diff --git a/python/paddle_serving_client/io/__init__.py b/python/paddle_serving_client/io/__init__.py index 970ab144ada1d2e3e6a18b72ae9a40db289eef14..a601d9a3881005bb9c1e64e80a41d211189a34a6 100644 --- a/python/paddle_serving_client/io/__init__.py +++ b/python/paddle_serving_client/io/__init__.py @@ -211,8 +211,10 @@ def save_model(server_model_folder, new_params_path = os.path.join(server_model_folder, params_filename) with open(new_model_path, "wb") as new_model_file: - new_model_file.write(main_program._remove_training_info(False).desc.serialize_to_string()) - + new_model_file.write( + main_program._remove_training_info(False) + .desc.serialize_to_string()) + paddle.static.save_vars( executor=executor, dirname=server_model_folder, @@ -231,7 +233,8 @@ def save_model(server_model_folder, key = CipherUtils.gen_key_to_file(128, "key") params = fluid.io.save_persistables( executor=executor, dirname=None, main_program=main_program) - model = main_program._remove_training_info(False).desc.serialize_to_string() + model = main_program._remove_training_info( + False).desc.serialize_to_string() if not os.path.exists(server_model_folder): os.makedirs(server_model_folder) os.chdir(server_model_folder) @@ -248,15 +251,20 @@ def save_model(server_model_folder, fetch_alias = target_var_names else: fetch_alias = fetch_alias_names.split(',') - if len(feed_alias) != len(feed_var_dict.keys()) or len(fetch_alias) != len(target_var_names): - raise ValueError("please check the input --feed_alias_names and --fetch_alias_names, should be same size with feed_vars and fetch_vars") + if len(feed_alias) != len(feed_var_dict.keys()) or len(fetch_alias) != len( + target_var_names): + raise ValueError( + "please check the input --feed_alias_names and --fetch_alias_names, should be same size with feed_vars and fetch_vars" + ) for i, key in enumerate(feed_var_dict): feed_var = model_conf.FeedVar() feed_var.alias_name = feed_alias[i] feed_var.name = feed_var_dict[key].name feed_var.feed_type = var_type_conversion(feed_var_dict[key].dtype) - feed_var.is_lod_tensor = feed_var_dict[key].lod_level >= 1 + feed_var.is_lod_tensor = feed_var_dict[ + key].lod_level >= 1 if feed_var_dict[ + key].lod_level is not None else False if feed_var.is_lod_tensor: feed_var.shape.extend([-1]) else: @@ -331,7 +339,8 @@ def inference_model_to_serving(dirname, fetch_dict = {x.name: x for x in fetch_targets} save_model(serving_server, serving_client, feed_dict, fetch_dict, inference_program, encryption, key_len, encrypt_conf, - model_filename, params_filename, show_proto, feed_alias_names, fetch_alias_names) + model_filename, params_filename, show_proto, feed_alias_names, + fetch_alias_names) feed_names = feed_dict.keys() fetch_names = fetch_dict.keys() return feed_names, fetch_names