) {
AddLocalMinPoly(e1, e2, Pt);
} else if (e1Wc == 1 && e2Wc == 1)
switch (m_ClipType) {
case ctIntersection:
if (e1Wc2 > 0 && e2Wc2 > 0)
AddLocalMinPoly(e1, e2, Pt);
break;
case ctUnion:
if (e1Wc2 <= 0 && e2Wc2 <= 0)
AddLocalMinPoly(e1, e2, Pt);
break;
case ctDifference:
if (((e1->PolyTyp == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0)) ||
((e1->PolyTyp == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0)))
AddLocalMinPoly(e1, e2, Pt);
break;
case ctXor:
AddLocalMinPoly(e1, e2, Pt);
}
else
SwapSides(*e1, *e2);
}
}
//------------------------------------------------------------------------------
void Clipper::SetHoleState(TEdge *e, OutRec *outrec) {
TEdge *e2 = e->PrevInAEL;
TEdge *eTmp = 0;
while (e2) {
if (e2->OutIdx >= 0 && e2->WindDelta != 0) {
if (!eTmp)
eTmp = e2;
else if (eTmp->OutIdx == e2->OutIdx)
eTmp = 0;
}
e2 = e2->PrevInAEL;
}
if (!eTmp) {
outrec->FirstLeft = 0;
outrec->IsHole = false;
} else {
outrec->FirstLeft = m_PolyOuts[eTmp->OutIdx];
outrec->IsHole = !outrec->FirstLeft->IsHole;
}
}
//------------------------------------------------------------------------------
OutRec *GetLowermostRec(OutRec *outRec1, OutRec *outRec2) {
// work out which polygon fragment has the correct hole state ...
if (!outRec1->BottomPt)
outRec1->BottomPt = GetBottomPt(outRec1->Pts);
if (!outRec2->BottomPt)
outRec2->BottomPt = GetBottomPt(outRec2->Pts);
OutPt *OutPt1 = outRec1->BottomPt;
OutPt *OutPt2 = outRec2->BottomPt;
if (OutPt1->Pt.Y > OutPt2->Pt.Y)
return outRec1;
else if (OutPt1->Pt.Y < OutPt2->Pt.Y)
return outRec2;
else if (OutPt1->Pt.X < OutPt2->Pt.X)
return outRec1;
else if (OutPt1->Pt.X > OutPt2->Pt.X)
return outRec2;
else if (OutPt1->Next == OutPt1)
return outRec2;
else if (OutPt2->Next == OutPt2)
return outRec1;
else if (FirstIsBottomPt(OutPt1, OutPt2))
return outRec1;
else
return outRec2;
}
//------------------------------------------------------------------------------
bool OutRec1RightOfOutRec2(OutRec *outRec1, OutRec *outRec2) {
do {
outRec1 = outRec1->FirstLeft;
if (outRec1 == outRec2)
return true;
} while (outRec1);
return false;
}
//------------------------------------------------------------------------------
OutRec *Clipper::GetOutRec(int Idx) {
OutRec *outrec = m_PolyOuts[Idx];
while (outrec != m_PolyOuts[outrec->Idx])
outrec = m_PolyOuts[outrec->Idx];
return outrec;
}
//------------------------------------------------------------------------------
void Clipper::AppendPolygon(TEdge *e1, TEdge *e2) {
// get the start and ends of both output polygons ...
OutRec *outRec1 = m_PolyOuts[e1->OutIdx];
OutRec *outRec2 = m_PolyOuts[e2->OutIdx];
OutRec *holeStateRec;
if (OutRec1RightOfOutRec2(outRec1, outRec2))
holeStateRec = outRec2;
else if (OutRec1RightOfOutRec2(outRec2, outRec1))
holeStateRec = outRec1;
else
holeStateRec = GetLowermostRec(outRec1, outRec2);
// get the start and ends of both output polygons and
// join e2 poly onto e1 poly and delete pointers to e2 ...
OutPt *p1_lft = outRec1->Pts;
OutPt *p1_rt = p1_lft->Prev;
OutPt *p2_lft = outRec2->Pts;
OutPt *p2_rt = p2_lft->Prev;
// join e2 poly onto e1 poly and delete pointers to e2 ...
if (e1->Side == esLeft) {
if (e2->Side == esLeft) {
// z y x a b c
ReversePolyPtLinks(p2_lft);
p2_lft->Next = p1_lft;
p1_lft->Prev = p2_lft;
p1_rt->Next = p2_rt;
p2_rt->Prev = p1_rt;
outRec1->Pts = p2_rt;
} else {
// x y z a b c
p2_rt->Next = p1_lft;
p1_lft->Prev = p2_rt;
p2_lft->Prev = p1_rt;
p1_rt->Next = p2_lft;
outRec1->Pts = p2_lft;
}
} else {
if (e2->Side == esRight) {
// a b c z y x
ReversePolyPtLinks(p2_lft);
p1_rt->Next = p2_rt;
p2_rt->Prev = p1_rt;
p2_lft->Next = p1_lft;
p1_lft->Prev = p2_lft;
} else {
// a b c x y z
p1_rt->Next = p2_lft;
p2_lft->Prev = p1_rt;
p1_lft->Prev = p2_rt;
p2_rt->Next = p1_lft;
}
}
outRec1->BottomPt = 0;
if (holeStateRec == outRec2) {
if (outRec2->FirstLeft != outRec1)
outRec1->FirstLeft = outRec2->FirstLeft;
outRec1->IsHole = outRec2->IsHole;
}
outRec2->Pts = 0;
outRec2->BottomPt = 0;
outRec2->FirstLeft = outRec1;
int OKIdx = e1->OutIdx;
int ObsoleteIdx = e2->OutIdx;
e1->OutIdx =
Unassigned; // nb: safe because we only get here via AddLocalMaxPoly
e2->OutIdx = Unassigned;
TEdge *e = m_ActiveEdges;
while (e) {
if (e->OutIdx == ObsoleteIdx) {
e->OutIdx = OKIdx;
e->Side = e1->Side;
break;
}
e = e->NextInAEL;
}
outRec2->Idx = outRec1->Idx;
}
//------------------------------------------------------------------------------
OutPt *Clipper::AddOutPt(TEdge *e, const IntPoint &pt) {
if (e->OutIdx < 0) {
OutRec *outRec = CreateOutRec();
outRec->IsOpen = (e->WindDelta == 0);
OutPt *newOp = new OutPt;
outRec->Pts = newOp;
newOp->Idx = outRec->Idx;
newOp->Pt = pt;
newOp->Next = newOp;
newOp->Prev = newOp;
if (!outRec->IsOpen)
SetHoleState(e, outRec);
e->OutIdx = outRec->Idx;
return newOp;
} else {
OutRec *outRec = m_PolyOuts[e->OutIdx];
// OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most'
OutPt *op = outRec->Pts;
bool ToFront = (e->Side == esLeft);
if (ToFront && (pt == op->Pt))
return op;
else if (!ToFront && (pt == op->Prev->Pt))
return op->Prev;
OutPt *newOp = new OutPt;
newOp->Idx = outRec->Idx;
newOp->Pt = pt;
newOp->Next = op;
newOp->Prev = op->Prev;
newOp->Prev->Next = newOp;
op->Prev = newOp;
if (ToFront)
outRec->Pts = newOp;
return newOp;
}
}
//------------------------------------------------------------------------------
OutPt *Clipper::GetLastOutPt(TEdge *e) {
OutRec *outRec = m_PolyOuts[e->OutIdx];
if (e->Side == esLeft)
return outRec->Pts;
else
return outRec->Pts->Prev;
}
//------------------------------------------------------------------------------
void Clipper::ProcessHorizontals() {
TEdge *horzEdge;
while (PopEdgeFromSEL(horzEdge))
ProcessHorizontal(horzEdge);
}
//------------------------------------------------------------------------------
inline bool IsMinima(TEdge *e) {
return e && (e->Prev->NextInLML != e) && (e->Next->NextInLML != e);
}
//------------------------------------------------------------------------------
inline bool IsMaxima(TEdge *e, const cInt Y) {
return e && e->Top.Y == Y && !e->NextInLML;
}
//------------------------------------------------------------------------------
inline bool IsIntermediate(TEdge *e, const cInt Y) {
return e->Top.Y == Y && e->NextInLML;
}
//------------------------------------------------------------------------------
TEdge *GetMaximaPair(TEdge *e) {
if ((e->Next->Top == e->Top) && !e->Next->NextInLML)
return e->Next;
else if ((e->Prev->Top == e->Top) && !e->Prev->NextInLML)
return e->Prev;
else
return 0;
}
//------------------------------------------------------------------------------
TEdge *GetMaximaPairEx(TEdge *e) {
// as GetMaximaPair() but returns 0 if MaxPair isn't in AEL (unless it's
// horizontal)
TEdge *result = GetMaximaPair(e);
if (result &&
(result->OutIdx == Skip ||
(result->NextInAEL == result->PrevInAEL && !IsHorizontal(*result))))
return 0;
return result;
}
//------------------------------------------------------------------------------
void Clipper::SwapPositionsInSEL(TEdge *Edge1, TEdge *Edge2) {
if (!(Edge1->NextInSEL) && !(Edge1->PrevInSEL))
return;
if (!(Edge2->NextInSEL) && !(Edge2->PrevInSEL))
return;
if (Edge1->NextInSEL == Edge2) {
TEdge *Next = Edge2->NextInSEL;
if (Next)
Next->PrevInSEL = Edge1;
TEdge *Prev = Edge1->PrevInSEL;
if (Prev)
Prev->NextInSEL = Edge2;
Edge2->PrevInSEL = Prev;
Edge2->NextInSEL = Edge1;
Edge1->PrevInSEL = Edge2;
Edge1->NextInSEL = Next;
} else if (Edge2->NextInSEL == Edge1) {
TEdge *Next = Edge1->NextInSEL;
if (Next)
Next->PrevInSEL = Edge2;
TEdge *Prev = Edge2->PrevInSEL;
if (Prev)
Prev->NextInSEL = Edge1;
Edge1->PrevInSEL = Prev;
Edge1->NextInSEL = Edge2;
Edge2->PrevInSEL = Edge1;
Edge2->NextInSEL = Next;
} else {
TEdge *Next = Edge1->NextInSEL;
TEdge *Prev = Edge1->PrevInSEL;
Edge1->NextInSEL = Edge2->NextInSEL;
if (Edge1->NextInSEL)
Edge1->NextInSEL->PrevInSEL = Edge1;
Edge1->PrevInSEL = Edge2->PrevInSEL;
if (Edge1->PrevInSEL)
Edge1->PrevInSEL->NextInSEL = Edge1;
Edge2->NextInSEL = Next;
if (Edge2->NextInSEL)
Edge2->NextInSEL->PrevInSEL = Edge2;
Edge2->PrevInSEL = Prev;
if (Edge2->PrevInSEL)
Edge2->PrevInSEL->NextInSEL = Edge2;
}
if (!Edge1->PrevInSEL)
m_SortedEdges = Edge1;
else if (!Edge2->PrevInSEL)
m_SortedEdges = Edge2;
}
//------------------------------------------------------------------------------
TEdge *GetNextInAEL(TEdge *e, Direction dir) {
return dir == dLeftToRight ? e->NextInAEL : e->PrevInAEL;
}
//------------------------------------------------------------------------------
void GetHorzDirection(TEdge &HorzEdge, Direction &Dir, cInt &Left,
cInt &Right) {
if (HorzEdge.Bot.X < HorzEdge.Top.X) {
Left = HorzEdge.Bot.X;
Right = HorzEdge.Top.X;
Dir = dLeftToRight;
} else {
Left = HorzEdge.Top.X;
Right = HorzEdge.Bot.X;
Dir = dRightToLeft;
}
}
//------------------------------------------------------------------------
/*******************************************************************************
* Notes: Horizontal edges (HEs) at scanline intersections (ie at the Top or *
* Bottom of a scanbeam) are processed as if layered. The order in which HEs *
* are processed doesn't matter. HEs intersect with other HE Bot.Xs only [#] *
* (or they could intersect with Top.Xs only, ie EITHER Bot.Xs OR Top.Xs), *
* and with other non-horizontal edges [*]. Once these intersections are *
* processed, intermediate HEs then 'promote' the Edge above (NextInLML) into *
* the AEL. These 'promoted' edges may in turn intersect [%] with other HEs. *
*******************************************************************************/
void Clipper::ProcessHorizontal(TEdge *horzEdge) {
Direction dir;
cInt horzLeft, horzRight;
bool IsOpen = (horzEdge->WindDelta == 0);
GetHorzDirection(*horzEdge, dir, horzLeft, horzRight);
TEdge *eLastHorz = horzEdge, *eMaxPair = 0;
while (eLastHorz->NextInLML && IsHorizontal(*eLastHorz->NextInLML))
eLastHorz = eLastHorz->NextInLML;
if (!eLastHorz->NextInLML)
eMaxPair = GetMaximaPair(eLastHorz);
MaximaList::const_iterator maxIt;
MaximaList::const_reverse_iterator maxRit;
if (m_Maxima.size() > 0) {
// get the first maxima in range (X) ...
if (dir == dLeftToRight) {
maxIt = m_Maxima.begin();
while (maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.X)
maxIt++;
if (maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.X)
maxIt = m_Maxima.end();
} else {
maxRit = m_Maxima.rbegin();
while (maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.X)
maxRit++;
if (maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.X)
maxRit = m_Maxima.rend();
}
}
OutPt *op1 = 0;
for (;;) // loop through consec. horizontal edges
{
bool IsLastHorz = (horzEdge == eLastHorz);
TEdge *e = GetNextInAEL(horzEdge, dir);
while (e) {
// this code block inserts extra coords into horizontal edges (in output
// polygons) whereever maxima touch these horizontal edges. This helps
//'simplifying' polygons (ie if the Simplify property is set).
if (m_Maxima.size() > 0) {
if (dir == dLeftToRight) {
while (maxIt != m_Maxima.end() && *maxIt < e->Curr.X) {
if (horzEdge->OutIdx >= 0 && !IsOpen)
AddOutPt(horzEdge, IntPoint(*maxIt, horzEdge->Bot.Y));
maxIt++;
}
} else {
while (maxRit != m_Maxima.rend() && *maxRit > e->Curr.X) {
if (horzEdge->OutIdx >= 0 && !IsOpen)
AddOutPt(horzEdge, IntPoint(*maxRit, horzEdge->Bot.Y));
maxRit++;
}
}
};
if ((dir == dLeftToRight && e->Curr.X > horzRight) ||
(dir == dRightToLeft && e->Curr.X < horzLeft))
break;
// Also break if we've got to the end of an intermediate horizontal edge
// ...
// nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal.
if (e->Curr.X == horzEdge->Top.X && horzEdge->NextInLML &&
e->Dx < horzEdge->NextInLML->Dx)
break;
if (horzEdge->OutIdx >= 0 && !IsOpen) // note: may be done multiple times
{
#ifdef use_xyz
if (dir == dLeftToRight)
SetZ(e->Curr, *horzEdge, *e);
else
SetZ(e->Curr, *e, *horzEdge);
#endif
op1 = AddOutPt(horzEdge, e->Curr);
TEdge *eNextHorz = m_SortedEdges;
while (eNextHorz) {
if (eNextHorz->OutIdx >= 0 &&
HorzSegmentsOverlap(horzEdge->Bot.X, horzEdge->Top.X,
eNextHorz->Bot.X, eNextHorz->Top.X)) {
OutPt *op2 = GetLastOutPt(eNextHorz);
AddJoin(op2, op1, eNextHorz->Top);
}
eNextHorz = eNextHorz->NextInSEL;
}
AddGhostJoin(op1, horzEdge->Bot);
}
// OK, so far we're still in range of the horizontal Edge but make sure
// we're at the last of consec. horizontals when matching with eMaxPair
if (e == eMaxPair && IsLastHorz) {
if (horzEdge->OutIdx >= 0)
AddLocalMaxPoly(horzEdge, eMaxPair, horzEdge->Top);
DeleteFromAEL(horzEdge);
DeleteFromAEL(eMaxPair);
return;
}
if (dir == dLeftToRight) {
IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y);
IntersectEdges(horzEdge, e, Pt);
} else {
IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y);
IntersectEdges(e, horzEdge, Pt);
}
TEdge *eNext = GetNextInAEL(e, dir);
SwapPositionsInAEL(horzEdge, e);
e = eNext;
} // end while(e)
// Break out of loop if HorzEdge.NextInLML is not also horizontal ...
if (!horzEdge->NextInLML || !IsHorizontal(*horzEdge->NextInLML))
break;
UpdateEdgeIntoAEL(horzEdge);
if (horzEdge->OutIdx >= 0)
AddOutPt(horzEdge, horzEdge->Bot);
GetHorzDirection(*horzEdge, dir, horzLeft, horzRight);
} // end for (;;)
if (horzEdge->OutIdx >= 0 && !op1) {
op1 = GetLastOutPt(horzEdge);
TEdge *eNextHorz = m_SortedEdges;
while (eNextHorz) {
if (eNextHorz->OutIdx >= 0 &&
HorzSegmentsOverlap(horzEdge->Bot.X, horzEdge->Top.X,
eNextHorz->Bot.X, eNextHorz->Top.X)) {
OutPt *op2 = GetLastOutPt(eNextHorz);
AddJoin(op2, op1, eNextHorz->Top);
}
eNextHorz = eNextHorz->NextInSEL;
}
AddGhostJoin(op1, horzEdge->Top);
}
if (horzEdge->NextInLML) {
if (horzEdge->OutIdx >= 0) {
op1 = AddOutPt(horzEdge, horzEdge->Top);
UpdateEdgeIntoAEL(horzEdge);
if (horzEdge->WindDelta == 0)
return;
// nb: HorzEdge is no longer horizontal here
TEdge *ePrev = horzEdge->PrevInAEL;
TEdge *eNext = horzEdge->NextInAEL;
if (ePrev && ePrev->Curr.X == horzEdge->Bot.X &&
ePrev->Curr.Y == horzEdge->Bot.Y && ePrev->WindDelta != 0 &&
(ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y &&
SlopesEqual(*horzEdge, *ePrev, m_UseFullRange))) {
OutPt *op2 = AddOutPt(ePrev, horzEdge->Bot);
AddJoin(op1, op2, horzEdge->Top);
} else if (eNext && eNext->Curr.X == horzEdge->Bot.X &&
eNext->Curr.Y == horzEdge->Bot.Y && eNext->WindDelta != 0 &&
eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y &&
SlopesEqual(*horzEdge, *eNext, m_UseFullRange)) {
OutPt *op2 = AddOutPt(eNext, horzEdge->Bot);
AddJoin(op1, op2, horzEdge->Top);
}
} else
UpdateEdgeIntoAEL(horzEdge);
} else {
if (horzEdge->OutIdx >= 0)
AddOutPt(horzEdge, horzEdge->Top);
DeleteFromAEL(horzEdge);
}
}
//------------------------------------------------------------------------------
bool Clipper::ProcessIntersections(const cInt topY) {
if (!m_ActiveEdges)
return true;
try {
BuildIntersectList(topY);
size_t IlSize = m_IntersectList.size();
if (IlSize == 0)
return true;
if (IlSize == 1 || FixupIntersectionOrder())
ProcessIntersectList();
else
return false;
} catch (...) {
m_SortedEdges = 0;
DisposeIntersectNodes();
throw clipperException("ProcessIntersections error");
}
m_SortedEdges = 0;
return true;
}
//------------------------------------------------------------------------------
void Clipper::DisposeIntersectNodes() {
for (size_t i = 0; i < m_IntersectList.size(); ++i)
delete m_IntersectList[i];
m_IntersectList.clear();
}
//------------------------------------------------------------------------------
void Clipper::BuildIntersectList(const cInt topY) {
if (!m_ActiveEdges)
return;
// prepare for sorting ...
TEdge *e = m_ActiveEdges;
m_SortedEdges = e;
while (e) {
e->PrevInSEL = e->PrevInAEL;
e->NextInSEL = e->NextInAEL;
e->Curr.X = TopX(*e, topY);
e = e->NextInAEL;
}
// bubblesort ...
bool isModified;
do {
isModified = false;
e = m_SortedEdges;
while (e->NextInSEL) {
TEdge *eNext = e->NextInSEL;
IntPoint Pt;
if (e->Curr.X > eNext->Curr.X) {
IntersectPoint(*e, *eNext, Pt);
if (Pt.Y < topY)
Pt = IntPoint(TopX(*e, topY), topY);
IntersectNode *newNode = new IntersectNode;
newNode->Edge1 = e;
newNode->Edge2 = eNext;
newNode->Pt = Pt;
m_IntersectList.push_back(newNode);
SwapPositionsInSEL(e, eNext);
isModified = true;
} else
e = eNext;
}
if (e->PrevInSEL)
e->PrevInSEL->NextInSEL = 0;
else
break;
} while (isModified);
m_SortedEdges = 0; // important
}
//------------------------------------------------------------------------------
void Clipper::ProcessIntersectList() {
for (size_t i = 0; i < m_IntersectList.size(); ++i) {
IntersectNode *iNode = m_IntersectList[i];
{
IntersectEdges(iNode->Edge1, iNode->Edge2, iNode->Pt);
SwapPositionsInAEL(iNode->Edge1, iNode->Edge2);
}
delete iNode;
}
m_IntersectList.clear();
}
//------------------------------------------------------------------------------
bool IntersectListSort(IntersectNode *node1, IntersectNode *node2) {
return node2->Pt.Y < node1->Pt.Y;
}
//------------------------------------------------------------------------------
inline bool EdgesAdjacent(const IntersectNode &inode) {
return (inode.Edge1->NextInSEL == inode.Edge2) ||
(inode.Edge1->PrevInSEL == inode.Edge2);
}
//------------------------------------------------------------------------------
bool Clipper::FixupIntersectionOrder() {
// pre-condition: intersections are sorted Bottom-most first.
// Now it's crucial that intersections are made only between adjacent edges,
// so to ensure this the order of intersections may need adjusting ...
CopyAELToSEL();
std::sort(m_IntersectList.begin(), m_IntersectList.end(), IntersectListSort);
size_t cnt = m_IntersectList.size();
for (size_t i = 0; i < cnt; ++i) {
if (!EdgesAdjacent(*m_IntersectList[i])) {
size_t j = i + 1;
while (j < cnt && !EdgesAdjacent(*m_IntersectList[j]))
j++;
if (j == cnt)
return false;
std::swap(m_IntersectList[i], m_IntersectList[j]);
}
SwapPositionsInSEL(m_IntersectList[i]->Edge1, m_IntersectList[i]->Edge2);
}
return true;
}
//------------------------------------------------------------------------------
void Clipper::DoMaxima(TEdge *e) {
TEdge *eMaxPair = GetMaximaPairEx(e);
if (!eMaxPair) {
if (e->OutIdx >= 0)
AddOutPt(e, e->Top);
DeleteFromAEL(e);
return;
}
TEdge *eNext = e->NextInAEL;
while (eNext && eNext != eMaxPair) {
IntersectEdges(e, eNext, e->Top);
SwapPositionsInAEL(e, eNext);
eNext = e->NextInAEL;
}
if (e->OutIdx == Unassigned && eMaxPair->OutIdx == Unassigned) {
DeleteFromAEL(e);
DeleteFromAEL(eMaxPair);
} else if (e->OutIdx >= 0 && eMaxPair->OutIdx >= 0) {
if (e->OutIdx >= 0)
AddLocalMaxPoly(e, eMaxPair, e->Top);
DeleteFromAEL(e);
DeleteFromAEL(eMaxPair);
}
#ifdef use_lines
else if (e->WindDelta == 0) {
if (e->OutIdx >= 0) {
AddOutPt(e, e->Top);
e->OutIdx = Unassigned;
}
DeleteFromAEL(e);
if (eMaxPair->OutIdx >= 0) {
AddOutPt(eMaxPair, e->Top);
eMaxPair->OutIdx = Unassigned;
}
DeleteFromAEL(eMaxPair);
}
#endif
else
throw clipperException("DoMaxima error");
}
//------------------------------------------------------------------------------
void Clipper::ProcessEdgesAtTopOfScanbeam(const cInt topY) {
TEdge *e = m_ActiveEdges;
while (e) {
// 1. process maxima, treating them as if they're 'bent' horizontal edges,
// but exclude maxima with horizontal edges. nb: e can't be a horizontal.
bool IsMaximaEdge = IsMaxima(e, topY);
if (IsMaximaEdge) {
TEdge *eMaxPair = GetMaximaPairEx(e);
IsMaximaEdge = (!eMaxPair || !IsHorizontal(*eMaxPair));
}
if (IsMaximaEdge) {
if (m_StrictSimple)
m_Maxima.push_back(e->Top.X);
TEdge *ePrev = e->PrevInAEL;
DoMaxima(e);
if (!ePrev)
e = m_ActiveEdges;
else
e = ePrev->NextInAEL;
} else {
// 2. promote horizontal edges, otherwise update Curr.X and Curr.Y ...
if (IsIntermediate(e, topY) && IsHorizontal(*e->NextInLML)) {
UpdateEdgeIntoAEL(e);
if (e->OutIdx >= 0)
AddOutPt(e, e->Bot);
AddEdgeToSEL(e);
} else {
e->Curr.X = TopX(*e, topY);
e->Curr.Y = topY;
#ifdef use_xyz
e->Curr.Z =
topY == e->Top.Y ? e->Top.Z : (topY == e->Bot.Y ? e->Bot.Z : 0);
#endif
}
// When StrictlySimple and 'e' is being touched by another edge, then
// make sure both edges have a vertex here ...
if (m_StrictSimple) {
TEdge *ePrev = e->PrevInAEL;
if ((e->OutIdx >= 0) && (e->WindDelta != 0) && ePrev &&
(ePrev->OutIdx >= 0) && (ePrev->Curr.X == e->Curr.X) &&
(ePrev->WindDelta != 0)) {
IntPoint pt = e->Curr;
#ifdef use_xyz
SetZ(pt, *ePrev, *e);
#endif
OutPt *op = AddOutPt(ePrev, pt);
OutPt *op2 = AddOutPt(e, pt);
AddJoin(op, op2, pt); // StrictlySimple (type-3) join
}
}
e = e->NextInAEL;
}
}
// 3. Process horizontals at the Top of the scanbeam ...
m_Maxima.sort();
ProcessHorizontals();
m_Maxima.clear();
// 4. Promote intermediate vertices ...
e = m_ActiveEdges;
while (e) {
if (IsIntermediate(e, topY)) {
OutPt *op = 0;
if (e->OutIdx >= 0)
op = AddOutPt(e, e->Top);
UpdateEdgeIntoAEL(e);
// if output polygons share an edge, they'll need joining later ...
TEdge *ePrev = e->PrevInAEL;
TEdge *eNext = e->NextInAEL;
if (ePrev && ePrev->Curr.X == e->Bot.X && ePrev->Curr.Y == e->Bot.Y &&
op && ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y &&
SlopesEqual(e->Curr, e->Top, ePrev->Curr, ePrev->Top,
m_UseFullRange) &&
(e->WindDelta != 0) && (ePrev->WindDelta != 0)) {
OutPt *op2 = AddOutPt(ePrev, e->Bot);
AddJoin(op, op2, e->Top);
} else if (eNext && eNext->Curr.X == e->Bot.X &&
eNext->Curr.Y == e->Bot.Y && op && eNext->OutIdx >= 0 &&
eNext->Curr.Y > eNext->Top.Y &&
SlopesEqual(e->Curr, e->Top, eNext->Curr, eNext->Top,
m_UseFullRange) &&
(e->WindDelta != 0) && (eNext->WindDelta != 0)) {
OutPt *op2 = AddOutPt(eNext, e->Bot);
AddJoin(op, op2, e->Top);
}
}
e = e->NextInAEL;
}
}
//------------------------------------------------------------------------------
void Clipper::FixupOutPolyline(OutRec &outrec) {
OutPt *pp = outrec.Pts;
OutPt *lastPP = pp->Prev;
while (pp != lastPP) {
pp = pp->Next;
if (pp->Pt == pp->Prev->Pt) {
if (pp == lastPP)
lastPP = pp->Prev;
OutPt *tmpPP = pp->Prev;
tmpPP->Next = pp->Next;
pp->Next->Prev = tmpPP;
delete pp;
pp = tmpPP;
}
}
if (pp == pp->Prev) {
DisposeOutPts(pp);
outrec.Pts = 0;
return;
}
}
//------------------------------------------------------------------------------
void Clipper::FixupOutPolygon(OutRec &outrec) {
// FixupOutPolygon() - removes duplicate points and simplifies consecutive
// parallel edges by removing the middle vertex.
OutPt *lastOK = 0;
outrec.BottomPt = 0;
OutPt *pp = outrec.Pts;
bool preserveCol = m_PreserveCollinear || m_StrictSimple;
for (;;) {
if (pp->Prev == pp || pp->Prev == pp->Next) {
DisposeOutPts(pp);
outrec.Pts = 0;
return;
}
// test for duplicate points and collinear edges ...
if ((pp->Pt == pp->Next->Pt) || (pp->Pt == pp->Prev->Pt) ||
(SlopesEqual(pp->Prev->Pt, pp->Pt, pp->Next->Pt, m_UseFullRange) &&
(!preserveCol ||
!Pt2IsBetweenPt1AndPt3(pp->Prev->Pt, pp->Pt, pp->Next->Pt)))) {
lastOK = 0;
OutPt *tmp = pp;
pp->Prev->Next = pp->Next;
pp->Next->Prev = pp->Prev;
pp = pp->Prev;
delete tmp;
} else if (pp == lastOK)
break;
else {
if (!lastOK)
lastOK = pp;
pp = pp->Next;
}
}
outrec.Pts = pp;
}
//------------------------------------------------------------------------------
int PointCount(OutPt *Pts) {
if (!Pts)
return 0;
int result = 0;
OutPt *p = Pts;
do {
result++;
p = p->Next;
} while (p != Pts);
return result;
}
//------------------------------------------------------------------------------
void Clipper::BuildResult(Paths &polys) {
polys.reserve(m_PolyOuts.size());
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
if (!m_PolyOuts[i]->Pts)
continue;
Path pg;
OutPt *p = m_PolyOuts[i]->Pts->Prev;
int cnt = PointCount(p);
if (cnt < 2)
continue;
pg.reserve(cnt);
for (int i = 0; i < cnt; ++i) {
pg.push_back(p->Pt);
p = p->Prev;
}
polys.push_back(pg);
}
}
//------------------------------------------------------------------------------
void Clipper::BuildResult2(PolyTree &polytree) {
polytree.Clear();
polytree.AllNodes.reserve(m_PolyOuts.size());
// add each output polygon/contour to polytree ...
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) {
OutRec *outRec = m_PolyOuts[i];
int cnt = PointCount(outRec->Pts);
if ((outRec->IsOpen && cnt < 2) || (!outRec->IsOpen && cnt < 3))
continue;
FixHoleLinkage(*outRec);
PolyNode *pn = new PolyNode();
// nb: polytree takes ownership of all the PolyNodes
polytree.AllNodes.push_back(pn);
outRec->PolyNd = pn;
pn->Parent = 0;
pn->Index = 0;
pn->Contour.reserve(cnt);
OutPt *op = outRec->Pts->Prev;
for (int j = 0; j < cnt; j++) {
pn->Contour.push_back(op->Pt);
op = op->Prev;
}
}
// fixup PolyNode links etc ...
polytree.Childs.reserve(m_PolyOuts.size());
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) {
OutRec *outRec = m_PolyOuts[i];
if (!outRec->PolyNd)
continue;
if (outRec->IsOpen) {
outRec->PolyNd->m_IsOpen = true;
polytree.AddChild(*outRec->PolyNd);
} else if (outRec->FirstLeft && outRec->FirstLeft->PolyNd)
outRec->FirstLeft->PolyNd->AddChild(*outRec->PolyNd);
else
polytree.AddChild(*outRec->PolyNd);
}
}
//------------------------------------------------------------------------------
void SwapIntersectNodes(IntersectNode &int1, IntersectNode &int2) {
// just swap the contents (because fIntersectNodes is a single-linked-list)
IntersectNode inode = int1; // gets a copy of Int1
int1.Edge1 = int2.Edge1;
int1.Edge2 = int2.Edge2;
int1.Pt = int2.Pt;
int2.Edge1 = inode.Edge1;
int2.Edge2 = inode.Edge2;
int2.Pt = inode.Pt;
}
//------------------------------------------------------------------------------
inline bool E2InsertsBeforeE1(TEdge &e1, TEdge &e2) {
if (e2.Curr.X == e1.Curr.X) {
if (e2.Top.Y > e1.Top.Y)
return e2.Top.X < TopX(e1, e2.Top.Y);
else
return e1.Top.X > TopX(e2, e1.Top.Y);
} else
return e2.Curr.X < e1.Curr.X;
}
//------------------------------------------------------------------------------
bool GetOverlap(const cInt a1, const cInt a2, const cInt b1, const cInt b2,
cInt &Left, cInt &Right) {
if (a1 < a2) {
if (b1 < b2) {
Left = std::max(a1, b1);
Right = std::min(a2, b2);
} else {
Left = std::max(a1, b2);
Right = std::min(a2, b1);
}
} else {
if (b1 < b2) {
Left = std::max(a2, b1);
Right = std::min(a1, b2);
} else {
Left = std::max(a2, b2);
Right = std::min(a1, b1);
}
}
return Left < Right;
}
//------------------------------------------------------------------------------
inline void UpdateOutPtIdxs(OutRec &outrec) {
OutPt *op = outrec.Pts;
do {
op->Idx = outrec.Idx;
op = op->Prev;
} while (op != outrec.Pts);
}
//------------------------------------------------------------------------------
void Clipper::InsertEdgeIntoAEL(TEdge *edge, TEdge *startEdge) {
if (!m_ActiveEdges) {
edge->PrevInAEL = 0;
edge->NextInAEL = 0;
m_ActiveEdges = edge;
} else if (!startEdge && E2InsertsBeforeE1(*m_ActiveEdges, *edge)) {
edge->PrevInAEL = 0;
edge->NextInAEL = m_ActiveEdges;
m_ActiveEdges->PrevInAEL = edge;
m_ActiveEdges = edge;
} else {
if (!startEdge)
startEdge = m_ActiveEdges;
while (startEdge->NextInAEL &&
!E2InsertsBeforeE1(*startEdge->NextInAEL, *edge))
startEdge = startEdge->NextInAEL;
edge->NextInAEL = startEdge->NextInAEL;
if (startEdge->NextInAEL)
startEdge->NextInAEL->PrevInAEL = edge;
edge->PrevInAEL = startEdge;
startEdge->NextInAEL = edge;
}
}
//----------------------------------------------------------------------
OutPt *DupOutPt(OutPt *outPt, bool InsertAfter) {
OutPt *result = new OutPt;
result->Pt = outPt->Pt;
result->Idx = outPt->Idx;
if (InsertAfter) {
result->Next = outPt->Next;
result->Prev = outPt;
outPt->Next->Prev = result;
outPt->Next = result;
} else {
result->Prev = outPt->Prev;
result->Next = outPt;
outPt->Prev->Next = result;
outPt->Prev = result;
}
return result;
}
//------------------------------------------------------------------------------
bool JoinHorz(OutPt *op1, OutPt *op1b, OutPt *op2, OutPt *op2b,
const IntPoint Pt, bool DiscardLeft) {
Direction Dir1 = (op1->Pt.X > op1b->Pt.X ? dRightToLeft : dLeftToRight);
Direction Dir2 = (op2->Pt.X > op2b->Pt.X ? dRightToLeft : dLeftToRight);
if (Dir1 == Dir2)
return false;
// When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we
// want Op1b to be on the Right. (And likewise with Op2 and Op2b.)
// So, to facilitate this while inserting Op1b and Op2b ...
// when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b,
// otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.)
if (Dir1 == dLeftToRight) {
while (op1->Next->Pt.X <= Pt.X && op1->Next->Pt.X >= op1->Pt.X &&
op1->Next->Pt.Y == Pt.Y)
op1 = op1->Next;
if (DiscardLeft && (op1->Pt.X != Pt.X))
op1 = op1->Next;
op1b = DupOutPt(op1, !DiscardLeft);
if (op1b->Pt != Pt) {
op1 = op1b;
op1->Pt = Pt;
op1b = DupOutPt(op1, !DiscardLeft);
}
} else {
while (op1->Next->Pt.X >= Pt.X && op1->Next->Pt.X <= op1->Pt.X &&
op1->Next->Pt.Y == Pt.Y)
op1 = op1->Next;
if (!DiscardLeft && (op1->Pt.X != Pt.X))
op1 = op1->Next;
op1b = DupOutPt(op1, DiscardLeft);
if (op1b->Pt != Pt) {
op1 = op1b;
op1->Pt = Pt;
op1b = DupOutPt(op1, DiscardLeft);
}
}
if (Dir2 == dLeftToRight) {
while (op2->Next->Pt.X <= Pt.X && op2->Next->Pt.X >= op2->Pt.X &&
op2->Next->Pt.Y == Pt.Y)
op2 = op2->Next;
if (DiscardLeft && (op2->Pt.X != Pt.X))
op2 = op2->Next;
op2b = DupOutPt(op2, !DiscardLeft);
if (op2b->Pt != Pt) {
op2 = op2b;
op2->Pt = Pt;
op2b = DupOutPt(op2, !DiscardLeft);
};
} else {
while (op2->Next->Pt.X >= Pt.X && op2->Next->Pt.X <= op2->Pt.X &&
op2->Next->Pt.Y == Pt.Y)
op2 = op2->Next;
if (!DiscardLeft && (op2->Pt.X != Pt.X))
op2 = op2->Next;
op2b = DupOutPt(op2, DiscardLeft);
if (op2b->Pt != Pt) {
op2 = op2b;
op2->Pt = Pt;
op2b = DupOutPt(op2, DiscardLeft);
};
};
if ((Dir1 == dLeftToRight) == DiscardLeft) {
op1->Prev = op2;
op2->Next = op1;
op1b->Next = op2b;
op2b->Prev = op1b;
} else {
op1->Next = op2;
op2->Prev = op1;
op1b->Prev = op2b;
op2b->Next = op1b;
}
return true;
}
//------------------------------------------------------------------------------
bool Clipper::JoinPoints(Join *j, OutRec *outRec1, OutRec *outRec2) {
OutPt *op1 = j->OutPt1, *op1b;
OutPt *op2 = j->OutPt2, *op2b;
// There are 3 kinds of joins for output polygons ...
// 1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are vertices anywhere
// along (horizontal) collinear edges (& Join.OffPt is on the same
// horizontal).
// 2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same
// location at the Bottom of the overlapping segment (& Join.OffPt is above).
// 3. StrictSimple joins where edges touch but are not collinear and where
// Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point.
bool isHorizontal = (j->OutPt1->Pt.Y == j->OffPt.Y);
if (isHorizontal && (j->OffPt == j->OutPt1->Pt) &&
(j->OffPt == j->OutPt2->Pt)) {
// Strictly Simple join ...
if (outRec1 != outRec2)
return false;
op1b = j->OutPt1->Next;
while (op1b != op1 && (op1b->Pt == j->OffPt))
op1b = op1b->Next;
bool reverse1 = (op1b->Pt.Y > j->OffPt.Y);
op2b = j->OutPt2->Next;
while (op2b != op2 && (op2b->Pt == j->OffPt))
op2b = op2b->Next;
bool reverse2 = (op2b->Pt.Y > j->OffPt.Y);
if (reverse1 == reverse2)
return false;
if (reverse1) {
op1b = DupOutPt(op1, false);
op2b = DupOutPt(op2, true);
op1->Prev = op2;
op2->Next = op1;
op1b->Next = op2b;
op2b->Prev = op1b;
j->OutPt1 = op1;
j->OutPt2 = op1b;
return true;
} else {
op1b = DupOutPt(op1, true);
op2b = DupOutPt(op2, false);
op1->Next = op2;
op2->Prev = op1;
op1b->Prev = op2b;
op2b->Next = op1b;
j->OutPt1 = op1;
j->OutPt2 = op1b;
return true;
}
} else if (isHorizontal) {
// treat horizontal joins differently to non-horizontal joins since with
// them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt
// may be anywhere along the horizontal edge.
op1b = op1;
while (op1->Prev->Pt.Y == op1->Pt.Y && op1->Prev != op1b &&
op1->Prev != op2)
op1 = op1->Prev;
while (op1b->Next->Pt.Y == op1b->Pt.Y && op1b->Next != op1 &&
op1b->Next != op2)
op1b = op1b->Next;
if (op1b->Next == op1 || op1b->Next == op2)
return false; // a flat 'polygon'
op2b = op2;
while (op2->Prev->Pt.Y == op2->Pt.Y && op2->Prev != op2b &&
op2->Prev != op1b)
op2 = op2->Prev;
while (op2b->Next->Pt.Y == op2b->Pt.Y && op2b->Next != op2 &&
op2b->Next != op1)
op2b = op2b->Next;
if (op2b->Next == op2 || op2b->Next == op1)
return false; // a flat 'polygon'
cInt Left, Right;
// Op1 --> Op1b & Op2 --> Op2b are the extremites of the horizontal edges
if (!GetOverlap(op1->Pt.X, op1b->Pt.X, op2->Pt.X, op2b->Pt.X, Left, Right))
return false;
// DiscardLeftSide: when overlapping edges are joined, a spike will created
// which needs to be cleaned up. However, we don't want Op1 or Op2 caught up
// on the discard Side as either may still be needed for other joins ...
IntPoint Pt;
bool DiscardLeftSide;
if (op1->Pt.X >= Left && op1->Pt.X <= Right) {
Pt = op1->Pt;
DiscardLeftSide = (op1->Pt.X > op1b->Pt.X);
} else if (op2->Pt.X >= Left && op2->Pt.X <= Right) {
Pt = op2->Pt;
DiscardLeftSide = (op2->Pt.X > op2b->Pt.X);
} else if (op1b->Pt.X >= Left && op1b->Pt.X <= Right) {
Pt = op1b->Pt;
DiscardLeftSide = op1b->Pt.X > op1->Pt.X;
} else {
Pt = op2b->Pt;
DiscardLeftSide = (op2b->Pt.X > op2->Pt.X);
}
j->OutPt1 = op1;
j->OutPt2 = op2;
return JoinHorz(op1, op1b, op2, op2b, Pt, DiscardLeftSide);
} else {
// nb: For non-horizontal joins ...
// 1. Jr.OutPt1.Pt.Y == Jr.OutPt2.Pt.Y
// 2. Jr.OutPt1.Pt > Jr.OffPt.Y
// make sure the polygons are correctly oriented ...
op1b = op1->Next;
while ((op1b->Pt == op1->Pt) && (op1b != op1))
op1b = op1b->Next;
bool Reverse1 = ((op1b->Pt.Y > op1->Pt.Y) ||
!SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange));
if (Reverse1) {
op1b = op1->Prev;
while ((op1b->Pt == op1->Pt) && (op1b != op1))
op1b = op1b->Prev;
if ((op1b->Pt.Y > op1->Pt.Y) ||
!SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange))
return false;
};
op2b = op2->Next;
while ((op2b->Pt == op2->Pt) && (op2b != op2))
op2b = op2b->Next;
bool Reverse2 = ((op2b->Pt.Y > op2->Pt.Y) ||
!SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange));
if (Reverse2) {
op2b = op2->Prev;
while ((op2b->Pt == op2->Pt) && (op2b != op2))
op2b = op2b->Prev;
if ((op2b->Pt.Y > op2->Pt.Y) ||
!SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange))
return false;
}
if ((op1b == op1) || (op2b == op2) || (op1b == op2b) ||
((outRec1 == outRec2) && (Reverse1 == Reverse2)))
return false;
if (Reverse1) {
op1b = DupOutPt(op1, false);
op2b = DupOutPt(op2, true);
op1->Prev = op2;
op2->Next = op1;
op1b->Next = op2b;
op2b->Prev = op1b;
j->OutPt1 = op1;
j->OutPt2 = op1b;
return true;
} else {
op1b = DupOutPt(op1, true);
op2b = DupOutPt(op2, false);
op1->Next = op2;
op2->Prev = op1;
op1b->Prev = op2b;
op2b->Next = op1b;
j->OutPt1 = op1;
j->OutPt2 = op1b;
return true;
}
}
}
//----------------------------------------------------------------------
static OutRec *ParseFirstLeft(OutRec *FirstLeft) {
while (FirstLeft && !FirstLeft->Pts)
FirstLeft = FirstLeft->FirstLeft;
return FirstLeft;
}
//------------------------------------------------------------------------------
void Clipper::FixupFirstLefts1(OutRec *OldOutRec, OutRec *NewOutRec) {
// tests if NewOutRec contains the polygon before reassigning FirstLeft
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
OutRec *outRec = m_PolyOuts[i];
OutRec *firstLeft = ParseFirstLeft(outRec->FirstLeft);
if (outRec->Pts && firstLeft == OldOutRec) {
if (Poly2ContainsPoly1(outRec->Pts, NewOutRec->Pts))
outRec->FirstLeft = NewOutRec;
}
}
}
//----------------------------------------------------------------------
void Clipper::FixupFirstLefts2(OutRec *InnerOutRec, OutRec *OuterOutRec) {
// A polygon has split into two such that one is now the inner of the other.
// It's possible that these polygons now wrap around other polygons, so check
// every polygon that's also contained by OuterOutRec's FirstLeft container
//(including 0) to see if they've become inner to the new inner polygon ...
OutRec *orfl = OuterOutRec->FirstLeft;
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
OutRec *outRec = m_PolyOuts[i];
if (!outRec->Pts || outRec == OuterOutRec || outRec == InnerOutRec)
continue;
OutRec *firstLeft = ParseFirstLeft(outRec->FirstLeft);
if (firstLeft != orfl && firstLeft != InnerOutRec &&
firstLeft != OuterOutRec)
continue;
if (Poly2ContainsPoly1(outRec->Pts, InnerOutRec->Pts))
outRec->FirstLeft = InnerOutRec;
else if (Poly2ContainsPoly1(outRec->Pts, OuterOutRec->Pts))
outRec->FirstLeft = OuterOutRec;
else if (outRec->FirstLeft == InnerOutRec ||
outRec->FirstLeft == OuterOutRec)
outRec->FirstLeft = orfl;
}
}
//----------------------------------------------------------------------
void Clipper::FixupFirstLefts3(OutRec *OldOutRec, OutRec *NewOutRec) {
// reassigns FirstLeft WITHOUT testing if NewOutRec contains the polygon
for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) {
OutRec *outRec = m_PolyOuts[i];
OutRec *firstLeft = ParseFirstLeft(outRec->FirstLeft);
if (outRec->Pts && firstLeft == OldOutRec)
outRec->FirstLeft = NewOutRec;
}
}
//----------------------------------------------------------------------
void Clipper::JoinCommonEdges() {
for (JoinList::size_type i = 0; i < m_Joins.size(); i++) {
Join *join = m_Joins[i];
OutRec *outRec1 = GetOutRec(join->OutPt1->Idx);
OutRec *outRec2 = GetOutRec(join->OutPt2->Idx);
if (!outRec1->Pts || !outRec2->Pts)
continue;
if (outRec1->IsOpen || outRec2->IsOpen)
continue;
// get the polygon fragment with the correct hole state (FirstLeft)
// before calling JoinPoints() ...
OutRec *holeStateRec;
if (outRec1 == outRec2)
holeStateRec = outRec1;
else if (OutRec1RightOfOutRec2(outRec1, outRec2))
holeStateRec = outRec2;
else if (OutRec1RightOfOutRec2(outRec2, outRec1))
holeStateRec = outRec1;
else
holeStateRec = GetLowermostRec(outRec1, outRec2);
if (!JoinPoints(join, outRec1, outRec2))
continue;
if (outRec1 == outRec2) {
// instead of joining two polygons, we've just created a new one by
// splitting one polygon into two.
outRec1->Pts = join->OutPt1;
outRec1->BottomPt = 0;
outRec2 = CreateOutRec();
outRec2->Pts = join->OutPt2;
// update all OutRec2.Pts Idx's ...
UpdateOutPtIdxs(*outRec2);
if (Poly2ContainsPoly1(outRec2->Pts, outRec1->Pts)) {
// outRec1 contains outRec2 ...
outRec2->IsHole = !outRec1->IsHole;
outRec2->FirstLeft = outRec1;
if (m_UsingPolyTree)
FixupFirstLefts2(outRec2, outRec1);
if ((outRec2->IsHole ^ m_ReverseOutput) == (Area(*outRec2) > 0))
ReversePolyPtLinks(outRec2->Pts);
} else if (Poly2ContainsPoly1(outRec1->Pts, outRec2->Pts)) {
// outRec2 contains outRec1 ...
outRec2->IsHole = outRec1->IsHole;
outRec1->IsHole = !outRec2->IsHole;
outRec2->FirstLeft = outRec1->FirstLeft;
outRec1->FirstLeft = outRec2;
if (m_UsingPolyTree)
FixupFirstLefts2(outRec1, outRec2);
if ((outRec1->IsHole ^ m_ReverseOutput) == (Area(*outRec1) > 0))
ReversePolyPtLinks(outRec1->Pts);
} else {
// the 2 polygons are completely separate ...
outRec2->IsHole = outRec1->IsHole;
outRec2->FirstLeft = outRec1->FirstLeft;
// fixup FirstLeft pointers that may need reassigning to OutRec2
if (m_UsingPolyTree)
FixupFirstLefts1(outRec1, outRec2);
}
} else {
// joined 2 polygons together ...
outRec2->Pts = 0;
outRec2->BottomPt = 0;
outRec2->Idx = outRec1->Idx;
outRec1->IsHole = holeStateRec->IsHole;
if (holeStateRec == outRec2)
outRec1->FirstLeft = outRec2->FirstLeft;
outRec2->FirstLeft = outRec1;
if (m_UsingPolyTree)
FixupFirstLefts3(outRec2, outRec1);
}
}
}
//------------------------------------------------------------------------------
// ClipperOffset support functions ...
//------------------------------------------------------------------------------
DoublePoint GetUnitNormal(const IntPoint &pt1, const IntPoint &pt2) {
if (pt2.X == pt1.X && pt2.Y == pt1.Y)
return DoublePoint(0, 0);
double Dx = (double)(pt2.X - pt1.X);
double dy = (double)(pt2.Y - pt1.Y);
double f = 1 * 1.0 / std::sqrt(Dx * Dx + dy * dy);
Dx *= f;
dy *= f;
return DoublePoint(dy, -Dx);
}
//------------------------------------------------------------------------------
// ClipperOffset class
//------------------------------------------------------------------------------
ClipperOffset::ClipperOffset(double miterLimit, double arcTolerance) {
this->MiterLimit = miterLimit;
this->ArcTolerance = arcTolerance;
m_lowest.X = -1;
}
//------------------------------------------------------------------------------
ClipperOffset::~ClipperOffset() { Clear(); }
//------------------------------------------------------------------------------
void ClipperOffset::Clear() {
for (int i = 0; i < m_polyNodes.ChildCount(); ++i)
delete m_polyNodes.Childs[i];
m_polyNodes.Childs.clear();
m_lowest.X = -1;
}
//------------------------------------------------------------------------------
void ClipperOffset::AddPath(const Path &path, JoinType joinType,
EndType endType) {
int highI = (int)path.size() - 1;
if (highI < 0)
return;
PolyNode *newNode = new PolyNode();
newNode->m_jointype = joinType;
newNode->m_endtype = endType;
// strip duplicate points from path and also get index to the lowest point ...
if (endType == etClosedLine || endType == etClosedPolygon)
while (highI > 0 && path[0] == path[highI])
highI--;
newNode->Contour.reserve(highI + 1);
newNode->Contour.push_back(path[0]);
int j = 0, k = 0;
for (int i = 1; i <= highI; i++)
if (newNode->Contour[j] != path[i]) {
j++;
newNode->Contour.push_back(path[i]);
if (path[i].Y > newNode->Contour[k].Y ||
(path[i].Y == newNode->Contour[k].Y &&
path[i].X < newNode->Contour[k].X))
k = j;
}
if (endType == etClosedPolygon && j < 2) {
delete newNode;
return;
}
m_polyNodes.AddChild(*newNode);
// if this path's lowest pt is lower than all the others then update m_lowest
if (endType != etClosedPolygon)
return;
if (m_lowest.X < 0)
m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k);
else {
IntPoint ip = m_polyNodes.Childs[(int)m_lowest.X]->Contour[(int)m_lowest.Y];
if (newNode->Contour[k].Y > ip.Y ||
(newNode->Contour[k].Y == ip.Y && newNode->Contour[k].X < ip.X))
m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k);
}
}
//------------------------------------------------------------------------------
void ClipperOffset::AddPaths(const Paths &paths, JoinType joinType,
EndType endType) {
for (Paths::size_type i = 0; i < paths.size(); ++i)
AddPath(paths[i], joinType, endType);
}
//------------------------------------------------------------------------------
void ClipperOffset::FixOrientations() {
// fixup orientations of all closed paths if the orientation of the
// closed path with the lowermost vertex is wrong ...
if (m_lowest.X >= 0 &&
!Orientation(m_polyNodes.Childs[(int)m_lowest.X]->Contour)) {
for (int i = 0; i < m_polyNodes.ChildCount(); ++i) {
PolyNode &node = *m_polyNodes.Childs[i];
if (node.m_endtype == etClosedPolygon ||
(node.m_endtype == etClosedLine && Orientation(node.Contour)))
ReversePath(node.Contour);
}
} else {
for (int i = 0; i < m_polyNodes.ChildCount(); ++i) {
PolyNode &node = *m_polyNodes.Childs[i];
if (node.m_endtype == etClosedLine && !Orientation(node.Contour))
ReversePath(node.Contour);
}
}
}
//------------------------------------------------------------------------------
void ClipperOffset::Execute(Paths &solution, double delta) {
solution.clear();
FixOrientations();
DoOffset(delta);
// now clean up 'corners' ...
Clipper clpr;
clpr.AddPaths(m_destPolys, ptSubject, true);
if (delta > 0) {
clpr.Execute(ctUnion, solution, pftPositive, pftPositive);
} else {
IntRect r = clpr.GetBounds();
Path outer(4);
outer[0] = IntPoint(r.left - 10, r.bottom + 10);
outer[1] = IntPoint(r.right + 10, r.bottom + 10);
outer[2] = IntPoint(r.right + 10, r.top - 10);
outer[3] = IntPoint(r.left - 10, r.top - 10);
clpr.AddPath(outer, ptSubject, true);
clpr.ReverseSolution(true);
clpr.Execute(ctUnion, solution, pftNegative, pftNegative);
if (solution.size() > 0)
solution.erase(solution.begin());
}
}
//------------------------------------------------------------------------------
void ClipperOffset::Execute(PolyTree &solution, double delta) {
solution.Clear();
FixOrientations();
DoOffset(delta);
// now clean up 'corners' ...
Clipper clpr;
clpr.AddPaths(m_destPolys, ptSubject, true);
if (delta > 0) {
clpr.Execute(ctUnion, solution, pftPositive, pftPositive);
} else {
IntRect r = clpr.GetBounds();
Path outer(4);
outer[0] = IntPoint(r.left - 10, r.bottom + 10);
outer[1] = IntPoint(r.right + 10, r.bottom + 10);
outer[2] = IntPoint(r.right + 10, r.top - 10);
outer[3] = IntPoint(r.left - 10, r.top - 10);
clpr.AddPath(outer, ptSubject, true);
clpr.ReverseSolution(true);
clpr.Execute(ctUnion, solution, pftNegative, pftNegative);
// remove the outer PolyNode rectangle ...
if (solution.ChildCount() == 1 && solution.Childs[0]->ChildCount() > 0) {
PolyNode *outerNode = solution.Childs[0];
solution.Childs.reserve(outerNode->ChildCount());
solution.Childs[0] = outerNode->Childs[0];
solution.Childs[0]->Parent = outerNode->Parent;
for (int i = 1; i < outerNode->ChildCount(); ++i)
solution.AddChild(*outerNode->Childs[i]);
} else
solution.Clear();
}
}
//------------------------------------------------------------------------------
void ClipperOffset::DoOffset(double delta) {
m_destPolys.clear();
m_delta = delta;
// if Zero offset, just copy any CLOSED polygons to m_p and return ...
if (NEAR_ZERO(delta)) {
m_destPolys.reserve(m_polyNodes.ChildCount());
for (int i = 0; i < m_polyNodes.ChildCount(); i++) {
PolyNode &node = *m_polyNodes.Childs[i];
if (node.m_endtype == etClosedPolygon)
m_destPolys.push_back(node.Contour);
}
return;
}
// see offset_triginometry3.svg in the documentation folder ...
if (MiterLimit > 2)
m_miterLim = 2 / (MiterLimit * MiterLimit);
else
m_miterLim = 0.5;
double y;
if (ArcTolerance <= 0.0)
y = def_arc_tolerance;
else if (ArcTolerance > std::fabs(delta) * def_arc_tolerance)
y = std::fabs(delta) * def_arc_tolerance;
else
y = ArcTolerance;
// see offset_triginometry2.svg in the documentation folder ...
double steps = pi / std::acos(1 - y / std::fabs(delta));
if (steps > std::fabs(delta) * pi)
steps = std::fabs(delta) * pi; // ie excessive precision check
m_sin = std::sin(two_pi / steps);
m_cos = std::cos(two_pi / steps);
m_StepsPerRad = steps / two_pi;
if (delta < 0.0)
m_sin = -m_sin;
m_destPolys.reserve(m_polyNodes.ChildCount() * 2);
for (int i = 0; i < m_polyNodes.ChildCount(); i++) {
PolyNode &node = *m_polyNodes.Childs[i];
m_srcPoly = node.Contour;
int len = (int)m_srcPoly.size();
if (len == 0 ||
(delta <= 0 && (len < 3 || node.m_endtype != etClosedPolygon)))
continue;
m_destPoly.clear();
if (len == 1) {
if (node.m_jointype == jtRound) {
double X = 1.0, Y = 0.0;
for (cInt j = 1; j <= steps; j++) {
m_destPoly.push_back(IntPoint(Round(m_srcPoly[0].X + X * delta),
Round(m_srcPoly[0].Y + Y * delta)));
double X2 = X;
X = X * m_cos - m_sin * Y;
Y = X2 * m_sin + Y * m_cos;
}
} else {
double X = -1.0, Y = -1.0;
for (int j = 0; j < 4; ++j) {
m_destPoly.push_back(IntPoint(Round(m_srcPoly[0].X + X * delta),
Round(m_srcPoly[0].Y + Y * delta)));
if (X < 0)
X = 1;
else if (Y < 0)
Y = 1;
else
X = -1;
}
}
m_destPolys.push_back(m_destPoly);
continue;
}
// build m_normals ...
m_normals.clear();
m_normals.reserve(len);
for (int j = 0; j < len - 1; ++j)
m_normals.push_back(GetUnitNormal(m_srcPoly[j], m_srcPoly[j + 1]));
if (node.m_endtype == etClosedLine || node.m_endtype == etClosedPolygon)
m_normals.push_back(GetUnitNormal(m_srcPoly[len - 1], m_srcPoly[0]));
else
m_normals.push_back(DoublePoint(m_normals[len - 2]));
if (node.m_endtype == etClosedPolygon) {
int k = len - 1;
for (int j = 0; j < len; ++j)
OffsetPoint(j, k, node.m_jointype);
m_destPolys.push_back(m_destPoly);
} else if (node.m_endtype == etClosedLine) {
int k = len - 1;
for (int j = 0; j < len; ++j)
OffsetPoint(j, k, node.m_jointype);
m_destPolys.push_back(m_destPoly);
m_destPoly.clear();
// re-build m_normals ...
DoublePoint n = m_normals[len - 1];
for (int j = len - 1; j > 0; j--)
m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y);
m_normals[0] = DoublePoint(-n.X, -n.Y);
k = 0;
for (int j = len - 1; j >= 0; j--)
OffsetPoint(j, k, node.m_jointype);
m_destPolys.push_back(m_destPoly);
} else {
int k = 0;
for (int j = 1; j < len - 1; ++j)
OffsetPoint(j, k, node.m_jointype);
IntPoint pt1;
if (node.m_endtype == etOpenButt) {
int j = len - 1;
pt1 = IntPoint((cInt)Round(m_srcPoly[j].X + m_normals[j].X * delta),
(cInt)Round(m_srcPoly[j].Y + m_normals[j].Y * delta));
m_destPoly.push_back(pt1);
pt1 = IntPoint((cInt)Round(m_srcPoly[j].X - m_normals[j].X * delta),
(cInt)Round(m_srcPoly[j].Y - m_normals[j].Y * delta));
m_destPoly.push_back(pt1);
} else {
int j = len - 1;
k = len - 2;
m_sinA = 0;
m_normals[j] = DoublePoint(-m_normals[j].X, -m_normals[j].Y);
if (node.m_endtype == etOpenSquare)
DoSquare(j, k);
else
DoRound(j, k);
}
// re-build m_normals ...
for (int j = len - 1; j > 0; j--)
m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y);
m_normals[0] = DoublePoint(-m_normals[1].X, -m_normals[1].Y);
k = len - 1;
for (int j = k - 1; j > 0; --j)
OffsetPoint(j, k, node.m_jointype);
if (node.m_endtype == etOpenButt) {
pt1 = IntPoint((cInt)Round(m_srcPoly[0].X - m_normals[0].X * delta),
(cInt)Round(m_srcPoly[0].Y - m_normals[0].Y * delta));
m_destPoly.push_back(pt1);
pt1 = IntPoint((cInt)Round(m_srcPoly[0].X + m_normals[0].X * delta),
(cInt)Round(m_srcPoly[0].Y + m_normals[0].Y * delta));
m_destPoly.push_back(pt1);
} else {
k = 1;
m_sinA = 0;
if (node.m_endtype == etOpenSquare)
DoSquare(0, 1);
else
DoRound(0, 1);
}
m_destPolys.push_back(m_destPoly);
}
}
}
//------------------------------------------------------------------------------
void ClipperOffset::OffsetPoint(int j, int &k, JoinType jointype) {
// cross product ...
m_sinA = (m_normals[k].X * m_normals[j].Y - m_normals[j].X * m_normals[k].Y);
if (std::fabs(m_sinA * m_delta) < 1.0) {
// dot product ...
double cosA =
(m_normals[k].X * m_normals[j].X + m_normals[j].Y * m_normals[k].Y);
if (cosA > 0) // angle => 0 degrees
{
m_destPoly.push_back(
IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta),
Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta)));
return;
}
// else angle => 180 degrees
} else if (m_sinA > 1.0)
m_sinA = 1.0;
else if (m_sinA < -1.0)
m_sinA = -1.0;
if (m_sinA * m_delta < 0) {
m_destPoly.push_back(
IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta),
Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta)));
m_destPoly.push_back(m_srcPoly[j]);
m_destPoly.push_back(
IntPoint(Round(m_srcPoly[j].X + m_normals[j].X * m_delta),
Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta)));
} else
switch (jointype) {
case jtMiter: {
double r = 1 + (m_normals[j].X * m_normals[k].X +
m_normals[j].Y * m_normals[k].Y);
if (r >= m_miterLim)
DoMiter(j, k, r);
else
DoSquare(j, k);
break;
}
case jtSquare:
DoSquare(j, k);
break;
case jtRound:
DoRound(j, k);
break;
}
k = j;
}
//------------------------------------------------------------------------------
void ClipperOffset::DoSquare(int j, int k) {
double dx = std::tan(std::atan2(m_sinA, m_normals[k].X * m_normals[j].X +
m_normals[k].Y * m_normals[j].Y) /
4);
m_destPoly.push_back(IntPoint(
Round(m_srcPoly[j].X + m_delta * (m_normals[k].X - m_normals[k].Y * dx)),
Round(m_srcPoly[j].Y +
m_delta * (m_normals[k].Y + m_normals[k].X * dx))));
m_destPoly.push_back(IntPoint(
Round(m_srcPoly[j].X + m_delta * (m_normals[j].X + m_normals[j].Y * dx)),
Round(m_srcPoly[j].Y +
m_delta * (m_normals[j].Y - m_normals[j].X * dx))));
}
//------------------------------------------------------------------------------
void ClipperOffset::DoMiter(int j, int k, double r) {
double q = m_delta / r;
m_destPoly.push_back(
IntPoint(Round(m_srcPoly[j].X + (m_normals[k].X + m_normals[j].X) * q),
Round(m_srcPoly[j].Y + (m_normals[k].Y + m_normals[j].Y) * q)));
}
//------------------------------------------------------------------------------
void ClipperOffset::DoRound(int j, int k) {
double a = std::atan2(m_sinA, m_normals[k].X * m_normals[j].X +
m_normals[k].Y * m_normals[j].Y);
int steps = std::max((int)Round(m_StepsPerRad * std::fabs(a)), 1);
double X = m_normals[k].X, Y = m_normals[k].Y, X2;
for (int i = 0; i < steps; ++i) {
m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + X * m_delta),
Round(m_srcPoly[j].Y + Y * m_delta)));
X2 = X;
X = X * m_cos - m_sin * Y;
Y = X2 * m_sin + Y * m_cos;
}
m_destPoly.push_back(
IntPoint(Round(m_srcPoly[j].X + m_normals[j].X * m_delta),
Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta)));
}
//------------------------------------------------------------------------------
// Miscellaneous public functions
//------------------------------------------------------------------------------
void Clipper::DoSimplePolygons() {
PolyOutList::size_type i = 0;
while (i < m_PolyOuts.size()) {
OutRec *outrec = m_PolyOuts[i++];
OutPt *op = outrec->Pts;
if (!op || outrec->IsOpen)
continue;
do // for each Pt in Polygon until duplicate found do ...
{
OutPt *op2 = op->Next;
while (op2 != outrec->Pts) {
if ((op->Pt == op2->Pt) && op2->Next != op && op2->Prev != op) {
// split the polygon into two ...
OutPt *op3 = op->Prev;
OutPt *op4 = op2->Prev;
op->Prev = op4;
op4->Next = op;
op2->Prev = op3;
op3->Next = op2;
outrec->Pts = op;
OutRec *outrec2 = CreateOutRec();
outrec2->Pts = op2;
UpdateOutPtIdxs(*outrec2);
if (Poly2ContainsPoly1(outrec2->Pts, outrec->Pts)) {
// OutRec2 is contained by OutRec1 ...
outrec2->IsHole = !outrec->IsHole;
outrec2->FirstLeft = outrec;
if (m_UsingPolyTree)
FixupFirstLefts2(outrec2, outrec);
} else if (Poly2ContainsPoly1(outrec->Pts, outrec2->Pts)) {
// OutRec1 is contained by OutRec2 ...
outrec2->IsHole = outrec->IsHole;
outrec->IsHole = !outrec2->IsHole;
outrec2->FirstLeft = outrec->FirstLeft;
outrec->FirstLeft = outrec2;
if (m_UsingPolyTree)
FixupFirstLefts2(outrec, outrec2);
} else {
// the 2 polygons are separate ...
outrec2->IsHole = outrec->IsHole;
outrec2->FirstLeft = outrec->FirstLeft;
if (m_UsingPolyTree)
FixupFirstLefts1(outrec, outrec2);
}
op2 = op; // ie get ready for the Next iteration
}
op2 = op2->Next;
}
op = op->Next;
} while (op != outrec->Pts);
}
}
//------------------------------------------------------------------------------
void ReversePath(Path &p) { std::reverse(p.begin(), p.end()); }
//------------------------------------------------------------------------------
void ReversePaths(Paths &p) {
for (Paths::size_type i = 0; i < p.size(); ++i)
ReversePath(p[i]);
}
//------------------------------------------------------------------------------
void SimplifyPolygon(const Path &in_poly, Paths &out_polys,
PolyFillType fillType) {
Clipper c;
c.StrictlySimple(true);
c.AddPath(in_poly, ptSubject, true);
c.Execute(ctUnion, out_polys, fillType, fillType);
}
//------------------------------------------------------------------------------
void SimplifyPolygons(const Paths &in_polys, Paths &out_polys,
PolyFillType fillType) {
Clipper c;
c.StrictlySimple(true);
c.AddPaths(in_polys, ptSubject, true);
c.Execute(ctUnion, out_polys, fillType, fillType);
}
//------------------------------------------------------------------------------
void SimplifyPolygons(Paths &polys, PolyFillType fillType) {
SimplifyPolygons(polys, polys, fillType);
}
//------------------------------------------------------------------------------
inline double DistanceSqrd(const IntPoint &pt1, const IntPoint &pt2) {
double Dx = ((double)pt1.X - pt2.X);
double dy = ((double)pt1.Y - pt2.Y);
return (Dx * Dx + dy * dy);
}
//------------------------------------------------------------------------------
double DistanceFromLineSqrd(const IntPoint &pt, const IntPoint &ln1,
const IntPoint &ln2) {
// The equation of a line in general form (Ax + By + C = 0)
// given 2 points (x�,y�) & (x�,y�) is ...
//(y� - y�)x + (x� - x�)y + (y� - y�)x� - (x� - x�)y� = 0
// A = (y� - y�); B = (x� - x�); C = (y� - y�)x� - (x� - x�)y�
// perpendicular distance of point (x�,y�) = (Ax� + By� + C)/Sqrt(A� + B�)
// see http://en.wikipedia.org/wiki/Perpendicular_distance
double A = double(ln1.Y - ln2.Y);
double B = double(ln2.X - ln1.X);
double C = A * ln1.X + B * ln1.Y;
C = A * pt.X + B * pt.Y - C;
return (C * C) / (A * A + B * B);
}
//---------------------------------------------------------------------------
bool SlopesNearCollinear(const IntPoint &pt1, const IntPoint &pt2,
const IntPoint &pt3, double distSqrd) {
// this function is more accurate when the point that's geometrically
// between the other 2 points is the one that's tested for distance.
// ie makes it more likely to pick up 'spikes' ...
if (Abs(pt1.X - pt2.X) > Abs(pt1.Y - pt2.Y)) {
if ((pt1.X > pt2.X) == (pt1.X < pt3.X))
return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd;
else if ((pt2.X > pt1.X) == (pt2.X < pt3.X))
return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd;
else
return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd;
} else {
if ((pt1.Y > pt2.Y) == (pt1.Y < pt3.Y))
return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd;
else if ((pt2.Y > pt1.Y) == (pt2.Y < pt3.Y))
return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd;
else
return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd;
}
}
//------------------------------------------------------------------------------
bool PointsAreClose(IntPoint pt1, IntPoint pt2, double distSqrd) {
double Dx = (double)pt1.X - pt2.X;
double dy = (double)pt1.Y - pt2.Y;
return ((Dx * Dx) + (dy * dy) <= distSqrd);
}
//------------------------------------------------------------------------------
OutPt *ExcludeOp(OutPt *op) {
OutPt *result = op->Prev;
result->Next = op->Next;
op->Next->Prev = result;
result->Idx = 0;
return result;
}
//------------------------------------------------------------------------------
void CleanPolygon(const Path &in_poly, Path &out_poly, double distance) {
// distance = proximity in units/pixels below which vertices
// will be stripped. Default ~= sqrt(2).
size_t size = in_poly.size();
if (size == 0) {
out_poly.clear();
return;
}
OutPt *outPts = new OutPt[size];
for (size_t i = 0; i < size; ++i) {
outPts[i].Pt = in_poly[i];
outPts[i].Next = &outPts[(i + 1) % size];
outPts[i].Next->Prev = &outPts[i];
outPts[i].Idx = 0;
}
double distSqrd = distance * distance;
OutPt *op = &outPts[0];
while (op->Idx == 0 && op->Next != op->Prev) {
if (PointsAreClose(op->Pt, op->Prev->Pt, distSqrd)) {
op = ExcludeOp(op);
size--;
} else if (PointsAreClose(op->Prev->Pt, op->Next->Pt, distSqrd)) {
ExcludeOp(op->Next);
op = ExcludeOp(op);
size -= 2;
} else if (SlopesNearCollinear(op->Prev->Pt, op->Pt, op->Next->Pt,
distSqrd)) {
op = ExcludeOp(op);
size--;
} else {
op->Idx = 1;
op = op->Next;
}
}
if (size < 3)
size = 0;
out_poly.resize(size);
for (size_t i = 0; i < size; ++i) {
out_poly[i] = op->Pt;
op = op->Next;
}
delete[] outPts;
}
//------------------------------------------------------------------------------
void CleanPolygon(Path &poly, double distance) {
CleanPolygon(poly, poly, distance);
}
//------------------------------------------------------------------------------
void CleanPolygons(const Paths &in_polys, Paths &out_polys, double distance) {
out_polys.resize(in_polys.size());
for (Paths::size_type i = 0; i < in_polys.size(); ++i)
CleanPolygon(in_polys[i], out_polys[i], distance);
}
//------------------------------------------------------------------------------
void CleanPolygons(Paths &polys, double distance) {
CleanPolygons(polys, polys, distance);
}
//------------------------------------------------------------------------------
void Minkowski(const Path &poly, const Path &path, Paths &solution, bool isSum,
bool isClosed) {
int delta = (isClosed ? 1 : 0);
size_t polyCnt = poly.size();
size_t pathCnt = path.size();
Paths pp;
pp.reserve(pathCnt);
if (isSum)
for (size_t i = 0; i < pathCnt; ++i) {
Path p;
p.reserve(polyCnt);
for (size_t j = 0; j < poly.size(); ++j)
p.push_back(IntPoint(path[i].X + poly[j].X, path[i].Y + poly[j].Y));
pp.push_back(p);
}
else
for (size_t i = 0; i < pathCnt; ++i) {
Path p;
p.reserve(polyCnt);
for (size_t j = 0; j < poly.size(); ++j)
p.push_back(IntPoint(path[i].X - poly[j].X, path[i].Y - poly[j].Y));
pp.push_back(p);
}
solution.clear();
solution.reserve((pathCnt + delta) * (polyCnt + 1));
for (size_t i = 0; i < pathCnt - 1 + delta; ++i)
for (size_t j = 0; j < polyCnt; ++j) {
Path quad;
quad.reserve(4);
quad.push_back(pp[i % pathCnt][j % polyCnt]);
quad.push_back(pp[(i + 1) % pathCnt][j % polyCnt]);
quad.push_back(pp[(i + 1) % pathCnt][(j + 1) % polyCnt]);
quad.push_back(pp[i % pathCnt][(j + 1) % polyCnt]);
if (!Orientation(quad))
ReversePath(quad);
solution.push_back(quad);
}
}
//------------------------------------------------------------------------------
void MinkowskiSum(const Path &pattern, const Path &path, Paths &solution,
bool pathIsClosed) {
Minkowski(pattern, path, solution, true, pathIsClosed);
Clipper c;
c.AddPaths(solution, ptSubject, true);
c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
}
//------------------------------------------------------------------------------
void TranslatePath(const Path &input, Path &output, const IntPoint delta) {
// precondition: input != output
output.resize(input.size());
for (size_t i = 0; i < input.size(); ++i)
output[i] = IntPoint(input[i].X + delta.X, input[i].Y + delta.Y);
}
//------------------------------------------------------------------------------
void MinkowskiSum(const Path &pattern, const Paths &paths, Paths &solution,
bool pathIsClosed) {
Clipper c;
for (size_t i = 0; i < paths.size(); ++i) {
Paths tmp;
Minkowski(pattern, paths[i], tmp, true, pathIsClosed);
c.AddPaths(tmp, ptSubject, true);
if (pathIsClosed) {
Path tmp2;
TranslatePath(paths[i], tmp2, pattern[0]);
c.AddPath(tmp2, ptClip, true);
}
}
c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
}
//------------------------------------------------------------------------------
void MinkowskiDiff(const Path &poly1, const Path &poly2, Paths &solution) {
Minkowski(poly1, poly2, solution, false, true);
Clipper c;
c.AddPaths(solution, ptSubject, true);
c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
}
//------------------------------------------------------------------------------
enum NodeType { ntAny, ntOpen, ntClosed };
void AddPolyNodeToPaths(const PolyNode &polynode, NodeType nodetype,
Paths &paths) {
bool match = true;
if (nodetype == ntClosed)
match = !polynode.IsOpen();
else if (nodetype == ntOpen)
return;
if (!polynode.Contour.empty() && match)
paths.push_back(polynode.Contour);
for (int i = 0; i < polynode.ChildCount(); ++i)
AddPolyNodeToPaths(*polynode.Childs[i], nodetype, paths);
}
//------------------------------------------------------------------------------
void PolyTreeToPaths(const PolyTree &polytree, Paths &paths) {
paths.resize(0);
paths.reserve(polytree.Total());
AddPolyNodeToPaths(polytree, ntAny, paths);
}
//------------------------------------------------------------------------------
void ClosedPathsFromPolyTree(const PolyTree &polytree, Paths &paths) {
paths.resize(0);
paths.reserve(polytree.Total());
AddPolyNodeToPaths(polytree, ntClosed, paths);
}
//------------------------------------------------------------------------------
void OpenPathsFromPolyTree(PolyTree &polytree, Paths &paths) {
paths.resize(0);
paths.reserve(polytree.Total());
// Open paths are top level only, so ...
for (int i = 0; i < polytree.ChildCount(); ++i)
if (polytree.Childs[i]->IsOpen())
paths.push_back(polytree.Childs[i]->Contour);
}
//------------------------------------------------------------------------------
std::ostream &operator<<(std::ostream &s, const IntPoint &p) {
s << "(" << p.X << "," << p.Y << ")";
return s;
}
//------------------------------------------------------------------------------
std::ostream &operator<<(std::ostream &s, const Path &p) {
if (p.empty())
return s;
Path::size_type last = p.size() - 1;
for (Path::size_type i = 0; i < last; i++)
s << "(" << p[i].X << "," << p[i].Y << "), ";
s << "(" << p[last].X << "," << p[last].Y << ")\n";
return s;
}
//------------------------------------------------------------------------------
std::ostream &operator<<(std::ostream &s, const Paths &p) {
for (Paths::size_type i = 0; i < p.size(); i++)
s << p[i];
s << "\n";
return s;
}
//------------------------------------------------------------------------------
} // ClipperLib namespace
/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 6.4.2 *
* Date : 27 February 2017 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2017 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 24-28, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
#ifndef clipper_hpp
#define clipper_hpp
#define CLIPPER_VERSION "6.4.2"
// use_int32: When enabled 32bit ints are used instead of 64bit ints. This
// improve performance but coordinate values are limited to the range +/- 46340
//#define use_int32
// use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance.
//#define use_xyz
// use_lines: Enables line clipping. Adds a very minor cost to performance.
#define use_lines
// use_deprecated: Enables temporary support for the obsolete functions
//#define use_deprecated
#include <cstdlib>
#include <cstring>
#include <functional>
#include <list>
#include <ostream>
#include <queue>
#include <set>
#include <stdexcept>
#include <vector>
namespace ClipperLib {
enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor };
enum PolyType { ptSubject, ptClip };
// By far the most widely used winding rules for polygon filling are
// EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32)
// Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL)
// see http://glprogramming.com/red/chapter11.html
enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative };
#ifdef use_int32
typedef int cInt;
static cInt const loRange = 0x7FFF;
static cInt const hiRange = 0x7FFF;
#else
typedef signed long long cInt;
static cInt const loRange = 0x3FFFFFFF;
static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL;
typedef signed long long long64; // used by Int128 class
typedef unsigned long long ulong64;
#endif
struct IntPoint {
cInt X;
cInt Y;
#ifdef use_xyz
cInt Z;
IntPoint(cInt x = 0, cInt y = 0, cInt z = 0) : X(x), Y(y), Z(z){};
#else
IntPoint(cInt x = 0, cInt y = 0) : X(x), Y(y){};
#endif
friend inline bool operator==(const IntPoint &a, const IntPoint &b) {
return a.X == b.X && a.Y == b.Y;
}
friend inline bool operator!=(const IntPoint &a, const IntPoint &b) {
return a.X != b.X || a.Y != b.Y;
}
};
//------------------------------------------------------------------------------
typedef std::vector<IntPoint> Path;
typedef std::vector<Path> Paths;
inline Path &operator<<(Path &poly, const IntPoint &p) {
poly.push_back(p);
return poly;
}
inline Paths &operator<<(Paths &polys, const Path &p) {
polys.push_back(p);
return polys;
}
std::ostream &operator<<(std::ostream &s, const IntPoint &p);
std::ostream &operator<<(std::ostream &s, const Path &p);
std::ostream &operator<<(std::ostream &s, const Paths &p);
struct DoublePoint {
double X;
double Y;
DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {}
DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {}
};
//------------------------------------------------------------------------------
#ifdef use_xyz
typedef void (*ZFillCallback)(IntPoint &e1bot, IntPoint &e1top, IntPoint &e2bot,
IntPoint &e2top, IntPoint &pt);
#endif
enum InitOptions {
ioReverseSolution = 1,
ioStrictlySimple = 2,
ioPreserveCollinear = 4
};
enum JoinType { jtSquare, jtRound, jtMiter };
enum EndType {
etClosedPolygon,
etClosedLine,
etOpenButt,
etOpenSquare,
etOpenRound
};
class PolyNode;
typedef std::vector<PolyNode *> PolyNodes;
class PolyNode {
public:
PolyNode();
virtual ~PolyNode(){};
Path Contour;
PolyNodes Childs;
PolyNode *Parent;
PolyNode *GetNext() const;
bool IsHole() const;
bool IsOpen() const;
int ChildCount() const;
private:
// PolyNode& operator =(PolyNode& other);
unsigned Index; // node index in Parent.Childs
bool m_IsOpen;
JoinType m_jointype;
EndType m_endtype;
PolyNode *GetNextSiblingUp() const;
void AddChild(PolyNode &child);
friend class Clipper; // to access Index
friend class ClipperOffset;
};
class PolyTree : public PolyNode {
public:
~PolyTree() { Clear(); };
PolyNode *GetFirst() const;
void Clear();
int Total() const;
private:
// PolyTree& operator =(PolyTree& other);
PolyNodes AllNodes;
friend class Clipper; // to access AllNodes
};
bool Orientation(const Path &poly);
double Area(const Path &poly);
int PointInPolygon(const IntPoint &pt, const Path &path);
void SimplifyPolygon(const Path &in_poly, Paths &out_polys,
PolyFillType fillType = pftEvenOdd);
void SimplifyPolygons(const Paths &in_polys, Paths &out_polys,
PolyFillType fillType = pftEvenOdd);
void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd);
void CleanPolygon(const Path &in_poly, Path &out_poly, double distance = 1.415);
void CleanPolygon(Path &poly, double distance = 1.415);
void CleanPolygons(const Paths &in_polys, Paths &out_polys,
double distance = 1.415);
void CleanPolygons(Paths &polys, double distance = 1.415);
void MinkowskiSum(const Path &pattern, const Path &path, Paths &solution,
bool pathIsClosed);
void MinkowskiSum(const Path &pattern, const Paths &paths, Paths &solution,
bool pathIsClosed);
void MinkowskiDiff(const Path &poly1, const Path &poly2, Paths &solution);
void PolyTreeToPaths(const PolyTree &polytree, Paths &paths);
void ClosedPathsFromPolyTree(const PolyTree &polytree, Paths &paths);
void OpenPathsFromPolyTree(PolyTree &polytree, Paths &paths);
void ReversePath(Path &p);
void ReversePaths(Paths &p);
struct IntRect {
cInt left;
cInt top;
cInt right;
cInt bottom;
};
// enums that are used internally ...
enum EdgeSide { esLeft = 1, esRight = 2 };
// forward declarations (for stuff used internally) ...
struct TEdge;
struct IntersectNode;
struct LocalMinimum;
struct OutPt;
struct OutRec;
struct Join;
typedef std::vector<OutRec *> PolyOutList;
typedef std::vector<TEdge *> EdgeList;
typedef std::vector<Join *> JoinList;
typedef std::vector<IntersectNode *> IntersectList;
//------------------------------------------------------------------------------
// ClipperBase is the ancestor to the Clipper class. It should not be
// instantiated directly. This class simply abstracts the conversion of sets of
// polygon coordinates into edge objects that are stored in a LocalMinima list.
class ClipperBase {
public:
ClipperBase();
virtual ~ClipperBase();
virtual bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed);
bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed);
virtual void Clear();
IntRect GetBounds();
bool PreserveCollinear() { return m_PreserveCollinear; };
void PreserveCollinear(bool value) { m_PreserveCollinear = value; };
protected:
void DisposeLocalMinimaList();
TEdge *AddBoundsToLML(TEdge *e, bool IsClosed);
virtual void Reset();
TEdge *ProcessBound(TEdge *E, bool IsClockwise);
void InsertScanbeam(const cInt Y);
bool PopScanbeam(cInt &Y);
bool LocalMinimaPending();
bool PopLocalMinima(cInt Y, const LocalMinimum *&locMin);
OutRec *CreateOutRec();
void DisposeAllOutRecs();
void DisposeOutRec(PolyOutList::size_type index);
void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2);
void DeleteFromAEL(TEdge *e);
void UpdateEdgeIntoAEL(TEdge *&e);
typedef std::vector<LocalMinimum> MinimaList;
MinimaList::iterator m_CurrentLM;
MinimaList m_MinimaList;
bool m_UseFullRange;
EdgeList m_edges;
bool m_PreserveCollinear;
bool m_HasOpenPaths;
PolyOutList m_PolyOuts;
TEdge *m_ActiveEdges;
typedef std::priority_queue<cInt> ScanbeamList;
ScanbeamList m_Scanbeam;
};
//------------------------------------------------------------------------------
class Clipper : public virtual ClipperBase {
public:
Clipper(int initOptions = 0);
bool Execute(ClipType clipType, Paths &solution,
PolyFillType fillType = pftEvenOdd);
bool Execute(ClipType clipType, Paths &solution, PolyFillType subjFillType,
PolyFillType clipFillType);
bool Execute(ClipType clipType, PolyTree &polytree,
PolyFillType fillType = pftEvenOdd);
bool Execute(ClipType clipType, PolyTree &polytree, PolyFillType subjFillType,
PolyFillType clipFillType);
bool ReverseSolution() { return m_ReverseOutput; };
void ReverseSolution(bool value) { m_ReverseOutput = value; };
bool StrictlySimple() { return m_StrictSimple; };
void StrictlySimple(bool value) { m_StrictSimple = value; };
// set the callback function for z value filling on intersections (otherwise Z
// is 0)
#ifdef use_xyz
void ZFillFunction(ZFillCallback zFillFunc);
#endif
protected:
virtual bool ExecuteInternal();
private:
JoinList m_Joins;
JoinList m_GhostJoins;
IntersectList m_IntersectList;
ClipType m_ClipType;
typedef std::list<cInt> MaximaList;
MaximaList m_Maxima;
TEdge *m_SortedEdges;
bool m_ExecuteLocked;
PolyFillType m_ClipFillType;
PolyFillType m_SubjFillType;
bool m_ReverseOutput;
bool m_UsingPolyTree;
bool m_StrictSimple;
#ifdef use_xyz
ZFillCallback m_ZFill; // custom callback
#endif
void SetWindingCount(TEdge &edge);
bool IsEvenOddFillType(const TEdge &edge) const;
bool IsEvenOddAltFillType(const TEdge &edge) const;
void InsertLocalMinimaIntoAEL(const cInt botY);
void InsertEdgeIntoAEL(TEdge *edge, TEdge *startEdge);
void AddEdgeToSEL(TEdge *edge);
bool PopEdgeFromSEL(TEdge *&edge);
void CopyAELToSEL();
void DeleteFromSEL(TEdge *e);
void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2);
bool IsContributing(const TEdge &edge) const;
bool IsTopHorz(const cInt XPos);
void DoMaxima(TEdge *e);
void ProcessHorizontals();
void ProcessHorizontal(TEdge *horzEdge);
void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
OutPt *AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
OutRec *GetOutRec(int idx);
void AppendPolygon(TEdge *e1, TEdge *e2);
void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt);
OutPt *AddOutPt(TEdge *e, const IntPoint &pt);
OutPt *GetLastOutPt(TEdge *e);
bool ProcessIntersections(const cInt topY);
void BuildIntersectList(const cInt topY);
void ProcessIntersectList();
void ProcessEdgesAtTopOfScanbeam(const cInt topY);
void BuildResult(Paths &polys);
void BuildResult2(PolyTree &polytree);
void SetHoleState(TEdge *e, OutRec *outrec);
void DisposeIntersectNodes();
bool FixupIntersectionOrder();
void FixupOutPolygon(OutRec &outrec);
void FixupOutPolyline(OutRec &outrec);
bool IsHole(TEdge *e);
bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl);
void FixHoleLinkage(OutRec &outrec);
void AddJoin(OutPt *op1, OutPt *op2, const IntPoint offPt);
void ClearJoins();
void ClearGhostJoins();
void AddGhostJoin(OutPt *op, const IntPoint offPt);
bool JoinPoints(Join *j, OutRec *outRec1, OutRec *outRec2);
void JoinCommonEdges();
void DoSimplePolygons();
void FixupFirstLefts1(OutRec *OldOutRec, OutRec *NewOutRec);
void FixupFirstLefts2(OutRec *InnerOutRec, OutRec *OuterOutRec);
void FixupFirstLefts3(OutRec *OldOutRec, OutRec *NewOutRec);
#ifdef use_xyz
void SetZ(IntPoint &pt, TEdge &e1, TEdge &e2);
#endif
};
//------------------------------------------------------------------------------
class ClipperOffset {
public:
ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25);
~ClipperOffset();
void AddPath(const Path &path, JoinType joinType, EndType endType);
void AddPaths(const Paths &paths, JoinType joinType, EndType endType);
void Execute(Paths &solution, double delta);
void Execute(PolyTree &solution, double delta);
void Clear();
double MiterLimit;
double ArcTolerance;
private:
Paths m_destPolys;
Path m_srcPoly;
Path m_destPoly;
std::vector<DoublePoint> m_normals;
double m_delta, m_sinA, m_sin, m_cos;
double m_miterLim, m_StepsPerRad;
IntPoint m_lowest;
PolyNode m_polyNodes;
void FixOrientations();
void DoOffset(double delta);
void OffsetPoint(int j, int &k, JoinType jointype);
void DoSquare(int j, int k);
void DoMiter(int j, int k, double r);
void DoRound(int j, int k);
};
//------------------------------------------------------------------------------
class clipperException : public std::exception {
public:
clipperException(const char *description) : m_descr(description) {}
virtual ~clipperException() throw() {}
virtual const char *what() const throw() { return m_descr.c_str(); }
private:
std::string m_descr;
};
//------------------------------------------------------------------------------
} // ClipperLib namespace
#endif // clipper_hpp
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "postprocess_op.h"
namespace PaddleOCR {
void PostProcessor::GetContourArea(const std::vector<std::vector<float>> &box,
float unclip_ratio, float &distance) {
int pts_num = 4;
float area = 0.0f;
float dist = 0.0f;
for (int i = 0; i < pts_num; i++) {
area += box[i][0] * box[(i + 1) % pts_num][1] -
box[i][1] * box[(i + 1) % pts_num][0];
dist += sqrtf((box[i][0] - box[(i + 1) % pts_num][0]) *
(box[i][0] - box[(i + 1) % pts_num][0]) +
(box[i][1] - box[(i + 1) % pts_num][1]) *
(box[i][1] - box[(i + 1) % pts_num][1]));
}
area = fabs(float(area / 2.0));
distance = area * unclip_ratio / dist;
}
cv::RotatedRect PostProcessor::UnClip(std::vector<std::vector<float>> box,
const float &unclip_ratio) {
float distance = 1.0;
GetContourArea(box, unclip_ratio, distance);
ClipperLib::ClipperOffset offset;
ClipperLib::Path p;
p << ClipperLib::IntPoint(int(box[0][0]), int(box[0][1]))
<< ClipperLib::IntPoint(int(box[1][0]), int(box[1][1]))
<< ClipperLib::IntPoint(int(box[2][0]), int(box[2][1]))
<< ClipperLib::IntPoint(int(box[3][0]), int(box[3][1]));
offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon);
ClipperLib::Paths soln;
offset.Execute(soln, distance);
std::vector<cv::Point2f> points;
for (int j = 0; j < soln.size(); j++) {
for (int i = 0; i < soln[soln.size() - 1].size(); i++) {
points.emplace_back(soln[j][i].X, soln[j][i].Y);
}
}
cv::RotatedRect res;
if (points.size() <= 0) {
res = cv::RotatedRect(cv::Point2f(0, 0), cv::Size2f(1, 1), 0);
} else {
res = cv::minAreaRect(points);
}
return res;
}
float **PostProcessor::Mat2Vec(cv::Mat mat) {
auto **array = new float *[mat.rows];
for (int i = 0; i < mat.rows; ++i)
array[i] = new float[mat.cols];
for (int i = 0; i < mat.rows; ++i) {
for (int j = 0; j < mat.cols; ++j) {
array[i][j] = mat.at<float>(i, j);
}
}
return array;
}
std::vector<std::vector<int>>
PostProcessor::OrderPointsClockwise(std::vector<std::vector<int>> pts) {
std::vector<std::vector<int>> box = pts;
std::sort(box.begin(), box.end(), XsortInt);
std::vector<std::vector<int>> leftmost = {box[0], box[1]};
std::vector<std::vector<int>> rightmost = {box[2], box[3]};
if (leftmost[0][1] > leftmost[1][1])
std::swap(leftmost[0], leftmost[1]);
if (rightmost[0][1] > rightmost[1][1])
std::swap(rightmost[0], rightmost[1]);
std::vector<std::vector<int>> rect = {leftmost[0], rightmost[0], rightmost[1],
leftmost[1]};
return rect;
}
std::vector<std::vector<float>> PostProcessor::Mat2Vector(cv::Mat mat) {
std::vector<std::vector<float>> img_vec;
std::vector<float> tmp;
for (int i = 0; i < mat.rows; ++i) {
tmp.clear();
for (int j = 0; j < mat.cols; ++j) {
tmp.push_back(mat.at<float>(i, j));
}
img_vec.push_back(tmp);
}
return img_vec;
}
bool PostProcessor::XsortFp32(std::vector<float> a, std::vector<float> b) {
if (a[0] != b[0])
return a[0] < b[0];
return false;
}
bool PostProcessor::XsortInt(std::vector<int> a, std::vector<int> b) {
if (a[0] != b[0])
return a[0] < b[0];
return false;
}
std::vector<std::vector<float>> PostProcessor::GetMiniBoxes(cv::RotatedRect box,
float &ssid) {
ssid = std::max(box.size.width, box.size.height);
cv::Mat points;
cv::boxPoints(box, points);
auto array = Mat2Vector(points);
std::sort(array.begin(), array.end(), XsortFp32);
std::vector<float> idx1 = array[0], idx2 = array[1], idx3 = array[2],
idx4 = array[3];
if (array[3][1] <= array[2][1]) {
idx2 = array[3];
idx3 = array[2];
} else {
idx2 = array[2];
idx3 = array[3];
}
if (array[1][1] <= array[0][1]) {
idx1 = array[1];
idx4 = array[0];
} else {
idx1 = array[0];
idx4 = array[1];
}
array[0] = idx1;
array[1] = idx2;
array[2] = idx3;
array[3] = idx4;
return array;
}
float PostProcessor::BoxScoreFast(std::vector<std::vector<float>> box_array,
cv::Mat pred) {
auto array = box_array;
int width = pred.cols;
int height = pred.rows;
float box_x[4] = {array[0][0], array[1][0], array[2][0], array[3][0]};
float box_y[4] = {array[0][1], array[1][1], array[2][1], array[3][1]};
int xmin = clamp(int(std::floor(*(std::min_element(box_x, box_x + 4)))), 0,
width - 1);
int xmax = clamp(int(std::ceil(*(std::max_element(box_x, box_x + 4)))), 0,
width - 1);
int ymin = clamp(int(std::floor(*(std::min_element(box_y, box_y + 4)))), 0,
height - 1);
int ymax = clamp(int(std::ceil(*(std::max_element(box_y, box_y + 4)))), 0,
height - 1);
cv::Mat mask;
mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);
cv::Point root_point[4];
root_point[0] = cv::Point(int(array[0][0]) - xmin, int(array[0][1]) - ymin);
root_point[1] = cv::Point(int(array[1][0]) - xmin, int(array[1][1]) - ymin);
root_point[2] = cv::Point(int(array[2][0]) - xmin, int(array[2][1]) - ymin);
root_point[3] = cv::Point(int(array[3][0]) - xmin, int(array[3][1]) - ymin);
const cv::Point *ppt[1] = {root_point};
int npt[] = {4};
cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));
cv::Mat croppedImg;
pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
.copyTo(croppedImg);
auto score = cv::mean(croppedImg, mask)[0];
return score;
}
std::vector<std::vector<std::vector<int>>>
PostProcessor::BoxesFromBitmap(const cv::Mat pred, const cv::Mat bitmap,
const float &box_thresh,
const float &det_db_unclip_ratio) {
const int min_size = 3;
const int max_candidates = 1000;
int width = bitmap.cols;
int height = bitmap.rows;
std::vector<std::vector<cv::Point>> contours;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST,
cv::CHAIN_APPROX_SIMPLE);
int num_contours =
contours.size() >= max_candidates ? max_candidates : contours.size();
std::vector<std::vector<std::vector<int>>> boxes;
for (int _i = 0; _i < num_contours; _i++) {
if (contours[_i].size() <= 2) {
continue;
}
float ssid;
cv::RotatedRect box = cv::minAreaRect(contours[_i]);
auto array = GetMiniBoxes(box, ssid);
auto box_for_unclip = array;
// end get_mini_box
if (ssid < min_size) {
continue;
}
float score;
score = BoxScoreFast(array, pred);
if (score < box_thresh)
continue;
// start for unclip
cv::RotatedRect points = UnClip(box_for_unclip, det_db_unclip_ratio);
if (points.size.height < 1.001 && points.size.width < 1.001) {
continue;
}
// end for unclip
cv::RotatedRect clipbox = points;
auto cliparray = GetMiniBoxes(clipbox, ssid);
if (ssid < min_size + 2)
continue;
int dest_width = pred.cols;
int dest_height = pred.rows;
std::vector<std::vector<int>> intcliparray;
for (int num_pt = 0; num_pt < 4; num_pt++) {
std::vector<int> a{int(clampf(roundf(cliparray[num_pt][0] / float(width) *
float(dest_width)),
0, float(dest_width))),
int(clampf(roundf(cliparray[num_pt][1] /
float(height) * float(dest_height)),
0, float(dest_height)))};
intcliparray.push_back(a);
}
boxes.push_back(intcliparray);
} // end for
return boxes;
}
std::vector<std::vector<std::vector<int>>>
PostProcessor::FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes,
float ratio_h, float ratio_w, cv::Mat srcimg) {
int oriimg_h = srcimg.rows;
int oriimg_w = srcimg.cols;
std::vector<std::vector<std::vector<int>>> root_points;
for (int n = 0; n < boxes.size(); n++) {
boxes[n] = OrderPointsClockwise(boxes[n]);
for (int m = 0; m < boxes[0].size(); m++) {
boxes[n][m][0] /= ratio_w;
boxes[n][m][1] /= ratio_h;
boxes[n][m][0] = int(_min(_max(boxes[n][m][0], 0), oriimg_w - 1));
boxes[n][m][1] = int(_min(_max(boxes[n][m][1], 0), oriimg_h - 1));
}
}
for (int n = 0; n < boxes.size(); n++) {
int rect_width, rect_height;
rect_width = int(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) +
pow(boxes[n][0][1] - boxes[n][1][1], 2)));
rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
pow(boxes[n][0][1] - boxes[n][3][1], 2)));
if (rect_width <= 4 || rect_height <= 4)
continue;
root_points.push_back(boxes[n]);
}
return root_points;
}
} // namespace PaddleOCR
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include "clipper.h"
#include "utility.h"
using namespace std;
namespace PaddleOCR {
class PostProcessor {
public:
void GetContourArea(const std::vector<std::vector<float>> &box,
float unclip_ratio, float &distance);
cv::RotatedRect UnClip(std::vector<std::vector<float>> box,
const float &unclip_ratio);
float **Mat2Vec(cv::Mat mat);
std::vector<std::vector<int>>
OrderPointsClockwise(std::vector<std::vector<int>> pts);
std::vector<std::vector<float>> GetMiniBoxes(cv::RotatedRect box,
float &ssid);
float BoxScoreFast(std::vector<std::vector<float>> box_array, cv::Mat pred);
std::vector<std::vector<std::vector<int>>>
BoxesFromBitmap(const cv::Mat pred, const cv::Mat bitmap,
const float &box_thresh, const float &det_db_unclip_ratio);
std::vector<std::vector<std::vector<int>>>
FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes,
float ratio_h, float ratio_w, cv::Mat srcimg);
private:
static bool XsortInt(std::vector<int> a, std::vector<int> b);
static bool XsortFp32(std::vector<float> a, std::vector<float> b);
std::vector<std::vector<float>> Mat2Vector(cv::Mat mat);
inline int _max(int a, int b) { return a >= b ? a : b; }
inline int _min(int a, int b) { return a >= b ? b : a; }
template <class T> inline T clamp(T x, T min, T max) {
if (x > max)
return max;
if (x < min)
return min;
return x;
}
inline float clampf(float x, float min, float max) {
if (x > max)
return max;
if (x < min)
return min;
return x;
}
};
} // namespace PaddleOCR
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
//#include "paddle_api.h"
//#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include "preprocess_op.h"
namespace PaddleOCR {
void Permute::Run(const cv::Mat *im, float *data) {
int rh = im->rows;
int rw = im->cols;
int rc = im->channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
}
}
void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale) {
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
(*im).convertTo(*im, CV_32FC3, e);
for (int h = 0; h < im->rows; h++) {
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[0] =
(im->at<cv::Vec3f>(h, w)[0] - mean[0]) * scale[0];
im->at<cv::Vec3f>(h, w)[1] =
(im->at<cv::Vec3f>(h, w)[1] - mean[1]) * scale[1];
im->at<cv::Vec3f>(h, w)[2] =
(im->at<cv::Vec3f>(h, w)[2] - mean[2]) * scale[2];
}
}
}
void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
int max_size_len, float &ratio_h, float &ratio_w,
bool use_tensorrt) {
int w = img.cols;
int h = img.rows;
float ratio = 1.f;
int max_wh = w >= h ? w : h;
if (max_wh > max_size_len) {
if (h > w) {
ratio = float(max_size_len) / float(h);
} else {
ratio = float(max_size_len) / float(w);
}
}
int resize_h = int(float(h) * ratio);
int resize_w = int(float(w) * ratio);
if (resize_h % 32 == 0)
resize_h = resize_h;
else if (resize_h / 32 < 1 + 1e-5)
resize_h = 32;
else
resize_h = (resize_h / 32) * 32;
if (resize_w % 32 == 0)
resize_w = resize_w;
else if (resize_w / 32 < 1 + 1e-5)
resize_w = 32;
else
resize_w = (resize_w / 32) * 32;
if (!use_tensorrt) {
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
ratio_h = float(resize_h) / float(h);
ratio_w = float(resize_w) / float(w);
} else {
cv::resize(img, resize_img, cv::Size(640, 640));
ratio_h = float(640) / float(h);
ratio_w = float(640) / float(w);
}
}
void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
bool use_tensorrt,
const std::vector<int> &rec_image_shape) {
int imgC, imgH, imgW;
imgC = rec_image_shape[0];
imgH = rec_image_shape[1];
imgW = rec_image_shape[2];
imgW = int(32 * wh_ratio);
float ratio = float(img.cols) / float(img.rows);
int resize_w, resize_h;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
if (!use_tensorrt) {
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR);
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
{127, 127, 127});
} else {
int k = int(img.cols * 32 / img.rows);
if (k >= 100) {
cv::resize(img, resize_img, cv::Size(100, 32), 0.f, 0.f,
cv::INTER_LINEAR);
} else {
cv::resize(img, resize_img, cv::Size(k, 32), 0.f, 0.f, cv::INTER_LINEAR);
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, int(100 - k),
cv::BORDER_CONSTANT, {127, 127, 127});
}
}
}
void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
bool use_tensorrt,
const std::vector<int> &rec_image_shape) {
int imgC, imgH, imgW;
imgC = rec_image_shape[0];
imgH = rec_image_shape[1];
imgW = rec_image_shape[2];
float ratio = float(img.cols) / float(img.rows);
int resize_w, resize_h;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
if (!use_tensorrt) {
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR);
if (resize_w < imgW) {
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
}
} else {
cv::resize(img, resize_img, cv::Size(100, 32), 0.f, 0.f, cv::INTER_LINEAR);
}
}
} // namespace PaddleOCR
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
using namespace std;
//using namespace paddle;
namespace PaddleOCR {
class Normalize {
public:
virtual void Run(cv::Mat *im, const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale = true);
};
// RGB -> CHW
class Permute {
public:
virtual void Run(const cv::Mat *im, float *data);
};
class ResizeImgType0 {
public:
virtual void Run(const cv::Mat &img, cv::Mat &resize_img, int max_size_len,
float &ratio_h, float &ratio_w, bool use_tensorrt);
};
class CrnnResizeImg {
public:
virtual void Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
bool use_tensorrt = false,
const std::vector<int> &rec_image_shape = {3, 32, 320});
};
class ClsResizeImg {
public:
virtual void Run(const cv::Mat &img, cv::Mat &resize_img,
bool use_tensorrt = false,
const std::vector<int> &rec_image_shape = {3, 48, 192});
};
} // namespace PaddleOCR
\ No newline at end of file
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <ostream>
#include <vector>
#include "utility.h"
namespace PaddleOCR {
std::vector<std::string> Utility::ReadDict(const std::string &path) {
std::ifstream in(path);
std::string line;
std::vector<std::string> m_vec;
if (in) {
while (getline(in, line)) {
m_vec.push_back(line);
}
} else {
std::cout << "no such label file: " << path << ", exit the program..."
<< std::endl;
exit(1);
}
return m_vec;
}
void Utility::VisualizeBboxes(
const cv::Mat &srcimg,
const std::vector<std::vector<std::vector<int>>> &boxes) {
cv::Mat img_vis;
srcimg.copyTo(img_vis);
for (int n = 0; n < boxes.size(); n++) {
cv::Point rook_points[4];
for (int m = 0; m < boxes[n].size(); m++) {
rook_points[m] = cv::Point(int(boxes[n][m][0]), int(boxes[n][m][1]));
}
const cv::Point *ppt[1] = {rook_points};
int npt[] = {4};
cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
}
cv::imwrite("./ocr_vis.png", img_vis);
std::cout << "The detection visualized image saved in ./ocr_vis.png"
<< std::endl;
}
} // namespace PaddleOCR
\ No newline at end of file
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <stdlib.h>
#include <vector>
#include <algorithm>
#include <cstring>
#include <fstream>
#include <numeric>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
namespace PaddleOCR {
class Utility {
public:
static std::vector<std::string> ReadDict(const std::string &path);
static void
VisualizeBboxes(const cv::Mat &srcimg,
const std::vector<std::vector<std::vector<int>>> &boxes);
template <class ForwardIterator>
inline static size_t argmax(ForwardIterator first, ForwardIterator last) {
return std::distance(first, std::max_element(first, last));
}
};
} // namespace PaddleOCR
\ No newline at end of file
......@@ -265,11 +265,11 @@ class Server(object):
def _prepare_resource(self, workdir, cube_conf):
self.workdir = workdir
if self.resource_conf == None:
self.resource_conf = server_sdk.ResourceConf()
for idx, op_general_model_config_fn in enumerate(self.general_model_config_fn):
with open("{}/{}".format(workdir, op_general_model_config_fn),
"w") as fout:
fout.write(str(list(self.model_conf.values())[idx]))
self.resource_conf = server_sdk.ResourceConf()
for workflow in self.workflow_conf.workflows:
for node in workflow.nodes:
if "dist_kv" in node.name:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册