Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
7966e0e5
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7966e0e5
编写于
12月 03, 2020
作者:
J
Jiawei Wang
提交者:
GitHub
12月 03, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into win
上级
24894b32
0fd7395c
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
170 addition
and
0 deletion
+170
-0
python/examples/unet_for_image_seg/unet_benchmark/README.md
python/examples/unet_for_image_seg/unet_benchmark/README.md
+8
-0
python/examples/unet_for_image_seg/unet_benchmark/img_data/N0060.jpg
...ples/unet_for_image_seg/unet_benchmark/img_data/N0060.jpg
+0
-0
python/examples/unet_for_image_seg/unet_benchmark/launch_benckmark.sh
...les/unet_for_image_seg/unet_benchmark/launch_benckmark.sh
+3
-0
python/examples/unet_for_image_seg/unet_benchmark/unet_benchmark.py
...mples/unet_for_image_seg/unet_benchmark/unet_benchmark.py
+159
-0
未找到文件。
python/examples/unet_for_image_seg/unet_benchmark/README.md
0 → 100644
浏览文件 @
7966e0e5
#UNET_BENCHMARK 使用说明
## 功能
*
benchmark测试
## 注意事项
*
示例图片(可以有多张)请放置于与img_data路径中,支持jpg,jpeg
*
图片张数应该大于等于并发数量
## TODO
*
http benchmark
python/examples/unet_for_image_seg/unet_benchmark/img_data/N0060.jpg
0 → 100644
浏览文件 @
7966e0e5
48.4 KB
python/examples/unet_for_image_seg/unet_benchmark/launch_benckmark.sh
0 → 100644
浏览文件 @
7966e0e5
#!/bin/bash
python unet_benchmark.py
--thread
1
--batch_size
1
--model
../unet_client/serving_client_conf.prototxt
# thread/batch can be modified as you wish
python/examples/unet_for_image_seg/unet_benchmark/unet_benchmark.py
0 → 100644
浏览文件 @
7966e0e5
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
unet bench mark script
20201130 first edition by cg82616424
"""
from
__future__
import
unicode_literals
,
absolute_import
import
os
import
time
import
json
import
requests
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
,
show_latency
from
paddle_serving_app.reader
import
Sequential
,
File2Image
,
Resize
,
Transpose
,
BGR2RGB
,
SegPostprocess
args
=
benchmark_args
()
def
get_img_names
(
path
):
"""
Brief:
get img files(jpg) under this path
if any exception happened return None
Args:
path (string): image file path
Returns:
list: images names under this folder
"""
if
not
os
.
path
.
exists
(
path
):
return
None
if
not
os
.
path
.
isdir
(
path
):
return
None
list_name
=
[]
for
f_handler
in
os
.
listdir
(
path
):
file_path
=
os
.
path
.
join
(
path
,
f_handler
)
if
os
.
path
.
isdir
(
file_path
):
continue
else
:
if
not
file_path
.
endswith
(
".jpeg"
)
and
not
file_path
.
endswith
(
".jpg"
):
continue
list_name
.
append
(
file_path
)
return
list_name
def
preprocess_img
(
img_list
):
"""
Brief:
prepare img data for benchmark
Args:
img_list(list): list for img file path
Returns:
image content binary list after preprocess
"""
preprocess
=
Sequential
([
File2Image
(),
Resize
((
512
,
512
))])
result_list
=
[]
for
img
in
img_list
:
img_tmp
=
preprocess
(
img
)
result_list
.
append
(
img_tmp
)
return
result_list
def
benckmark_worker
(
idx
,
resource
):
"""
Brief:
benchmark single worker for unet
Args:
idx(int): worker idx ,use idx to select backend unet service
resource(dict): unet serving endpoint dict
Returns:
latency
TODO:
http benckmarks
"""
profile_flags
=
False
latency_flags
=
False
postprocess
=
SegPostprocess
(
2
)
if
os
.
getenv
(
"FLAGS_profile_client"
):
profile_flags
=
True
if
os
.
getenv
(
"FLAGS_serving_latency"
):
latency_flags
=
True
latency_list
=
[]
client_handler
=
Client
()
client_handler
.
load_client_config
(
args
.
model
)
client_handler
.
connect
(
[
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]])
start
=
time
.
time
()
turns
=
resource
[
"turns"
]
img_list
=
resource
[
"img_list"
]
for
i
in
range
(
turns
):
if
args
.
batch_size
>=
1
:
l_start
=
time
.
time
()
feed_batch
=
[]
b_start
=
time
.
time
()
for
bi
in
range
(
args
.
batch_size
):
feed_batch
.
append
({
"image"
:
img_list
[
bi
]})
b_end
=
time
.
time
()
if
profile_flags
:
sys
.
stderr
.
write
(
"PROFILE
\t
pid:{}
\t
unt_pre_0:{} unet_pre_1:{}
\n
"
.
format
(
os
.
getpid
(),
int
(
round
(
b_start
*
1000000
)),
int
(
round
(
b_end
*
1000000
))))
result
=
client_handler
.
predict
(
feed
=
{
"image"
:
img_list
[
bi
]},
fetch
=
[
"output"
])
#result["filename"] = "./img_data/N0060.jpg" % (os.getpid(), idx, time.time())
#postprocess(result) # if you want to measure post process time, you have to uncomment this line
l_end
=
time
.
time
()
if
latency_flags
:
latency_list
.
append
(
l_end
*
1000
-
l_start
*
1000
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
end
=
time
.
time
()
if
latency_flags
:
return
[[
end
-
start
],
latency_list
]
else
:
return
[[
end
-
start
]]
if
__name__
==
'__main__'
:
"""
usage:
"""
img_file_list
=
get_img_names
(
"./img_data"
)
img_content_list
=
preprocess_img
(
img_file_list
)
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:9494"
]
turns
=
1
start
=
time
.
time
()
result
=
multi_thread_runner
.
run
(
benckmark_worker
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
,
"turns"
:
turns
,
"img_list"
:
img_content_list
})
end
=
time
.
time
()
total_cost
=
end
-
start
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"total cost: {}s"
.
format
(
total_cost
))
print
(
"each thread cost: {}s. "
.
format
(
avg_cost
))
print
(
"qps: {}samples/s"
.
format
(
args
.
batch_size
*
args
.
thread
*
turns
/
total_cost
))
if
os
.
getenv
(
"FLAGS_serving_latency"
):
show_latency
(
result
[
1
])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录