Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
6e643312
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 2 年 前同步成功
通知
187
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6e643312
编写于
4月 22, 2021
作者:
B
bjjwwang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix imagenet
上级
99aaae1d
变更
17
显示空白变更内容
内联
并排
Showing
17 changed file
with
573 addition
and
25 deletion
+573
-25
python/examples/bert/bert_web_service.py
python/examples/bert/bert_web_service.py
+1
-1
python/examples/bert/new_benchmark.py
python/examples/bert/new_benchmark.py
+2
-2
python/examples/bert/new_benchmark.sh
python/examples/bert/new_benchmark.sh
+7
-5
python/examples/bert/parse_profile.py
python/examples/bert/parse_profile.py
+34
-10
python/examples/pipeline/imagenet/benchmark.py
python/examples/pipeline/imagenet/benchmark.py
+98
-0
python/examples/pipeline/imagenet/benchmark.sh
python/examples/pipeline/imagenet/benchmark.sh
+36
-0
python/examples/pipeline/imagenet/benchmark_config.yaml
python/examples/pipeline/imagenet/benchmark_config.yaml
+32
-0
python/examples/pipeline/imagenet/config.yml
python/examples/pipeline/imagenet/config.yml
+2
-2
python/examples/pipeline/imagenet/pipeline_http_client.py
python/examples/pipeline/imagenet/pipeline_http_client.py
+19
-0
python/examples/pipeline/imagenet/pipeline_rpc_client.py
python/examples/pipeline/imagenet/pipeline_rpc_client.py
+1
-1
python/examples/pipeline/imagenet/resnet50_web_service.py
python/examples/pipeline/imagenet/resnet50_web_service.py
+1
-2
python/paddle_serving_server/parse_profile.py
python/paddle_serving_server/parse_profile.py
+126
-0
python/paddle_serving_server/profiler.py
python/paddle_serving_server/profiler.py
+44
-0
python/paddle_serving_server/version.py
python/paddle_serving_server/version.py
+1
-1
python/paddle_serving_server_gpu/parse_profile.py
python/paddle_serving_server_gpu/parse_profile.py
+126
-0
python/paddle_serving_server_gpu/profiler.py
python/paddle_serving_server_gpu/profiler.py
+42
-0
python/paddle_serving_server_gpu/version.py
python/paddle_serving_server_gpu/version.py
+1
-1
未找到文件。
python/examples/bert/bert_web_service.py
浏览文件 @
6e643312
...
@@ -44,7 +44,7 @@ class BertService(WebService):
...
@@ -44,7 +44,7 @@ class BertService(WebService):
return
feed_dict
,
fetch
,
is_batch
return
feed_dict
,
fetch
,
is_batch
bert_service
=
BertService
(
name
=
"bert"
)
bert_service
=
BertService
(
name
=
"bert"
)
bert_service
.
setup_profile
(
3
0
)
bert_service
.
setup_profile
(
1
0
)
bert_service
.
load
()
bert_service
.
load
()
bert_service
.
load_model_config
(
sys
.
argv
[
1
])
bert_service
.
load_model_config
(
sys
.
argv
[
1
])
bert_service
.
prepare_server
(
bert_service
.
prepare_server
(
...
...
python/examples/bert/new_benchmark.py
浏览文件 @
6e643312
...
@@ -25,7 +25,7 @@ def run_http(idx, batch_size):
...
@@ -25,7 +25,7 @@ def run_http(idx, batch_size):
{"feed":[{"words": "hello"}], "fetch":["pooled_output"]}
{"feed":[{"words": "hello"}], "fetch":["pooled_output"]}
"""
"""
print
(
"start thread ({})"
.
format
(
idx
))
print
(
"start thread ({})"
.
format
(
idx
))
url
=
"http://127.0.0.1:9
292
/bert/prediction"
url
=
"http://127.0.0.1:9
696
/bert/prediction"
start
=
time
.
time
()
start
=
time
.
time
()
with
open
(
"data-c.txt"
,
'r'
)
as
fin
:
with
open
(
"data-c.txt"
,
'r'
)
as
fin
:
start
=
time
.
time
()
start
=
time
.
time
()
...
@@ -39,7 +39,7 @@ def run_http(idx, batch_size):
...
@@ -39,7 +39,7 @@ def run_http(idx, batch_size):
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
),
headers
=
{
"Content-Type"
:
"application/json"
})
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
),
headers
=
{
"Content-Type"
:
"application/json"
})
start_idx
+=
batch_size
start_idx
+=
batch_size
end
=
time
.
time
()
end
=
time
.
time
()
if
end
-
start
>
40
:
if
end
-
start
>
15
:
break
break
end
=
time
.
time
()
end
=
time
.
time
()
return
[[
end
-
start
]]
return
[[
end
-
start
]]
...
...
python/examples/bert/new_benchmark.sh
浏览文件 @
6e643312
export
FLAGS_profile_pipeline
=
1
modelname
=
"bert"
modelname
=
"bert"
# HTTP
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
sleep
3
rm
-rf
profile_log_
$modelname
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
8 16
for
thread_num
in
1
do
do
for
batch_size
in
1
10 100
for
batch_size
in
1
do
do
python3.7 bert_web_service.py bert_seq128_model/ 9
292
&
python3.7 bert_web_service.py bert_seq128_model/ 9
696
&
sleep
3
sleep
3
echo
"----Bert thread num:
$thread_num
batch size:
$batch_size
mode:http ----"
>>
profile_log_
$modelname
echo
"
#
----Bert thread num:
$thread_num
batch size:
$batch_size
mode:http ----"
>>
profile_log_
$modelname
nvidia-smi
--id
=
2
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
2
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
2
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
nvidia-smi
--id
=
2
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3.7 new_benchmark.py run
$thread_num
$batch_size
python3.7 new_benchmark.py run
$thread_num
$batch_size
python3.7 cpu_utilization.py
>>
profile_log_
$modelname
#python3.7 cpu_utilization.py >>profile_log_$modelname
python3.7
-m
paddle_serving_server_gpu.profiler
--use_gpu
--gpu_id
0
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
python3.7 new_benchmark.py dump benchmark.log benchmark.tmp
python3.7 new_benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
mv
benchmark.tmp benchmark.log
...
...
python/examples/bert/parse_profile.py
浏览文件 @
6e643312
import
sys
import
sys
import
os
import
os
import
yaml
import
yaml
import
argparse
"""
{'CPU_UTILIZATION': 0.8, 'MAX_GPU_MEMORY': 0, 'GPU_UTILIZATION': '0 %', 'DAG': {'50': 670.256, '60': 670.256, '70': 670.765, '80': 671.23, '90': 687.546, '95': 687.546, '99': 687.546, 'avg': 670.755625, 'qps': 0.8, 'query_count': 8, 'succ': 1.0}, 'demo': {'midp': 669.484375, 'postp': 0.184875, 'prep': 1.001875}}
"""
class
LogHandler
(
object
):
class
LogHandler
(
object
):
def
__init__
(
self
):
def
__init__
(
self
):
self
.
fstr
=
""
self
.
fstr
=
""
...
@@ -9,24 +12,45 @@ class LogHandler(object):
...
@@ -9,24 +12,45 @@ class LogHandler(object):
def
print
(
self
):
def
print
(
self
):
print
(
self
.
fstr
)
print
(
self
.
fstr
)
def
dump
(
self
):
def
dump
(
self
,
filename
):
with
open
(
"inference_profile.log"
,
'w'
)
as
fout
:
with
open
(
filename
,
'w'
)
as
fout
:
fout
.
write
(
self
.
fstr
)
fout
.
write
(
self
.
fstr
)
def
append
(
self
,
new_str
):
def
append
(
self
,
new_str
):
self
.
fstr
+=
new_str
+
"
\n
"
self
.
fstr
+=
new_str
+
"
\n
"
def
parse_args
():
# pylint: disable=doc-string-missing
parser
=
argparse
.
ArgumentParser
(
"serve"
)
parser
.
add_argument
(
"--benchmark_cfg"
,
type
=
str
,
required
=
True
,
help
=
"benchmark config yaml. including general info, model info, data info, conf info"
)
parser
.
add_argument
(
"--benchmark_log"
,
type
=
str
,
required
=
True
,
help
=
"benchmark log, generated by a web service or pipeline."
)
parser
.
add_argument
(
"--output"
,
type
=
str
,
default
=
"std_benchmark.log"
,
help
=
"the output filename, default std_benchmark.log"
)
return
parser
.
parse_args
()
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
filename
=
sys
.
argv
[
1
]
args
=
parse_args
()
f
=
open
(
filename
,
'r'
)
benchmark_cfg_filename
=
args
.
benchmark_cfg
f
=
open
(
benchmark_cfg_filename
,
'r'
)
config
=
yaml
.
load
(
f
)
config
=
yaml
.
load
(
f
)
f
.
close
()
benchmark_raw_filename
=
args
.
benchmark_log
f
=
open
(
benchmark_raw_filename
,
'r'
)
benchmark_raw
=
yaml
.
load
(
f
)
f
.
close
()
## general info
## general info
cuda_version
=
config
[
"cuda_version"
]
cuda_version
=
config
[
"cuda_version"
]
cudnn_version
=
config
[
"cudnn_version"
]
cudnn_version
=
config
[
"cudnn_version"
]
trt_version
=
config
[
"cudnn_version"
]
trt_version
=
config
[
"cudnn_version"
]
python_version
=
config
[
"python_version"
]
python_version
=
config
[
"python_version"
]
gcc_version
=
config
[
"gcc_version"
]
gcc_version
=
config
[
"gcc_version"
]
paddle_version
=
config
[
"paddle_
serv
ion"
]
paddle_version
=
config
[
"paddle_
vers
ion"
]
cpu
=
config
[
"cpu"
]
cpu
=
config
[
"cpu"
]
gpu
=
config
[
"gpu"
]
gpu
=
config
[
"gpu"
]
xpu
=
config
[
"xpu"
]
xpu
=
config
[
"xpu"
]
...
@@ -53,10 +77,10 @@ if __name__ == "__main__":
...
@@ -53,10 +77,10 @@ if __name__ == "__main__":
acc1
=
"Nan"
acc1
=
"Nan"
acc5
=
"Nan"
acc5
=
"Nan"
## perf info
## perf info
average_latency
,
QPS
=
""
,
""
average_latency
,
QPS
=
benchmark_raw
[
"DAG"
][
"avg"
],
benchmark_raw
[
"DAG"
][
"qps"
]
process_latency
=
""
process_latency
=
""
cpu_rss
,
vms
,
shared
,
dirty
,
cpu_usage
=
""
,
""
,
""
,
""
,
""
cpu_rss
,
vms
,
shared
,
dirty
,
cpu_usage
=
""
,
""
,
""
,
""
,
benchmark_raw
[
"CPU_UTILIZATION"
]
gpu_id
,
total
,
free
,
used
,
gpu_utilization_rate
,
gpu_mem_utilization_rate
=
""
,
""
,
""
,
""
,
""
,
""
gpu_id
,
total
,
free
,
used
,
gpu_utilization_rate
,
gpu_mem_utilization_rate
=
""
,
""
,
""
,
""
,
benchmark_raw
[
"GPU_UTILIZATION"
],
benchmark_raw
[
"MAX_GPU_MEMORY"
]
fh
=
LogHandler
()
fh
=
LogHandler
()
...
@@ -97,4 +121,4 @@ if __name__ == "__main__":
...
@@ -97,4 +121,4 @@ if __name__ == "__main__":
fh
.
append
(
"process_name: clas_benchmark, cpu_rss(MB): {}, vms(MB): {}, shared(MB): {}, dirty(MB): {}, cpu_usage(%): {}"
.
format
(
cpu_rss
,
vms
,
shared
,
dirty
,
cpu_usage
))
fh
.
append
(
"process_name: clas_benchmark, cpu_rss(MB): {}, vms(MB): {}, shared(MB): {}, dirty(MB): {}, cpu_usage(%): {}"
.
format
(
cpu_rss
,
vms
,
shared
,
dirty
,
cpu_usage
))
fh
.
append
(
"gpu_id: {}, total(MB): {}, free(MB): {}, used(MB): {}, gpu_utilization_rate(%): {}, gpu_mem_utilization_rate(%): {}"
.
format
(
gpu_id
,
total
,
free
,
used
,
gpu_utilization_rate
,
gpu_mem_utilization_rate
))
fh
.
append
(
"gpu_id: {}, total(MB): {}, free(MB): {}, used(MB): {}, gpu_utilization_rate(%): {}, gpu_mem_utilization_rate(%): {}"
.
format
(
gpu_id
,
total
,
free
,
used
,
gpu_utilization_rate
,
gpu_mem_utilization_rate
))
fh
.
dump
(
)
fh
.
dump
(
args
.
output
)
python/examples/pipeline/imagenet/benchmark.py
0 → 100644
浏览文件 @
6e643312
import
sys
import
os
import
base64
import
yaml
import
requests
import
time
import
json
try
:
from
paddle_serving_server_gpu.pipeline
import
PipelineClient
except
ImportError
:
from
paddle_serving_server.pipeline
import
PipelineClient
import
numpy
as
np
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
,
show_latency
def
parse_benchmark
(
filein
,
fileout
):
with
open
(
filein
,
"r"
)
as
fin
:
res
=
yaml
.
load
(
fin
)
del_list
=
[]
for
key
in
res
[
"DAG"
].
keys
():
if
"call"
in
key
:
del_list
.
append
(
key
)
for
key
in
del_list
:
del
res
[
"DAG"
][
key
]
with
open
(
fileout
,
"w"
)
as
fout
:
yaml
.
dump
(
res
,
fout
,
default_flow_style
=
False
)
def
gen_yml
(
device
,
gpu_id
):
fin
=
open
(
"config.yml"
,
"r"
)
config
=
yaml
.
load
(
fin
)
fin
.
close
()
config
[
"dag"
][
"tracer"
]
=
{
"interval_s"
:
10
}
if
device
==
"gpu"
:
config
[
"op"
][
"imagenet"
][
"local_service_conf"
][
"device_type"
]
=
1
config
[
"op"
][
"imagenet"
][
"local_service_conf"
][
"devices"
]
=
gpu_id
with
open
(
"config2.yml"
,
"w"
)
as
fout
:
yaml
.
dump
(
config
,
fout
,
default_flow_style
=
False
)
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
def
run_http
(
idx
,
batch_size
):
print
(
"start thread ({})"
.
format
(
idx
))
url
=
"http://127.0.0.1:18080/imagenet/prediction"
start
=
time
.
time
()
with
open
(
os
.
path
.
join
(
"."
,
"daisy.jpg"
),
'rb'
)
as
file
:
image_data1
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
data
=
{
"key"
:
[
"image"
],
"value"
:
[
image
]}
for
i
in
range
(
100
):
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
))
end
=
time
.
time
()
return
[[
end
-
start
]]
def
multithread_http
(
thread
,
batch_size
):
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
run_http
,
thread
,
batch_size
)
def
run_rpc
(
thread
,
batch_size
):
client
=
PipelineClient
()
client
.
connect
([
'127.0.0.1:18090'
])
start
=
time
.
time
()
test_img_dir
=
"imgs/"
for
img_file
in
os
.
listdir
(
test_img_dir
):
with
open
(
os
.
path
.
join
(
test_img_dir
,
img_file
),
'rb'
)
as
file
:
image_data
=
file
.
read
()
image
=
cv2_to_base64
(
image_data
)
for
i
in
range
(
100
):
ret
=
client
.
predict
(
feed_dict
=
{
"image"
:
image
},
fetch
=
[
"res"
])
end
=
time
.
time
()
return
[[
end
-
start
]]
def
multithread_rpc
(
thraed
,
batch_size
):
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
run_rpc
,
thread
,
batch_size
)
if
__name__
==
"__main__"
:
if
sys
.
argv
[
1
]
==
"yaml"
:
mode
=
sys
.
argv
[
2
]
# brpc/ local predictor
thread
=
int
(
sys
.
argv
[
3
])
device
=
sys
.
argv
[
4
]
gpu_id
=
sys
.
argv
[
5
]
gen_yml
(
device
,
gpu_id
)
elif
sys
.
argv
[
1
]
==
"run"
:
mode
=
sys
.
argv
[
2
]
# http/ rpc
thread
=
int
(
sys
.
argv
[
3
])
batch_size
=
int
(
sys
.
argv
[
4
])
if
mode
==
"http"
:
multithread_http
(
thread
,
batch_size
)
elif
mode
==
"rpc"
:
multithread_rpc
(
thread
,
batch_size
)
elif
sys
.
argv
[
1
]
==
"dump"
:
filein
=
sys
.
argv
[
2
]
fileout
=
sys
.
argv
[
3
]
parse_benchmark
(
filein
,
fileout
)
python/examples/pipeline/imagenet/benchmark.sh
0 → 100644
浏览文件 @
6e643312
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http ----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/imagenet/benchmark_config.yaml
0 → 100644
浏览文件 @
6e643312
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.2"
cpu
:
"
Xeon
6148"
gpu
:
"
P4"
xpu
:
"
None"
api
:
"
"
owner
:
"
wangjiawei04"
model_name
:
"
imagenet"
model_type
:
"
static"
model_source
:
"
paddleclas"
model_url
:
"
"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
128,1"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
true
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/imagenet/config.yml
浏览文件 @
6e643312
...
@@ -3,8 +3,8 @@
...
@@ -3,8 +3,8 @@
worker_num
:
1
worker_num
:
1
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port
:
1808
2
http_port
:
1808
0
rpc_port
:
999
9
rpc_port
:
999
3
dag
:
dag
:
#op资源类型, True, 为线程模型;False,为进程模型
#op资源类型, True, 为线程模型;False,为进程模型
...
...
python/examples/pipeline/imagenet/pipeline_http_client.py
0 → 100644
浏览文件 @
6e643312
import
numpy
as
np
import
requests
import
json
import
cv2
import
base64
import
os
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
if
__name__
==
"__main__"
:
url
=
"http://127.0.0.1:18080/imagenet/prediction"
with
open
(
os
.
path
.
join
(
"."
,
"daisy.jpg"
),
'rb'
)
as
file
:
image_data1
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
data
=
{
"key"
:
[
"image"
],
"value"
:
[
image
]}
for
i
in
range
(
100
):
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
))
print
(
r
.
json
())
python/examples/pipeline/imagenet/pipeline_rpc_client.py
浏览文件 @
6e643312
...
@@ -23,7 +23,7 @@ import base64
...
@@ -23,7 +23,7 @@ import base64
import
os
import
os
client
=
PipelineClient
()
client
=
PipelineClient
()
client
.
connect
([
'127.0.0.1:999
9
'
])
client
.
connect
([
'127.0.0.1:999
3
'
])
def
cv2_to_base64
(
image
):
def
cv2_to_base64
(
image
):
...
...
python/examples/pipeline/imagenet/resnet50_web_service.py
浏览文件 @
6e643312
...
@@ -46,7 +46,6 @@ class ImagenetOp(Op):
...
@@ -46,7 +46,6 @@ class ImagenetOp(Op):
return
{
"image"
:
img
[
np
.
newaxis
,
:].
copy
()},
False
,
None
,
""
return
{
"image"
:
img
[
np
.
newaxis
,
:].
copy
()},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
print
(
fetch_dict
)
score_list
=
fetch_dict
[
"score"
]
score_list
=
fetch_dict
[
"score"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
for
score
in
score_list
:
...
@@ -67,5 +66,5 @@ class ImageService(WebService):
...
@@ -67,5 +66,5 @@ class ImageService(WebService):
uci_service
=
ImageService
(
name
=
"imagenet"
)
uci_service
=
ImageService
(
name
=
"imagenet"
)
uci_service
.
prepare_pipeline_config
(
"config.yml"
)
uci_service
.
prepare_pipeline_config
(
"config
2
.yml"
)
uci_service
.
run_service
()
uci_service
.
run_service
()
python/paddle_serving_server/parse_profile.py
0 → 100644
浏览文件 @
6e643312
import
sys
import
os
import
yaml
import
argparse
"""
{'CPU_UTILIZATION': 0.8, 'MAX_GPU_MEMORY': 0, 'GPU_UTILIZATION': '0 %', 'DAG': {'50': 670.256, '60': 670.256, '70': 670.765, '80': 671.23, '90': 687.546, '95': 687.546, '99': 687.546, 'avg': 670.755625, 'qps': 0.8, 'query_count': 8, 'succ': 1.0}, 'demo': {'midp': 669.484375, 'postp': 0.184875, 'prep': 1.001875}}
"""
class
LogHandler
(
object
):
def
__init__
(
self
):
self
.
fstr
=
""
def
print
(
self
):
print
(
self
.
fstr
)
def
dump
(
self
,
filename
):
with
open
(
filename
,
'w'
)
as
fout
:
fout
.
write
(
self
.
fstr
)
def
append
(
self
,
new_str
):
self
.
fstr
+=
new_str
+
"
\n
"
def
parse_args
():
# pylint: disable=doc-string-missing
parser
=
argparse
.
ArgumentParser
(
"serve"
)
parser
.
add_argument
(
"--benchmark_cfg"
,
type
=
str
,
required
=
True
,
help
=
"benchmark config yaml. including general info, model info, data info, conf info"
)
parser
.
add_argument
(
"--benchmark_log"
,
type
=
str
,
required
=
True
,
help
=
"benchmark log, generated by a web service or pipeline."
)
parser
.
add_argument
(
"--output"
,
type
=
str
,
default
=
"std_benchmark.log"
,
help
=
"the output filename, default std_benchmark.log"
)
return
parser
.
parse_args
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
benchmark_cfg_filename
=
args
.
benchmark_cfg
f
=
open
(
benchmark_cfg_filename
,
'r'
)
config
=
yaml
.
load
(
f
)
f
.
close
()
benchmark_raw_filename
=
args
.
benchmark_log
f
=
open
(
benchmark_raw_filename
,
'r'
)
benchmark_raw
=
yaml
.
load
(
f
)
f
.
close
()
## general info
cuda_version
=
config
[
"cuda_version"
]
cudnn_version
=
config
[
"cudnn_version"
]
trt_version
=
config
[
"cudnn_version"
]
python_version
=
config
[
"python_version"
]
gcc_version
=
config
[
"gcc_version"
]
paddle_version
=
config
[
"paddle_version"
]
cpu
=
config
[
"cpu"
]
gpu
=
config
[
"gpu"
]
xpu
=
config
[
"xpu"
]
api
=
config
[
"api"
]
owner
=
config
[
"owner"
]
## model info
model_name
=
config
[
"model_name"
]
model_type
=
config
[
"model_type"
]
model_source
=
config
[
"model_source"
]
model_url
=
config
[
"model_url"
]
## data info
batch_size
=
config
[
"batch_size"
]
num_of_samples
=
config
[
"num_of_samples"
]
input_shape
=
config
[
"input_shape"
]
## conf info
runtime_device
=
config
[
"runtime_device"
]
ir_optim
=
config
[
"ir_optim"
]
enable_memory_optim
=
config
[
"enable_memory_optim"
]
enable_tensorrt
=
config
[
"enable_tensorrt"
]
precision
=
config
[
"precision"
]
enable_mkldnn
=
config
[
"enable_mkldnn"
]
cpu_math_library_num_threads
=
config
[
"cpu_math_library_num_threads"
]
## acc info
acc1
=
"Nan"
acc5
=
"Nan"
## perf info
average_latency
,
QPS
=
benchmark_raw
[
"DAG"
][
"avg"
],
benchmark_raw
[
"DAG"
][
"qps"
]
cost_90
,
cost_99
,
succ_rate
=
benchmark_raw
[
"DAG"
][
"90"
],
benchmark_raw
[
"DAG"
][
"99"
],
benchmark_raw
[
"DAG"
][
"succ"
]
process_latency
=
""
cpu_rss
,
vms
,
shared
,
dirty
,
cpu_usage
=
""
,
""
,
""
,
""
,
benchmark_raw
[
"CPU_MEM"
]
gpu_id
,
total
,
free
,
used
,
gpu_utilization_rate
,
gpu_mem_utilization_rate
=
""
,
""
,
""
,
""
,
benchmark_raw
[
"GPU_UTIL"
],
benchmark_raw
[
"GPU_MEM"
]
fh
=
LogHandler
()
fh
.
append
(
"cuda_version: {}"
.
format
(
cuda_version
))
fh
.
append
(
"cudnn_version: {}"
.
format
(
cudnn_version
))
fh
.
append
(
"trt_version: {} "
.
format
(
trt_version
))
fh
.
append
(
"python_version: {}"
.
format
(
python_version
))
fh
.
append
(
"gcc_version: {}"
.
format
(
gcc_version
))
fh
.
append
(
"paddle_version: {}"
.
format
(
paddle_version
))
fh
.
append
(
"cpu: {}"
.
format
(
cpu
))
fh
.
append
(
"gpu: {}"
.
format
(
gpu
))
# p4, v100, 1080
fh
.
append
(
"xpu: {}"
.
format
(
xpu
))
fh
.
append
(
"api: {}"
.
format
(
api
))
fh
.
append
(
"owner: {}"
.
format
(
owner
))
fh
.
append
(
"----------------------- Model info ----------------------"
)
fh
.
append
(
"model_name: {}"
.
format
(
model_name
))
fh
.
append
(
"model_type: {}"
.
format
(
model_type
))
fh
.
append
(
"model_source: {}"
.
format
(
model_source
))
fh
.
append
(
"model_url: {}"
.
format
(
model_url
))
fh
.
append
(
"----------------------- Data info -----------------------"
)
fh
.
append
(
"batch_size: {}"
.
format
(
batch_size
))
fh
.
append
(
"num_of_samples: {}"
.
format
(
num_of_samples
))
fh
.
append
(
"input_shape: {}"
.
format
(
input_shape
))
fh
.
append
(
"----------------------- Conf info -----------------------"
)
fh
.
append
(
"runtime_device: {}"
.
format
(
runtime_device
))
fh
.
append
(
"ir_optim: {}"
.
format
(
ir_optim
))
fh
.
append
(
"enable_memory_optim: {}"
.
format
(
enable_memory_optim
))
fh
.
append
(
"enable_tensorrt: {}"
.
format
(
enable_tensorrt
))
fh
.
append
(
"precision: {}"
.
format
(
precision
))
# fp32, fp16, int8
fh
.
append
(
"enable_mkldnn: {}"
.
format
(
enable_mkldnn
))
fh
.
append
(
"cpu_math_library_num_threads: {}"
.
format
(
cpu_math_library_num_threads
))
fh
.
append
(
"----------------------- Acc info ------------------------"
)
fh
.
append
(
"acc1:"
.
format
(
acc1
))
fh
.
append
(
"acc5:"
.
format
(
acc5
))
fh
.
append
(
"----------------------- Perf info -----------------------"
)
fh
.
append
(
"average_latency(ms): {}, QPS: {}"
.
format
(
average_latency
,
QPS
))
fh
.
append
(
"process_latency(ms): {}"
.
format
(
process_latency
))
fh
.
append
(
"90%_cost: {}, 99%_cost: {}, succ_rate: {}"
.
format
(
cost_90
,
cost_99
,
succ_rate
))
fh
.
append
(
"process_name: clas_benchmark, cpu_rss(MB): {}, vms(MB): {}, shared(MB): {}, dirty(MB): {}, cpu_usage(%): {}"
.
format
(
cpu_rss
,
vms
,
shared
,
dirty
,
cpu_usage
))
fh
.
append
(
"gpu_id: {}, total(MB): {}, free(MB): {}, used(MB): {}, gpu_utilization_rate(%): {}, gpu_mem_utilization_rate(%): {}"
.
format
(
gpu_id
,
total
,
free
,
used
,
gpu_utilization_rate
,
gpu_mem_utilization_rate
))
fh
.
dump
(
args
.
output
)
python/paddle_serving_server/profiler.py
浏览文件 @
6e643312
...
@@ -31,6 +31,29 @@ _LOGGER = logging.getLogger(__name__)
...
@@ -31,6 +31,29 @@ _LOGGER = logging.getLogger(__name__)
_LOGGER
.
propagate
=
False
_LOGGER
.
propagate
=
False
_is_profile
=
int
(
os
.
environ
.
get
(
'FLAGS_profile_pipeline'
,
0
))
_is_profile
=
int
(
os
.
environ
.
get
(
'FLAGS_profile_pipeline'
,
0
))
import
pynvml
import
psutil
import
GPUtil
import
argparse
def
get_mem
(
gpu_id
=
None
):
pid
=
os
.
getpid
()
p
=
psutil
.
Process
(
pid
)
info
=
p
.
memory_full_info
()
cpu_mem
=
info
.
uss
/
1024.
/
1024.
gpu_mem
=
0
if
gpu_id
is
not
None
:
pynvml
.
nvmlInit
()
handle
=
pynvml
.
nvmlDeviceGetHandleByIndex
(
0
)
meminfo
=
pynvml
.
nvmlDeviceGetMemoryInfo
(
handle
)
gpu_mem
=
meminfo
.
used
/
1024.
/
1024.
return
cpu_mem
,
gpu_mem
def
get_gpu_util
(
gpu_id
):
GPUs
=
GPUtil
.
getGPUs
()
gpu_load
=
GPUs
[
gpu_id
].
load
return
gpu_load
class
PerformanceTracer
(
object
):
class
PerformanceTracer
(
object
):
def
__init__
(
self
,
is_thread_mode
,
interval_s
,
server_worker_num
):
def
__init__
(
self
,
is_thread_mode
,
interval_s
,
server_worker_num
):
...
@@ -245,3 +268,24 @@ class TimeProfiler(object):
...
@@ -245,3 +268,24 @@ class TimeProfiler(object):
tag
,
timestamp
=
item
tag
,
timestamp
=
item
self
.
_time_record
.
put
((
name
,
tag
,
timestamp
))
self
.
_time_record
.
put
((
name
,
tag
,
timestamp
))
return
print_str
return
print_str
def
parse_args
():
# pylint: disable=doc-string-missing
parser
=
argparse
.
ArgumentParser
(
"serve"
)
parser
.
add_argument
(
"--use_gpu"
,
default
=
False
,
action
=
"store_true"
,
help
=
"use gpu or not"
)
parser
.
add_argument
(
"--gpu_id"
,
type
=
int
,
default
=
0
,
help
=
"gpu id"
)
return
parser
.
parse_args
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
if
args
.
use_gpu
:
cm
,
gm
=
get_mem
(
args
.
gpu_id
)
gpu_util
=
get_gpu_util
(
args
.
gpu_id
)
print
(
"CPU_MEM: {}
\n
GPU_MEM: {}
\n
GPU_UTIL:{}
\n
"
.
format
(
cm
,
gm
,
gpu_util
))
else
:
cm
,
_
=
get_mem
(
args
.
gpu_id
)
print
(
"CPU_MEM: {}"
.
format
(
cm
))
python/paddle_serving_server/version.py
浏览文件 @
6e643312
...
@@ -13,6 +13,6 @@
...
@@ -13,6 +13,6 @@
# limitations under the License.
# limitations under the License.
""" Paddle Serving Client version string """
""" Paddle Serving Client version string """
serving_client_version
=
"0.0.0"
serving_client_version
=
"0.0.0"
serving_server_version
=
"0.
0
.0"
serving_server_version
=
"0.
5
.0"
module_proto_version
=
"0.0.0"
module_proto_version
=
"0.0.0"
commit_id
=
""
commit_id
=
""
python/paddle_serving_server_gpu/parse_profile.py
0 → 100644
浏览文件 @
6e643312
import
sys
import
os
import
yaml
import
argparse
"""
{'CPU_UTILIZATION': 0.8, 'MAX_GPU_MEMORY': 0, 'GPU_UTILIZATION': '0 %', 'DAG': {'50': 670.256, '60': 670.256, '70': 670.765, '80': 671.23, '90': 687.546, '95': 687.546, '99': 687.546, 'avg': 670.755625, 'qps': 0.8, 'query_count': 8, 'succ': 1.0}, 'demo': {'midp': 669.484375, 'postp': 0.184875, 'prep': 1.001875}}
"""
class
LogHandler
(
object
):
def
__init__
(
self
):
self
.
fstr
=
""
def
print
(
self
):
print
(
self
.
fstr
)
def
dump
(
self
,
filename
):
with
open
(
filename
,
'w'
)
as
fout
:
fout
.
write
(
self
.
fstr
)
def
append
(
self
,
new_str
):
self
.
fstr
+=
new_str
+
"
\n
"
def
parse_args
():
# pylint: disable=doc-string-missing
parser
=
argparse
.
ArgumentParser
(
"serve"
)
parser
.
add_argument
(
"--benchmark_cfg"
,
type
=
str
,
required
=
True
,
help
=
"benchmark config yaml. including general info, model info, data info, conf info"
)
parser
.
add_argument
(
"--benchmark_log"
,
type
=
str
,
required
=
True
,
help
=
"benchmark log, generated by a web service or pipeline."
)
parser
.
add_argument
(
"--output"
,
type
=
str
,
default
=
"std_benchmark.log"
,
help
=
"the output filename, default std_benchmark.log"
)
return
parser
.
parse_args
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
benchmark_cfg_filename
=
args
.
benchmark_cfg
f
=
open
(
benchmark_cfg_filename
,
'r'
)
config
=
yaml
.
load
(
f
)
f
.
close
()
benchmark_raw_filename
=
args
.
benchmark_log
f
=
open
(
benchmark_raw_filename
,
'r'
)
benchmark_raw
=
yaml
.
load
(
f
)
f
.
close
()
## general info
cuda_version
=
config
[
"cuda_version"
]
cudnn_version
=
config
[
"cudnn_version"
]
trt_version
=
config
[
"cudnn_version"
]
python_version
=
config
[
"python_version"
]
gcc_version
=
config
[
"gcc_version"
]
paddle_version
=
config
[
"paddle_version"
]
cpu
=
config
[
"cpu"
]
gpu
=
config
[
"gpu"
]
xpu
=
config
[
"xpu"
]
api
=
config
[
"api"
]
owner
=
config
[
"owner"
]
## model info
model_name
=
config
[
"model_name"
]
model_type
=
config
[
"model_type"
]
model_source
=
config
[
"model_source"
]
model_url
=
config
[
"model_url"
]
## data info
batch_size
=
config
[
"batch_size"
]
num_of_samples
=
config
[
"num_of_samples"
]
input_shape
=
config
[
"input_shape"
]
## conf info
runtime_device
=
config
[
"runtime_device"
]
ir_optim
=
config
[
"ir_optim"
]
enable_memory_optim
=
config
[
"enable_memory_optim"
]
enable_tensorrt
=
config
[
"enable_tensorrt"
]
precision
=
config
[
"precision"
]
enable_mkldnn
=
config
[
"enable_mkldnn"
]
cpu_math_library_num_threads
=
config
[
"cpu_math_library_num_threads"
]
## acc info
acc1
=
"Nan"
acc5
=
"Nan"
## perf info
average_latency
,
QPS
=
benchmark_raw
[
"DAG"
][
"avg"
],
benchmark_raw
[
"DAG"
][
"qps"
]
cost_90
,
cost_99
,
succ_rate
=
benchmark_raw
[
"DAG"
][
"90"
],
benchmark_raw
[
"DAG"
][
"99"
],
benchmark_raw
[
"DAG"
][
"succ"
]
process_latency
=
""
cpu_rss
,
vms
,
shared
,
dirty
,
cpu_usage
=
""
,
""
,
""
,
""
,
benchmark_raw
[
"CPU_MEM"
]
gpu_id
,
total
,
free
,
used
,
gpu_utilization_rate
,
gpu_mem_utilization_rate
=
""
,
""
,
""
,
""
,
benchmark_raw
[
"GPU_UTIL"
],
benchmark_raw
[
"GPU_MEM"
]
fh
=
LogHandler
()
fh
.
append
(
"cuda_version: {}"
.
format
(
cuda_version
))
fh
.
append
(
"cudnn_version: {}"
.
format
(
cudnn_version
))
fh
.
append
(
"trt_version: {} "
.
format
(
trt_version
))
fh
.
append
(
"python_version: {}"
.
format
(
python_version
))
fh
.
append
(
"gcc_version: {}"
.
format
(
gcc_version
))
fh
.
append
(
"paddle_version: {}"
.
format
(
paddle_version
))
fh
.
append
(
"cpu: {}"
.
format
(
cpu
))
fh
.
append
(
"gpu: {}"
.
format
(
gpu
))
# p4, v100, 1080
fh
.
append
(
"xpu: {}"
.
format
(
xpu
))
fh
.
append
(
"api: {}"
.
format
(
api
))
fh
.
append
(
"owner: {}"
.
format
(
owner
))
fh
.
append
(
"----------------------- Model info ----------------------"
)
fh
.
append
(
"model_name: {}"
.
format
(
model_name
))
fh
.
append
(
"model_type: {}"
.
format
(
model_type
))
fh
.
append
(
"model_source: {}"
.
format
(
model_source
))
fh
.
append
(
"model_url: {}"
.
format
(
model_url
))
fh
.
append
(
"----------------------- Data info -----------------------"
)
fh
.
append
(
"batch_size: {}"
.
format
(
batch_size
))
fh
.
append
(
"num_of_samples: {}"
.
format
(
num_of_samples
))
fh
.
append
(
"input_shape: {}"
.
format
(
input_shape
))
fh
.
append
(
"----------------------- Conf info -----------------------"
)
fh
.
append
(
"runtime_device: {}"
.
format
(
runtime_device
))
fh
.
append
(
"ir_optim: {}"
.
format
(
ir_optim
))
fh
.
append
(
"enable_memory_optim: {}"
.
format
(
enable_memory_optim
))
fh
.
append
(
"enable_tensorrt: {}"
.
format
(
enable_tensorrt
))
fh
.
append
(
"precision: {}"
.
format
(
precision
))
# fp32, fp16, int8
fh
.
append
(
"enable_mkldnn: {}"
.
format
(
enable_mkldnn
))
fh
.
append
(
"cpu_math_library_num_threads: {}"
.
format
(
cpu_math_library_num_threads
))
fh
.
append
(
"----------------------- Acc info ------------------------"
)
fh
.
append
(
"acc1:"
.
format
(
acc1
))
fh
.
append
(
"acc5:"
.
format
(
acc5
))
fh
.
append
(
"----------------------- Perf info -----------------------"
)
fh
.
append
(
"average_latency(ms): {}, QPS: {}"
.
format
(
average_latency
,
QPS
))
fh
.
append
(
"process_latency(ms): {}"
.
format
(
process_latency
))
fh
.
append
(
"90%_cost: {}, 99%_cost: {}, succ_rate: {}"
.
format
(
cost_90
,
cost_99
,
succ_rate
))
fh
.
append
(
"process_name: clas_benchmark, cpu_rss(MB): {}, vms(MB): {}, shared(MB): {}, dirty(MB): {}, cpu_usage(%): {}"
.
format
(
cpu_rss
,
vms
,
shared
,
dirty
,
cpu_usage
))
fh
.
append
(
"gpu_id: {}, total(MB): {}, free(MB): {}, used(MB): {}, gpu_utilization_rate(%): {}, gpu_mem_utilization_rate(%): {}"
.
format
(
gpu_id
,
total
,
free
,
used
,
gpu_utilization_rate
,
gpu_mem_utilization_rate
))
fh
.
dump
(
args
.
output
)
python/paddle_serving_server_gpu/profiler.py
浏览文件 @
6e643312
...
@@ -31,6 +31,27 @@ _LOGGER = logging.getLogger(__name__)
...
@@ -31,6 +31,27 @@ _LOGGER = logging.getLogger(__name__)
_LOGGER
.
propagate
=
False
_LOGGER
.
propagate
=
False
_is_profile
=
int
(
os
.
environ
.
get
(
'FLAGS_profile_pipeline'
,
0
))
_is_profile
=
int
(
os
.
environ
.
get
(
'FLAGS_profile_pipeline'
,
0
))
import
pynvml
import
psutil
import
GPUtil
import
argparse
def
get_mem
(
gpu_id
=
None
):
pid
=
os
.
getpid
()
p
=
psutil
.
Process
(
pid
)
info
=
p
.
memory_full_info
()
cpu_mem
=
info
.
uss
/
1024.
/
1024.
gpu_mem
=
0
if
gpu_id
is
not
None
:
pynvml
.
nvmlInit
()
handle
=
pynvml
.
nvmlDeviceGetHandleByIndex
(
0
)
meminfo
=
pynvml
.
nvmlDeviceGetMemoryInfo
(
handle
)
gpu_mem
=
meminfo
.
used
/
1024.
/
1024.
return
cpu_mem
,
gpu_mem
def
get_gpu_util
(
gpu_id
):
GPUs
=
GPUtil
.
getGPUs
()
gpu_load
=
GPUs
[
gpu_id
].
load
return
gpu_load
class
PerformanceTracer
(
object
):
class
PerformanceTracer
(
object
):
def
__init__
(
self
,
is_thread_mode
,
interval_s
,
server_worker_num
):
def
__init__
(
self
,
is_thread_mode
,
interval_s
,
server_worker_num
):
...
@@ -245,3 +266,24 @@ class TimeProfiler(object):
...
@@ -245,3 +266,24 @@ class TimeProfiler(object):
tag
,
timestamp
=
item
tag
,
timestamp
=
item
self
.
_time_record
.
put
((
name
,
tag
,
timestamp
))
self
.
_time_record
.
put
((
name
,
tag
,
timestamp
))
return
print_str
return
print_str
def
parse_args
():
# pylint: disable=doc-string-missing
parser
=
argparse
.
ArgumentParser
(
"serve"
)
parser
.
add_argument
(
"--use_gpu"
,
default
=
False
,
action
=
"store_true"
,
help
=
"use gpu or not"
)
parser
.
add_argument
(
"--gpu_id"
,
type
=
int
,
default
=
0
,
help
=
"gpu id"
)
return
parser
.
parse_args
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
if
args
.
use_gpu
is
True
:
cm
,
gm
=
get_mem
(
args
.
gpu_id
)
gpu_util
=
get_gpu_util
(
args
.
gpu_id
)
print
(
"CPU_MEM: {}
\n
GPU_MEM: {}
\n
GPU_UTIL:{}"
.
format
(
cm
,
gm
,
gpu_util
))
else
:
cm
,
_
=
get_mem
(
args
.
gpu_id
)
print
(
"CPU_MEM: {}"
.
format
(
cm
))
python/paddle_serving_server_gpu/version.py
浏览文件 @
6e643312
...
@@ -13,7 +13,7 @@
...
@@ -13,7 +13,7 @@
# limitations under the License.
# limitations under the License.
""" Paddle Serving Client version string """
""" Paddle Serving Client version string """
serving_client_version
=
"0.0.0"
serving_client_version
=
"0.0.0"
serving_server_version
=
"0.
0
.0"
serving_server_version
=
"0.
5
.0"
module_proto_version
=
"0.0.0"
module_proto_version
=
"0.0.0"
cuda_version
=
"9"
cuda_version
=
"9"
commit_id
=
""
commit_id
=
""
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录