diff --git a/README.md b/README.md index 1818ddd61cc5423c4a590815930d007303f18e81..f209e58b66cc4c056ff4ab30283213534eac52c0 100644 --- a/README.md +++ b/README.md @@ -53,7 +53,7 @@ You may need to use a domestic mirror source (in China, you can use the Tsinghua If you need install modules compiled with develop branch, please download packages from [latest packages list](./doc/LATEST_PACKAGES.md) and install with `pip install` command. -Client package support Centos 7 and Ubuntu 18, or you can use HTTP service without install client. +Packages of Paddle Serving support Centos 6/7 and Ubuntu 16/18, or you can use HTTP service without install client.

Pre-built services with Paddle Serving

diff --git a/README_CN.md b/README_CN.md index 29cf095248f4c125b3dba7146e67efe8b7abae6c..05d3ad2100b15830d10c8bc4454a6d319d7b990b 100644 --- a/README_CN.md +++ b/README_CN.md @@ -55,7 +55,7 @@ pip install paddle-serving-server-gpu # GPU 如果需要使用develop分支编译的安装包,请从[最新安装包列表](./doc/LATEST_PACKAGES.md)中获取下载地址进行下载,使用`pip install`命令进行安装。 -客户端安装包支持Centos 7和Ubuntu 18,或者您可以使用HTTP服务,这种情况下不需要安装客户端。 +Paddle Serving安装包支持Centos 6/7和Ubuntu 16/18,或者您可以使用HTTP服务,这种情况下不需要安装客户端。

Paddle Serving预装的服务

diff --git a/python/examples/bert/benchmark.py b/python/examples/bert/benchmark.py index af75b718b78b2bc130c2411d05d190fc0d298006..f1533d9710d3149a37818d3f1bc146fad6ce6537 100644 --- a/python/examples/bert/benchmark.py +++ b/python/examples/bert/benchmark.py @@ -21,11 +21,7 @@ import sys import time from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner -from paddle_serving_client.utils import benchmark_args -from batching import pad_batch_data -import tokenization -import requests -import json +from paddle_serving_client.utils import benchmark_args, show_latency from paddle_serving_app.reader import ChineseBertReader args = benchmark_args() @@ -36,42 +32,75 @@ def single_func(idx, resource): dataset = [] for line in fin: dataset.append(line.strip()) + + profile_flags = False + latency_flags = False + if os.getenv("FLAGS_profile_client"): + profile_flags = True + if os.getenv("FLAGS_serving_latency"): + latency_flags = True + latency_list = [] + if args.request == "rpc": - reader = ChineseBertReader(vocab_file="vocab.txt", max_seq_len=20) + reader = ChineseBertReader({"max_seq_len": 128}) fetch = ["pooled_output"] client = Client() client.load_client_config(args.model) client.connect([resource["endpoint"][idx % len(resource["endpoint"])]]) - start = time.time() - for i in range(1000): - if args.batch_size == 1: - feed_dict = reader.process(dataset[i]) - result = client.predict(feed=feed_dict, fetch=fetch) + for i in range(turns): + if args.batch_size >= 1: + l_start = time.time() + feed_batch = [] + b_start = time.time() + for bi in range(args.batch_size): + feed_batch.append(reader.process(dataset[bi])) + b_end = time.time() + + if profile_flags: + sys.stderr.write( + "PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}\n".format( + os.getpid(), + int(round(b_start * 1000000)), + int(round(b_end * 1000000)))) + result = client.predict(feed=feed_batch, fetch=fetch) + + l_end = time.time() + if latency_flags: + latency_list.append(l_end * 1000 - l_start * 1000) else: print("unsupport batch size {}".format(args.batch_size)) elif args.request == "http": - start = time.time() - header = {"Content-Type": "application/json"} - for i in range(1000): - dict_data = {"words": dataset[i], "fetch": ["pooled_output"]} - r = requests.post( - 'http://{}/bert/prediction'.format(resource["endpoint"][ - idx % len(resource["endpoint"])]), - data=json.dumps(dict_data), - headers=header) + raise ("not implemented") end = time.time() - return [[end - start]] + if latency_flags: + return [[end - start], latency_list] + else: + return [[end - start]] if __name__ == '__main__': multi_thread_runner = MultiThreadRunner() - endpoint_list = ["127.0.0.1:9292"] - result = multi_thread_runner.run(single_func, args.thread, - {"endpoint": endpoint_list}) + endpoint_list = [ + "127.0.0.1:9292", "127.0.0.1:9293", "127.0.0.1:9294", "127.0.0.1:9295" + ] + turns = 10 + start = time.time() + result = multi_thread_runner.run( + single_func, args.thread, {"endpoint": endpoint_list, + "turns": turns}) + end = time.time() + total_cost = end - start + avg_cost = 0 for i in range(args.thread): avg_cost += result[0][i] avg_cost = avg_cost / args.thread - print("average total cost {} s.".format(avg_cost)) + + print("total cost :{} s".format(total_cost)) + print("each thread cost :{} s. ".format(avg_cost)) + print("qps :{} samples/s".format(args.batch_size * args.thread * turns / + total_cost)) + if os.getenv("FLAGS_serving_latency"): + show_latency(result[1]) diff --git a/python/examples/bert/benchmark.sh b/python/examples/bert/benchmark.sh index 7f9e2325f3b8f7db288d2b7d82d0d412e05417cb..7ee5f32e9e5d89a836f8962a256bcdf7bf0b62e2 100644 --- a/python/examples/bert/benchmark.sh +++ b/python/examples/bert/benchmark.sh @@ -1,9 +1,30 @@ rm profile_log -for thread_num in 1 2 4 8 16 +export CUDA_VISIBLE_DEVICES=0,1,2,3 +export FLAGS_profile_server=1 +export FLAGS_profile_client=1 +export FLAGS_serving_latency=1 +python3 -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 --mem_optim False --ir_optim True 2> elog > stdlog & + +sleep 5 + +#warm up +python3 benchmark.py --thread 8 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 + +for thread_num in 4 8 16 do - $PYTHONROOT/bin/python benchmark.py --thread $thread_num --model serving_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1 - echo "========================================" - echo "batch size : $batch_size" >> profile_log - $PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log - tail -n 1 profile >> profile_log +for batch_size in 1 4 16 64 256 +do + python3 benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 + echo "model name :" $1 + echo "thread num :" $thread_num + echo "batch size :" $batch_size + echo "=================Done====================" + echo "model name :$1" >> profile_log_$1 + echo "batch size :$batch_size" >> profile_log_$1 + python3 ../util/show_profile.py profile $thread_num >> profile_log_$1 + tail -n 8 profile >> profile_log_$1 + echo "" >> profile_log_$1 +done done + +ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9 diff --git a/python/examples/bert/benchmark_batch.py b/python/examples/bert/benchmark_batch.py deleted file mode 100644 index 7cedb6aa451e0e4a128f0fedbfde1a896977f601..0000000000000000000000000000000000000000 --- a/python/examples/bert/benchmark_batch.py +++ /dev/null @@ -1,79 +0,0 @@ -# -*- coding: utf-8 -*- -# -# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# pylint: disable=doc-string-missing - -from __future__ import unicode_literals, absolute_import -import os -import sys -import time -from paddle_serving_client import Client -from paddle_serving_client.utils import MultiThreadRunner -from paddle_serving_client.utils import benchmark_args -from batching import pad_batch_data -import tokenization -import requests -import json -from bert_reader import BertReader -args = benchmark_args() - - -def single_func(idx, resource): - fin = open("data-c.txt") - dataset = [] - for line in fin: - dataset.append(line.strip()) - profile_flags = False - if os.environ["FLAGS_profile_client"]: - profile_flags = True - if args.request == "rpc": - reader = BertReader(vocab_file="vocab.txt", max_seq_len=20) - fetch = ["pooled_output"] - client = Client() - client.load_client_config(args.model) - client.connect([resource["endpoint"][idx % len(resource["endpoint"])]]) - start = time.time() - for i in range(1000): - if args.batch_size >= 1: - feed_batch = [] - b_start = time.time() - for bi in range(args.batch_size): - feed_batch.append(reader.process(dataset[bi])) - b_end = time.time() - if profile_flags: - print("PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}".format( - os.getpid(), - int(round(b_start * 1000000)), - int(round(b_end * 1000000)))) - result = client.predict(feed=feed_batch, fetch=fetch) - else: - print("unsupport batch size {}".format(args.batch_size)) - - elif args.request == "http": - raise ("no batch predict for http") - end = time.time() - return [[end - start]] - - -if __name__ == '__main__': - multi_thread_runner = MultiThreadRunner() - endpoint_list = ["127.0.0.1:9292"] - result = multi_thread_runner.run(single_func, args.thread, - {"endpoint": endpoint_list}) - avg_cost = 0 - for i in range(args.thread): - avg_cost += result[0][i] - avg_cost = avg_cost / args.thread - print("average total cost {} s.".format(avg_cost)) diff --git a/python/examples/bert/benchmark_batch.sh b/python/examples/bert/benchmark_batch.sh deleted file mode 100644 index 272923776d6640880175745920a8fad9e84972fd..0000000000000000000000000000000000000000 --- a/python/examples/bert/benchmark_batch.sh +++ /dev/null @@ -1,19 +0,0 @@ -rm profile_log -export CUDA_VISIBLE_DEVICES=0,1,2,3 -python -m paddle_serving_server_gpu.serve --model bert_seq20_model/ --port 9295 --thread 4 --gpu_ids 0,1,2,3 2> elog > stdlog & - -sleep 5 - -for thread_num in 1 2 4 8 16 -do -for batch_size in 1 2 4 8 16 32 64 128 256 512 -do - $PYTHONROOT/bin/python benchmark_batch.py --thread $thread_num --batch_size $batch_size --model serving_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1 - echo "========================================" - echo "thread num: ", $thread_num - echo "batch size: ", $batch_size - echo "batch size : $batch_size" >> profile_log - $PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log - tail -n 1 profile >> profile_log -done -done diff --git a/python/examples/imagenet/benchmark.py b/python/examples/imagenet/benchmark.py index caa952f121fbd8725c2a6bfe36f0dd84b6a82707..ac7ba8c333d25fb23bfc7695105315bfaa4e76ee 100644 --- a/python/examples/imagenet/benchmark.py +++ b/python/examples/imagenet/benchmark.py @@ -93,7 +93,7 @@ def single_func(idx, resource): if __name__ == '__main__': multi_thread_runner = MultiThreadRunner() - endpoint_list = ["127.0.0.1:9696"] + endpoint_list = ["127.0.0.1:9393"] #endpoint_list = endpoint_list + endpoint_list + endpoint_list result = multi_thread_runner.run(single_func, args.thread, {"endpoint": endpoint_list}) diff --git a/python/examples/imagenet/benchmark.sh b/python/examples/imagenet/benchmark.sh index 618a62c063c0bc4955baf8516bc5bc93e4832394..84885908fa89d050b3ca71386fe2a21533ce0809 100644 --- a/python/examples/imagenet/benchmark.sh +++ b/python/examples/imagenet/benchmark.sh @@ -1,12 +1,28 @@ rm profile_log -for thread_num in 1 2 4 8 +export CUDA_VISIBLE_DEVICES=0,1,2,3 +export FLAGS_profile_server=1 +export FLAGS_profile_client=1 +python -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 2> elog > stdlog & + +sleep 5 + +#warm up +$PYTHONROOT/bin/python benchmark.py --thread 8 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 + +for thread_num in 4 8 16 do -for batch_size in 1 2 4 8 16 32 64 128 +for batch_size in 1 4 16 64 256 do - $PYTHONROOT/bin/python benchmark.py --thread $thread_num --batch_size $batch_size --model ResNet50_vd_client_config/serving_client_conf.prototxt --request rpc > profile 2>&1 - echo "========================================" - echo "batch size : $batch_size" >> profile_log + $PYTHONROOT/bin/python benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 + echo "model name :" $1 + echo "thread num :" $thread_num + echo "batch size :" $batch_size + echo "=================Done====================" + echo "model name :$1" >> profile_log + echo "batch size :$batch_size" >> profile_log $PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log - tail -n 1 profile >> profile_log + tail -n 8 profile >> profile_log done done + +ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9 diff --git a/python/examples/lac/lac_client.py b/python/examples/lac/lac_client.py index ab9af730abb2f5b33f4d0292115b2f7bf682f278..22f3c511dcd2540365623ef9428b60cfcb5e5a34 100644 --- a/python/examples/lac/lac_client.py +++ b/python/examples/lac/lac_client.py @@ -35,5 +35,4 @@ for line in sys.stdin: begin = fetch_map['crf_decode.lod'][0] end = fetch_map['crf_decode.lod'][1] segs = reader.parse_result(line, fetch_map["crf_decode"][begin:end]) - - print({"word_seg": "|".join(segs)}) + print("word_seg: " + "|".join(str(words) for words in segs)) diff --git a/python/examples/senta/README.md b/python/examples/senta/README.md index 9aeb6d1191719e067e2cb99d408a6d091c25ede3..8929a9312c17264800f299f77afb583221006068 100644 --- a/python/examples/senta/README.md +++ b/python/examples/senta/README.md @@ -5,6 +5,8 @@ ``` python -m paddle_serving_app.package --get_model senta_bilstm python -m paddle_serving_app.package --get_model lac +tar -xzvf senta_bilstm.tar.gz +tar -xzvf lac.tar.gz ``` ## Start HTTP Service @@ -17,5 +19,5 @@ In this demo, the LAC task is placed in the preprocessing part of the HTTP predi ## Client prediction ``` -curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "天气不错"}], "fetch":["class_probs"]}' http://127.0.0.1:9292/senta/prediction +curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "天气不错"}], "fetch":["class_probs"]}' http://127.0.0.1:9393/senta/prediction ``` diff --git a/python/examples/senta/README_CN.md b/python/examples/senta/README_CN.md index f958af221d843748836bea325f87ba603411d39c..e5624dc975e6bc00de219f68cbf74dea7cac8360 100644 --- a/python/examples/senta/README_CN.md +++ b/python/examples/senta/README_CN.md @@ -5,6 +5,8 @@ ``` python -m paddle_serving_app.package --get_model senta_bilstm python -m paddle_serving_app.package --get_model lac +tar -xzvf lac.tar.gz +tar -xzvf senta_bilstm.tar.gz ``` ## 启动HTTP服务 @@ -17,5 +19,5 @@ python senta_web_service.py ## 客户端预测 ``` -curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "天气不错"}], "fetch":["class_probs"]}' http://127.0.0.1:9292/senta/prediction +curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "天气不错"}], "fetch":["class_probs"]}' http://127.0.0.1:9393/senta/prediction ``` diff --git a/python/examples/util/show_profile.py b/python/examples/util/show_profile.py index 9153d939338f0ee171af539b9f955d51802ad547..1581dda19bb0abefe6eb21592bda7fc97d8fb7cd 100644 --- a/python/examples/util/show_profile.py +++ b/python/examples/util/show_profile.py @@ -31,7 +31,7 @@ with open(profile_file) as f: if line[0] == "PROFILE": prase(line[2]) -print("thread num {}".format(thread_num)) +print("thread num :{}".format(thread_num)) for name in time_dict: - print("{} cost {} s in each thread ".format(name, time_dict[name] / ( + print("{} cost :{} s in each thread ".format(name, time_dict[name] / ( 1000000.0 * float(thread_num)))) diff --git a/python/paddle_serving_app/models/model_list.py b/python/paddle_serving_app/models/model_list.py index cf0ca3bf5765d65065e541462eb919ccc5c4b978..d5f42ab78acdbe837a719908d27cda513da02c3f 100644 --- a/python/paddle_serving_app/models/model_list.py +++ b/python/paddle_serving_app/models/model_list.py @@ -38,7 +38,7 @@ class ServingModels(object): object_detection_url = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ObjectDetection/" ocr_url = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/OCR/" senta_url = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SentimentAnalysis/" - semantic_url = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticRepresentation/" + semantic_url = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/" wordseg_url = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/LexicalAnalysis/" self.url_dict = {} diff --git a/python/paddle_serving_app/reader/lac_reader.py b/python/paddle_serving_app/reader/lac_reader.py index 7e804ff371e2d90d79f7f663e83a854b1b0c9647..8f7d79a6a1e7ce8c4c86b689e2856eea6fa42158 100644 --- a/python/paddle_serving_app/reader/lac_reader.py +++ b/python/paddle_serving_app/reader/lac_reader.py @@ -111,6 +111,10 @@ class LACReader(object): return word_ids def parse_result(self, words, crf_decode): + try: + words = unicode(words, "utf-8") + except: + pass tags = [self.id2label_dict[str(x[0])] for x in crf_decode] sent_out = [] diff --git a/python/paddle_serving_client/utils/__init__.py b/python/paddle_serving_client/utils/__init__.py index 381da6bf9bade2bb0627f4c07851012360905de5..53f40726fbf21a0607b47bb29a20aa6ff50b6221 100644 --- a/python/paddle_serving_client/utils/__init__.py +++ b/python/paddle_serving_client/utils/__init__.py @@ -17,6 +17,7 @@ import sys import subprocess import argparse from multiprocessing import Pool +import numpy as np def benchmark_args(): @@ -35,6 +36,17 @@ def benchmark_args(): return parser.parse_args() +def show_latency(latency_list): + latency_array = np.array(latency_list) + info = "latency:\n" + info += "mean :{} ms\n".format(np.mean(latency_array)) + info += "median :{} ms\n".format(np.median(latency_array)) + info += "80 percent :{} ms\n".format(np.percentile(latency_array, 80)) + info += "90 percent :{} ms\n".format(np.percentile(latency_array, 90)) + info += "99 percent :{} ms\n".format(np.percentile(latency_array, 99)) + sys.stderr.write(info) + + class MultiThreadRunner(object): def __init__(self): pass diff --git a/python/paddle_serving_server/monitor.py b/python/paddle_serving_server/monitor.py index 3f1ff6436917b8ae7ff4ea06fcae1f55bd65e887..84146039c40794436030a8c5c6ba9d18ccbfda06 100644 --- a/python/paddle_serving_server/monitor.py +++ b/python/paddle_serving_server/monitor.py @@ -20,7 +20,7 @@ Usage: import os import time import argparse -import commands +import subprocess import datetime import shutil import tarfile @@ -209,7 +209,7 @@ class HadoopMonitor(Monitor): remote_filepath = os.path.join(path, filename) cmd = '{} -ls {} 2>/dev/null'.format(self._cmd_prefix, remote_filepath) _LOGGER.debug('check cmd: {}'.format(cmd)) - [status, output] = commands.getstatusoutput(cmd) + [status, output] = subprocess.getstatusoutput(cmd) _LOGGER.debug('resp: {}'.format(output)) if status == 0: [_, _, _, _, _, mdate, mtime, _] = output.split('\n')[-1].split() diff --git a/python/paddle_serving_server_gpu/monitor.py b/python/paddle_serving_server_gpu/monitor.py index 3f1ff6436917b8ae7ff4ea06fcae1f55bd65e887..84146039c40794436030a8c5c6ba9d18ccbfda06 100644 --- a/python/paddle_serving_server_gpu/monitor.py +++ b/python/paddle_serving_server_gpu/monitor.py @@ -20,7 +20,7 @@ Usage: import os import time import argparse -import commands +import subprocess import datetime import shutil import tarfile @@ -209,7 +209,7 @@ class HadoopMonitor(Monitor): remote_filepath = os.path.join(path, filename) cmd = '{} -ls {} 2>/dev/null'.format(self._cmd_prefix, remote_filepath) _LOGGER.debug('check cmd: {}'.format(cmd)) - [status, output] = commands.getstatusoutput(cmd) + [status, output] = subprocess.getstatusoutput(cmd) _LOGGER.debug('resp: {}'.format(output)) if status == 0: [_, _, _, _, _, mdate, mtime, _] = output.split('\n')[-1].split() diff --git a/tools/Dockerfile b/tools/Dockerfile index dc39adf01288f092143803557b322a0c8fbcb2b4..3c701725400350247153f828410d06cec69856f5 100644 --- a/tools/Dockerfile +++ b/tools/Dockerfile @@ -9,4 +9,6 @@ RUN yum -y install wget && \ yum -y install python3 python3-devel && \ yum clean all && \ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \ - python get-pip.py && rm get-pip.py + python get-pip.py && rm get-pip.py && \ + localedef -c -i en_US -f UTF-8 en_US.UTF-8 && \ + echo "export LANG=en_US.utf8" >> /root/.bashrc diff --git a/tools/Dockerfile.centos6.devel b/tools/Dockerfile.centos6.devel index 5223693d846bdbc90bdefe58c26db29d6a81359d..83981dcc4731252dfc75270b5ce6fc623a0266a8 100644 --- a/tools/Dockerfile.centos6.devel +++ b/tools/Dockerfile.centos6.devel @@ -44,4 +44,6 @@ RUN yum -y install wget && \ cd .. && rm -rf Python-3.6.8* && \ pip3 install google protobuf setuptools wheel flask numpy==1.16.4 && \ yum -y install epel-release && yum -y install patchelf libXext libSM libXrender && \ - yum clean all + yum clean all && \ + localedef -c -i en_US -f UTF-8 en_US.UTF-8 && \ + echo "export LANG=en_US.utf8" >> /root/.bashrc diff --git a/tools/Dockerfile.centos6.gpu.devel b/tools/Dockerfile.centos6.gpu.devel index 1432d49abe9a4aec3b558d855c9cfcf30efef461..9ee3591b9a1e2ea5881106cf7e67ca28b24c1890 100644 --- a/tools/Dockerfile.centos6.gpu.devel +++ b/tools/Dockerfile.centos6.gpu.devel @@ -44,4 +44,5 @@ RUN yum -y install wget && \ cd .. && rm -rf Python-3.6.8* && \ pip3 install google protobuf setuptools wheel flask numpy==1.16.4 && \ yum -y install epel-release && yum -y install patchelf libXext libSM libXrender && \ - yum clean all + yum clean all && \ + echo "export LANG=en_US.utf8" >> /root/.bashrc diff --git a/tools/Dockerfile.devel b/tools/Dockerfile.devel index 385e568273eab54f7dfa51a20bb7dcd89cfa98a8..e4bcd33534cb9e887f49fcba5029619aaa1dea4c 100644 --- a/tools/Dockerfile.devel +++ b/tools/Dockerfile.devel @@ -21,4 +21,6 @@ RUN yum -y install wget >/dev/null \ && yum install -y python3 python3-devel \ && pip3 install google protobuf setuptools wheel flask \ && yum -y install epel-release && yum -y install patchelf libXext libSM libXrender\ - && yum clean all + && yum clean all \ + && localedef -c -i en_US -f UTF-8 en_US.UTF-8 \ + && echo "export LANG=en_US.utf8" >> /root/.bashrc diff --git a/tools/Dockerfile.gpu b/tools/Dockerfile.gpu index bf05080ca72e90b2179f6a717f6f4e86e7aefe29..2f38a3a3cd1c8987d34a81259ec9ad6ba67156a7 100644 --- a/tools/Dockerfile.gpu +++ b/tools/Dockerfile.gpu @@ -15,6 +15,7 @@ RUN yum -y install wget && \ echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> /root/.bashrc && \ ln -s /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudnn.so.7 /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudnn.so && \ echo 'export LD_LIBRARY_PATH=/usr/local/cuda-9.0/targets/x86_64-linux/lib:$LD_LIBRARY_PATH' >> /root/.bashrc && \ + echo "export LANG=en_US.utf8" >> /root/.bashrc && \ mkdir -p /usr/local/cuda/extras COPY --from=builder /usr/local/cuda/extras/CUPTI /usr/local/cuda/extras/CUPTI diff --git a/tools/Dockerfile.gpu.devel b/tools/Dockerfile.gpu.devel index 2ffbe4601e1f7e9b05c87f9562b3e0ffc4b967ff..057201cefa1f8de7a105ea9b7f93e7ca9e342777 100644 --- a/tools/Dockerfile.gpu.devel +++ b/tools/Dockerfile.gpu.devel @@ -22,4 +22,5 @@ RUN yum -y install wget >/dev/null \ && yum install -y python3 python3-devel \ && pip3 install google protobuf setuptools wheel flask \ && yum -y install epel-release && yum -y install patchelf libXext libSM libXrender\ - && yum clean all + && yum clean all \ + && echo "export LANG=en_US.utf8" >> /root/.bashrc