提交 66ae5b00 编写于 作者: T TeslaZhao

Merge branch 'develop' of https://github.com/TeslaZhao/Serving into develop

......@@ -22,11 +22,8 @@ message EngineDesc {
required string reloadable_type = 4;
required string model_dir = 5;
repeated int32 gpu_ids = 6;
required int32 runtime_thread_num = 7;
required int32 batch_infer_size = 8;
required int32 enable_batch_align = 9;
optional string version_file = 10;
optional string version_type = 11;
optional string version_file = 7;
optional string version_type = 8;
/*
* Sparse Parameter Service type. Valid types are:
......@@ -39,17 +36,34 @@ message EngineDesc {
LOCAL = 1;
REMOTE = 2;
}
optional SparseParamServiceType sparse_param_service_type = 12;
optional string sparse_param_service_table_name = 13;
optional bool enable_memory_optimization = 14;
optional bool enable_ir_optimization = 15;
optional bool use_trt = 16;
optional bool use_lite = 17;
optional bool use_xpu = 18;
optional bool use_gpu = 19;
optional bool combined_model = 20;
optional bool encrypted_model = 21;
optional bool gpu_multi_stream = 22;
optional SparseParamServiceType sparse_param_service_type = 10;
optional string sparse_param_service_table_name = 11;
optional bool enable_memory_optimization = 12;
optional bool enable_ir_optimization = 13;
optional bool use_trt = 14;
optional bool use_lite = 15;
optional bool use_xpu = 16;
optional bool use_gpu = 17;
optional bool combined_model = 18;
optional bool encrypted_model = 19;
optional bool gpu_multi_stream = 20;
/*
* "runtime_thread_num": n == 0 means don`t use Asynchronous task scheduling
* mode.
* n > 0 means how many Predictor for this engine in Asynchronous task
* scheduling mode.
* "batch_infer_size": the max batch for this engine in Asynchronous task
* scheduling mode.
* "enable_overrun": always put a whole task into the TaskQueue even if the
* total batch is bigger than "batch_infer_size".
* "allow_split_request": allow to split task(which is corresponding to
* request).
*/
optional int32 runtime_thread_num = 30 [ default = 0 ];
optional int32 batch_infer_size = 31 [ default = 32 ];
optional bool enable_overrun = 32 [ default = false ];
optional bool allow_split_request = 33 [ default = true ];
};
// model_toolkit conf
......
......@@ -26,9 +26,90 @@
#include "core/predictor/common/inner_common.h"
#include "core/predictor/framework/memory.h"
// this file is included by bsf.h
namespace im {
namespace bsf {
template <typename InItemT, typename OutItemT>
bool Task<InItemT, OutItemT>::task_fetch_init(BatchTasks<TaskT>& batchTask) {
// 双检锁,减少加锁的粒度
if (!fetch_init) {
if (taskmeta_num > 1) {
// 对于task被拆分为多个taskmeta,需要加锁。
AutoMutex lock(task_mut);
task_fetch_create(batchTask);
} else {
// 对于task只有1个taskmeta,不需要加锁。
task_fetch_create(batchTask);
}
}
return true;
}
template <typename InItemT, typename OutItemT>
bool Task<InItemT, OutItemT>::task_fetch_create(BatchTasks<TaskT>& batchTask) {
if (!fetch_init) {
vector_fetch_lod_index = batchTask.vector_fetch_lod_index;
set_fetch_nobatch_index = batchTask.set_fetch_nobatch_index;
OutVectorT taskMetaOutLodTensor;
size_t fetchvar_num = batchTask._batch_out.size();
for (size_t fetchvar_index = 0; fetchvar_index < fetchvar_num;
++fetchvar_index) {
size_t fetchvar_bytesize_index =
batchTask.fetchvar_bytesize(fetchvar_index);
size_t fetchvar_batch = 0;
// 1. nobatch fetchvar情况
if (set_fetch_nobatch_index.size() > 0 &&
set_fetch_nobatch_index.find(fetchvar_index) !=
set_fetch_nobatch_index.end()) {
fetchvar_batch = 1;
} else if (vector_fetch_lod_index.size() > 0 &&
std::find(vector_fetch_lod_index.begin(),
vector_fetch_lod_index.end(),
fetchvar_index) != vector_fetch_lod_index.end()) {
// lod fetchvar情况,此时无法确定总的shape[0]
// 根据task中的task_num总数开辟task_num个临时空间
// 每个lod型的fetchvar拷贝到对应的临时空间中
// 最后再计算临时空间的总量,合并fetchvar和lod
fetchvar_batch = 0;
} else {
// 普通fetchvar情况,此时该Task总的fetchvar_batch =
// 输入的总的batch_size()
fetchvar_batch = batch_size();
}
paddle::PaddleTensor tensor_out;
tensor_out.name = batchTask._batch_out[fetchvar_index].name;
tensor_out.dtype =
paddle::PaddleDType(batchTask._batch_out[fetchvar_index].dtype);
tensor_out.shape = batchTask._batch_out[fetchvar_index].shape;
tensor_out.shape[0] = fetchvar_batch;
if (fetchvar_batch != 0) {
// 此时 lod 为空。
tensor_out.lod = batchTask._batch_out[fetchvar_index].lod;
// resize all batch memory at one time
size_t databuf_size = fetchvar_batch * fetchvar_bytesize_index;
tensor_out.data.Resize(databuf_size);
} else {
// 当taskmeta_num = 1时,由于同时只有一个taskMeta操作task
// 不涉及线程安全问题,所以此时可以直接由taskMeta->task->resize->copy
// 当task被分为多个taskMeta时,需要临时对象记录
// 收齐后再一起合并
if (taskmeta_num > 1) {
taskMetaOutLodTensor.push_back(tensor_out);
}
}
outVectorT_ptr->push_back(tensor_out);
}
// outLodTensorVector实际是一个双层vector
// shape为taskmeta_num * vector_fetch_lod_index.size();
outLodTensorVector.resize(taskmeta_num, taskMetaOutLodTensor);
fetch_init = true;
}
return true;
}
template <typename TaskT>
void* TaskExecutor<TaskT>::thread_entry(void* args) {
ThreadContext<TaskT>* context = static_cast<ThreadContext<TaskT>*>(args);
......@@ -136,7 +217,7 @@ TaskHandler<TaskT> TaskExecutor<TaskT>::schedule(
}
/*
if (!BatchTasks<TaskT>::check_valid(in, out, _batch_align)) {
if (!BatchTasks<TaskT>::check_valid(in, out, _overrun)) {
LOG(ERROR) << "Invalid input & output";
return TaskHandler<TaskT>::valid_handle();
}
......@@ -156,9 +237,11 @@ TaskHandler<TaskT> TaskExecutor<TaskT>::schedule(
task->inVectorT_ptr = (const InVectorT*)inVectorT_ptr;
task->outVectorT_ptr = (OutVectorT*)outVectorT_ptr;
if (!task->task_init()) {
LOG(ERROR) << "task->init() failed";
}
task->rem = task->batch_size();
task->index.store(0, butil::memory_order_relaxed);
AutoMutex lock(_mut);
_task_queue.push_back(task);
THREAD_COND_SIGNAL(&_cond);
......@@ -168,11 +251,12 @@ TaskHandler<TaskT> TaskExecutor<TaskT>::schedule(
// this function is accessed by multi thread.
// so AutoMutex at first.
// so batch.append_task is thread safe.
// so batchTask.append_task is thread safe.
// you dont need to add extra lock in append_task()
// task is already init.
template <typename TaskT>
bool TaskExecutor<TaskT>::move_task_to_batch(
BatchTasks<TaskT>& batch) { // NOLINT
BatchTasks<TaskT>& batchTask) { // NOLINT
AutoMutex lock(_mut);
while (_task_queue.empty()) {
THREAD_COND_WAIT(&_cond, &_mut);
......@@ -183,15 +267,65 @@ bool TaskExecutor<TaskT>::move_task_to_batch(
return false;
}
TaskT* previous_task = nullptr;
while (!_task_queue.empty()) {
TaskT* task = _task_queue.front();
size_t rem = batch.append_task(task);
// 由于无法确定fetchVar是否为lod(即使输入是非lod,输出也可能是lod)
// 简单的处理方法是:task不能被拆分,即用户的请求可以合并一起预测,但不能拆分两个小部分去预测。
// 只需要设置engine的属性allow_split_request = false即可。
// 复杂的处理方法是允许拆分Task,无论是否包含lod.
// 难点:预测前,能够知道被拆成了几个taskmeta,但只有预测后,才知道有多少个fetchvar,多少个lod的fetchvar
// 所以,task中先要创建taskmeta_num* fetchvar
// num(lod类型的)个临时PaddleTensor(存储data及Lod)
// 由于多线程调度的单位是taskmeta,故只能在notify_task中,用taskmeta->task去创建
// 此时由于多个taskmeta对应一个task,存在多线程竞争,所以需要在task中加锁。
// 原子操作不可行,因为多个线程必须等待创建好上述的PaddleTensor后才能继续。
// 对于普通的fetch,也需要加锁去创建PaddleTensor,后续才能往里拷贝。
// _overrun表示,异步BatchTasks是否允许单次临时超过限制。
// _overrun为true时,即使BatchTasks剩下1-batch,也会全放入一个完整的Task,允许临时超限。
// _overrun为false时,不允许。
// 对于模型本身有最大Batch限制的情况,应将该值设为false,默认为false。
// 对于模型本身无最大Batch限制,但自己设置了BatchTasks的最大Batch,可以考虑设置为True。
// _allow_split_request ==
// true,则允许拆分task.BatchTasks剩下1-batch,则会从下一个Task中拆出1-Batch
// _allow_split_request ==
// false,则每个task不会被拆分。BatchTasks剩下1-batch会被浪费
// 默认为true,允许拆分task从而使得空间利用率最大。
if (!batchTask.get_allow_split_request()) {
if (task->batch_size() > batchTask.get_rem_size() &&
!batchTask.get_overrun()) {
break;
}
}
// combine_task_valid负责判断是否能够合并
// 除最外层的shape外,内层shape应一致才能合并。
// 否则跳出循环,放入下一个batchTask中。
// 以此保证batch.append_task(task)中的task的内层shape相同。
// 对于Shape[0] = 1 而!=batch的情况,因为合并时,取其中一个的值
// 所以要求该feedvar必须相等,才能合并。
// 否则跳出循环,放入下一个batchTask中。
// 目前没有PaddleTensor和PaddleBuff没有重载==,所以只能比较内存.
// TODO(HexToString): 可以考虑后期支持AutoPadding.
if (previous_task != nullptr) {
if (!task->combine_task_valid(previous_task)) {
break;
}
}
size_t rem = batchTask.append_task(task);
previous_task = task;
if (task->rem <= 0) {
_task_queue.pop_front();
}
if (rem <= 0) break;
}
LOG(INFO) << "Number of tasks remaining in _task_queue is"
<< _task_queue.size();
return true;
}
......@@ -201,11 +335,12 @@ bool TaskExecutor<TaskT>::move_task_to_batch(
// TaskT is from the SingleTon TaskExecutor`s _task_queue
// although TaskMeta is a local variable, but several TaskMeta may points to
// the same TaskT which is get from the SingleTon TaskExecutor`s _task_queue.
// put TaskMeta to the local variable BatchTasks<TaskT> batch.
// put TaskMeta to the local variable BatchTasks<TaskT> batchTask.
// batch.merge_tasks() and batch.notify_tasks() has no lock.
// BatchTasks<TaskT> batch itself is a local variable, it`s thread safe.
// If batch.merge_tasks() and batch.notify_tasks() do something to TaskMeta
// batchTask.merge_tasks() and batchTask.notify_tasks() has no lock.
// BatchTasks<TaskT> batchTask itself is a local variable, it`s thread safe.
// If batchTask.merge_tasks() and batchTask.notify_tasks() do something to
// TaskMeta
// you need to pay attention to that.
// Multi-Thread deal with different TaskMeta(cause it`s created as local
// variable)
......@@ -242,11 +377,23 @@ int TaskExecutor<TaskT>::work(ThreadContext<TaskT>* context) {
return -1;
}
BatchTasks<TaskT> batch(_batch_size, _batch_align);
if (move_task_to_batch(batch)) {
batch.merge_tasks();
_fn(&batch.in(), &batch.out());
batch.notify_tasks();
// move_task_to_batch() take the original task from the `_task_queue`
// put the original task into its own Vector<taskmeta>
// the capacity of its own Vector<taskmeta> is decided by `_batch_size` or
// `_overrun`
// merge_tasks() move the imput-data into `_batch_in` from its own
// Vector<taskmeta>.
// because the predictor`s input is the `_batch_in`
// notify_tasks() move the output-data into every single taskmeta from
// `_batch_out`.
// because the predictor`s output is the `_batch_out`
BatchTasks<TaskT> batchTask(_batch_size, _overrun, _allow_split_request);
if (move_task_to_batch(batchTask)) {
batchTask.merge_tasks();
_fn(&batchTask.in(), &batchTask.out());
batchTask.notify_tasks();
}
}
......
......@@ -16,7 +16,9 @@
#include <errno.h>
#include <algorithm>
#include <cstring>
#include <list>
#include <set>
#include <vector>
#ifdef BCLOUD
......@@ -46,7 +48,8 @@ static const size_t DEFAULT_BATCH_SIZE = 100;
// `rem` don`t need to be atomic, cause the operation `put` is synchronous.
// actually, the reason is that lock have been added outside the operation
// `put`.
template <typename TaskT>
class BatchTasks;
// size_t `index` records how many batch have been processing completed.
// `index` need to be atomic, cause the operation 'notify' is asynchronous.
template <typename InItemT, typename OutItemT>
......@@ -56,7 +59,7 @@ struct Task {
typedef InItemT InType;
typedef OutItemT OutType;
typedef Task<InItemT, OutItemT> TaskT;
typedef std::vector<int> ShapeVector;
typedef std::vector<size_t> ShapeVector;
typedef std::vector<ShapeVector> VectorOfShapeVector;
int read_fd;
......@@ -65,7 +68,17 @@ struct Task {
const InVectorT* inVectorT_ptr;
OutVectorT* outVectorT_ptr;
size_t rem;
size_t total_feed_batch;
std::set<size_t> set_feed_lod_index;
std::set<size_t> set_feed_nobatch_index;
std::vector<size_t> vector_fetch_lod_index;
std::set<size_t> set_fetch_nobatch_index;
butil::atomic<size_t> index;
size_t taskmeta_num;
THREAD_MUTEX_T task_mut;
bool fetch_init;
// taskmeta_num * set_feed_lod_index.size()
std::vector<OutVectorT> outLodTensorVector;
Task() {
read_fd = -1;
......@@ -73,11 +86,24 @@ struct Task {
owner_tid = -1;
inVectorT_ptr = NULL;
outVectorT_ptr = NULL;
set_feed_lod_index.clear();
set_feed_nobatch_index.clear();
vector_fetch_lod_index.clear();
set_fetch_nobatch_index.clear();
rem = -1;
total_feed_batch = 0;
taskmeta_num = 0;
index.store(0, butil::memory_order_relaxed);
THREAD_MUTEX_INIT(&task_mut, NULL);
fetch_init = false;
outLodTensorVector.clear();
}
~Task() {
THREAD_MUTEX_DESTROY(&task_mut);
outLodTensorVector.clear();
}
bool check_feedvar_valid(int feedvar_index) {
bool check_feedvar_valid(size_t feedvar_index) {
if (feedvar_index < 0 || inVectorT_ptr->size() <= feedvar_index) {
LOG(ERROR) << "feedvar doesnt exsit or feedvar_index error";
return 0;
......@@ -91,20 +117,47 @@ struct Task {
return 1;
}
// Now, it simply assume that the first dimension of data is batch.
// so the batch is PaddleTensor.shape[0]
bool combine_task_valid(Task* other_task) {
// TODO(HexToString): auto-padding
// 除最外层的shape外,内层shape应一致才能合并。
// 否则跳出循环,放入下一个batchTask中。
// 以此保证batch.append_task(task)中的task的内层shape相同。
if (other_task->feedvar_shape_nobatch() != feedvar_shape_nobatch()) {
return false;
}
// 对于Shape[0] = 1 而!=batch的情况,因为合并时,取其中一个的值
// 所以要求该feedvar必须相等,才能合并。
// 目前没有PaddleTensor和PaddleBuff没有重载==,所以只能比较内存.
for (size_t feedvar_index = 0;
feedvar_index < set_feed_nobatch_index.size();
++feedvar_index) {
int result =
std::memcmp((*inVectorT_ptr)[feedvar_index].data.data(),
(*(other_task->inVectorT_ptr))[feedvar_index].data.data(),
(*inVectorT_ptr)[feedvar_index].data.length());
if (result != 0) return false;
}
return true;
}
// If batch information is added into feedvar.prototxt.
// we can get the information from the feedvar.prototxt instead of assume.
size_t feedvar_batch_size(int feedvar_index) {
size_t feedvar_batch_size(size_t feedvar_index) {
if (!check_feedvar_valid(feedvar_index)) {
return 0;
}
// if lod, 'lod[0].size()-1' is batch.
// for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
// for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
// for lod, the batch < shape[0].
if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
(*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
return (*inVectorT_ptr)[feedvar_index].lod[0].size() - 1;
}
// if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
return (*inVectorT_ptr)[feedvar_index].shape[0];
}
size_t feedvar_element_bytesize(int feedvar_index) {
size_t feedvar_element_bytesize(size_t feedvar_index) {
if (!check_feedvar_valid(feedvar_index)) {
return 0;
}
......@@ -126,7 +179,7 @@ struct Task {
// Now, the implementation of this function is based on assumption
// that shape [0] = batch_size.
size_t feedvar_element_num(int feedvar_index) {
size_t feedvar_element_num(size_t feedvar_index) {
if (!check_feedvar_valid(feedvar_index)) {
return 0;
}
......@@ -138,18 +191,18 @@ struct Task {
return 1;
}
// start from shape[1], cause shape[0] = batch_size.
for (int i = 1; i < (*inVectorT_ptr)[feedvar_index].shape.size(); ++i) {
for (size_t i = 1; i < (*inVectorT_ptr)[feedvar_index].shape.size(); ++i) {
element_num *= (*inVectorT_ptr)[feedvar_index].shape[i];
}
return element_num;
}
size_t feedvar_bytesize(int feedvar_index) {
size_t feedvar_bytesize(size_t feedvar_index) {
return feedvar_element_num(feedvar_index) *
feedvar_element_bytesize(feedvar_index);
}
ShapeVector feedvar_shape_nobatch(int feedvar_index) {
ShapeVector feedvar_shape_nobatch(size_t feedvar_index) {
if (!check_feedvar_valid(feedvar_index)) {
return ShapeVector();
}
......@@ -158,40 +211,167 @@ struct Task {
}
VectorOfShapeVector feedvar_shape_nobatch() {
VectorOfShapeVector vector_of_feedvar_shape_nobatch(inVectorT_ptr->size());
for (int index = 0; index < inVectorT_ptr->size(); ++index) {
vector_of_feedvar_shape_nobatch.push_back(feedvar_shape_nobatch(index));
VectorOfShapeVector vector_of_feedvar_shape_nobatch;
for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
++feedvar_index) {
vector_of_feedvar_shape_nobatch.push_back(
feedvar_shape_nobatch(feedvar_index));
}
return vector_of_feedvar_shape_nobatch;
}
// At present, it is considered that the batch of all feedvar is consistent.
// so for each feedvar, PaddleTensor.shape[0] should be the same.
bool check_batch_align() {
int batch_size_align = feedvar_batch_size(0);
for (int feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
// For each feedvar, batch should be 1 or batch_size.
// if feedvar-1: batch_size = 1 (always not batch).
// feedvar-2: batch_size = n, batch = n.
// this function is not thread safe. only called when task is creating.
bool task_init() {
total_feed_batch = feedvar_batch_size(0);
// which means error.
if (total_feed_batch <= 0) return false;
for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
++feedvar_index) {
if (feedvar_batch_size(feedvar_index) != batch_size_align) {
return 0;
// TODO(HexToString): Distinguish between nobatch and batch =
// 1(By:HexToString)
// 当数据中feedvar-1: 带batch,且batch =1,shape[0] = 1
// feedvar-2:不带batch,由于不带batch导致shape[0] =1
// 此时,无法分辨是否是天然nobatch,此时set_feed_nobatch_index会漏掉
// 后续希望在其他地方能够区分两者。
if (feedvar_batch_size(feedvar_index) != total_feed_batch) {
// which means error.
if (feedvar_batch_size(feedvar_index) != 1 && total_feed_batch != 1) {
return false;
} else {
// which means feedvar shape[0] = 1.
// shape[0] does not change with batch
set_feed_nobatch_index.insert(feedvar_index);
total_feed_batch =
std::max(feedvar_batch_size(feedvar_index), total_feed_batch);
}
}
// 将lod feedvar index加入到vector中。
if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
(*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
set_feed_lod_index.insert(feedvar_index);
}
}
/*
for(int fetchvar_index = 0; fetchvar_index < outVectorT_ptr->size();
++fetchvar_index) {
if(fetchvar_batch_size(fetchvar_index) != batch_size_align) {
return 0;
return true;
}
size_t batch_size() { return total_feed_batch; }
// start_batch range is 0~batch_size, end_batch range is 1~batch_size
// start_batch should not be included, end_batch > start_batch
// return is (start_batch, end_batch] = [start_batch+1,end_batch]
// for not lod, shape0_index = [(start_batch+1)-1,end_batch-1] =
// [start_batch,end_batch-1] = [start_batch,end_batch)
// for lod, shape0_index = [lod[start_batch],lod[end_batch]-1] =
// [lod[start_batch],lod[end_batch])
// for nobatch, shape0_index = [0,1)
// 对于调用者,拿到shape0_index后,for(size_t myindex =shape0_index[0];
// myindex <shape0_index[1];myindex++)即可.
// 原始lod= [0,3,4,6] 取的batch为(start_batch = 1,end_batch =
// 3],即取batch=2,3.
// 此时lod=[3,4,6],处理后得到[1,3]
// 这样处理后,合并lod比较方便,直接加上上一个lod的结尾的值即可。
std::vector<std::vector<size_t>> get_feature_by_batch(size_t feedvar_index,
size_t start_batch,
size_t end_batch) {
std::vector<std::vector<size_t>> feature_vector;
// feature_vector是双层vector,这么设计是由于一个遍历即可处理所有的特征。
// feature_vector[0]是由shape0_index的范围值组成的vector,包含两个元素最小和最大值。
// feature_vector[1]是由lod组成的vector,包含指定batch的lod信息.
// feature_vector[2]是由单个元素的组成的vector,元素值为1表示是nobatch的feedvar。
// if 为 nobatch feedvar情况。
// else if 为带lod的feedvar情况。
// else为不带lod 普通feedvar情况。
if (set_feed_nobatch_index.size() > 0 &&
set_feed_nobatch_index.find(feedvar_index) !=
set_feed_nobatch_index.end()) {
feature_vector = {{0, 1}, {}, {1}};
} else if (set_feed_lod_index.size() > 0 &&
set_feed_lod_index.find(feedvar_index) !=
set_feed_lod_index.end()) {
std::vector<size_t> feed_lod_vector(end_batch - start_batch);
for (size_t lod_index = start_batch + 1, vector_index = 0;
lod_index < end_batch + 1;
++lod_index, ++vector_index) {
feed_lod_vector[vector_index] =
(*inVectorT_ptr)[feedvar_index].lod[0][lod_index] -
(*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
}
size_t shape0_start = (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
size_t shape0_end = (*inVectorT_ptr)[feedvar_index].lod[0][end_batch];
feature_vector = {{shape0_start, shape0_end}, feed_lod_vector};
// feature_vector.push_back(feed_lod_vector);
} else {
feature_vector = {{start_batch, end_batch}};
}
return feature_vector;
}
bool combine_taskmeta() {
// 只有含有lod类型的fetch输出,且task被拆分为多个taskmeta的情况
// 才需要将数据从outLodTensorVector搬运到outVectorT_ptr
if (vector_fetch_lod_index.size() > 0 && taskmeta_num > 1) {
for (size_t index = 0; index < vector_fetch_lod_index.size(); ++index) {
size_t data_length = 0;
size_t lod_length = 0;
size_t total_shape0 = 0;
size_t feedvar_index = vector_fetch_lod_index[index];
// 由于PaddleTensor的resize实现,是每次都会清空,所以必须先统计总长度。
for (size_t taskmeta_index = 0; taskmeta_index < taskmeta_num;
++taskmeta_num) {
data_length +=
outLodTensorVector[taskmeta_index][index].data.length();
lod_length += outLodTensorVector[taskmeta_index][index].lod[0].size();
total_shape0 += outLodTensorVector[taskmeta_index][index].shape[0];
}
// 一次性扩容PaddleTensor中的data和lod
paddle::PaddleTensor& fetchVarTensor = (*outVectorT_ptr)[feedvar_index];
fetchVarTensor.data.Resize(data_length);
// task中的lod补0
if (fetchVarTensor.lod.size() <= 0) {
fetchVarTensor.lod.push_back({0});
} else if (fetchVarTensor.lod[0].size() <= 0) {
fetchVarTensor.lod[0].push_back(0);
}
fetchVarTensor.lod[0].resize(lod_length + 1, 0);
//
size_t data_length_offset = 0;
size_t lod_length_offset = 0;
size_t once_data_length = 0;
size_t once_lod_length = 0;
size_t last_lod_value = fetchVarTensor.lod[0][lod_length_offset];
for (size_t taskmeta_index = 0; taskmeta_index < taskmeta_num;
++taskmeta_num) {
void* dst_ptr = fetchVarTensor.data.data() + data_length_offset;
void* source_ptr =
outLodTensorVector[taskmeta_index][index].data.data();
once_data_length =
outLodTensorVector[taskmeta_index][index].data.length();
memcpy(dst_ptr, source_ptr, once_data_length);
once_lod_length =
outLodTensorVector[taskmeta_index][index].lod[0].size();
for (size_t once_index = 0; once_index < once_lod_length;
++once_index) {
fetchVarTensor.lod[0][lod_length_offset + 1] =
last_lod_value +
outLodTensorVector[taskmeta_index][index].lod[0][once_index];
}
*/
return 1;
data_length_offset += once_data_length;
lod_length_offset += once_lod_length;
}
size_t batch_size() {
if (check_batch_align()) {
return feedvar_batch_size(0);
}
return 0;
}
return true;
}
bool task_fetch_init(BatchTasks<TaskT>& batchTask);
bool task_fetch_create(BatchTasks<TaskT>& batchTask);
};
// `Several Task` or `part of batch in Task` can be a TaskMeta.
......@@ -206,61 +386,164 @@ struct Task {
// TaskMeta is necessary.
// cause we need know the the corresponding relationship between
// `batch_out`(which is in BatchTasks) and `outVectorT_ptr`(which is in Task).
// `_batch_out`(which is in BatchTasks) and `outVectorT_ptr`(which is in Task).
// especially when 1 Task be divided into several TaskMeta and be put into
// several different BatchTasks.
// begin、add、end means batch, not shape[0].
// if not lod, batch == shape[0]. if lod, batch != shape[0]
// for example, lod = [0,3,4,6], shape = [6,340,340]
// there is 3 batch actually, add = 3, but shape[0] = 6.
template <typename TaskT>
struct TaskMeta {
TaskMeta(TaskT* ptr, size_t start, size_t add)
: task(ptr), begin(start), end(start + add) {}
TaskMeta(TaskT* ptr, size_t start, size_t add, size_t taskmeta_index)
: task(ptr),
begin(start),
end(start + add),
taskmeta_index(taskmeta_index) {
feedvar_num = ptr->inVectorT_ptr->size();
for (size_t feedvar_index = 0; feedvar_index < feedvar_num;
++feedvar_index) {
std::vector<std::vector<size_t>> feature =
ptr->get_feature_by_batch(feedvar_index, start, start + add);
feed_shape0_range.push_back(feature[0]);
feedvar_type.push_back(feature.size());
if (feature.size() == 1) {
feed_lod_vector.push_back({});
} else if (feature.size() == 2) {
feed_lod_vector.push_back(feature[1]);
} else {
feed_lod_vector.push_back({});
}
}
}
TaskT* task;
size_t begin;
size_t end;
size_t feedvar_num;
size_t taskmeta_index;
std::vector<std::vector<size_t>> feed_shape0_range;
std::vector<std::vector<size_t>> feed_lod_vector;
std::vector<size_t> feedvar_type;
};
// each TaskT is already include batch in itself
// BatchTasks need to combine several `small TaskMeta` into a new `big TaskT`.
// The only difference between the `big TaskT` and `small TaskT` is that
// the TaskT.inVectorT_ptr->[feedvar_index].shape[0]
// which is actually batch_size is different.
// the TaskT.inVectorT_ptr->[feedvar_index].shape[0] is different
// `big TaskT`.inVectorT_ptr->[feedvar_index].shape[0] is actually batch_size .
template <typename TaskT>
class BatchTasks {
public:
typedef typename TaskT::InType InType;
typedef typename TaskT::OutType OutType;
typedef TaskMeta<TaskT> TaskMetaT;
typedef std::vector<size_t> ShapeVector;
typedef std::vector<ShapeVector> VectorOfShapeVector;
typedef std::vector<size_t> LodVector;
typedef std::vector<LodVector> PaddleTensorLod;
friend TaskT;
explicit BatchTasks(size_t batch_size, bool batch_align = true)
explicit BatchTasks(size_t batch_size,
bool overrun = false,
bool allow_split_request = true)
: _batch_size(batch_size),
_rem_size(batch_size),
_batch_align(batch_align) {
_overrun(overrun),
_allow_split_request(allow_split_request) {
_batch_in.clear();
_batch_in_offset.clear();
_total_shape0_batch_in.clear();
_total_feed_batch = 0;
_batch_in_lod.clear();
_batch_out.clear();
_batch_out_offset.clear();
_total_fetch_batch = 0;
_taskmeta_vector.clear();
set_fetch_nobatch_index.clear();
vector_fetch_lod_index.clear();
}
~BatchTasks() {
_batch_in.clear();
_batch_in_offset.clear();
_total_shape0_batch_in.clear();
_total_feed_batch = 0;
_batch_in_lod.clear();
_batch_out.clear();
_batch_out_offset.clear();
_total_fetch_batch = 0;
_taskmeta_vector.clear();
set_fetch_nobatch_index.clear();
vector_fetch_lod_index.clear();
}
// synchronized operation
// because Upper level callers of this function have already locked.
// 能进到此函数的task都是同类task,在该函数之前已保证了这点。
size_t append_task(TaskT* task) {
size_t add = std::min(task->rem, _rem_size);
if (!_batch_align) {
// when _overrun == true, it means always take a whole task as TaskMeta
// we can temporary breakthrough the limit of BatchTask`s capacity
// BatchTask`s capacity is _batch_size or _rem_size
if (_overrun) {
add = task->rem;
}
int start_index = task->batch_size() - task->rem;
TaskMetaT tm(task, start_index, add);
TaskMetaT tm(task, start_index, add, task->taskmeta_num);
task->taskmeta_num += 1;
_taskmeta_vector.push_back(tm);
if (_batch_in_offset.size() == 0) {
_batch_in_offset.resize(tm.feedvar_num, 0);
}
if (_total_shape0_batch_in.size() == 0) {
_total_shape0_batch_in.resize(tm.feedvar_num, 0);
}
if (_batch_in_lod.size() == 0) {
PaddleTensorLod null_lod;
_batch_in_lod.resize(tm.feedvar_num, null_lod);
}
_total_feed_batch += add;
for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
++feedvar_index) {
if (tm.feedvar_type[feedvar_index] == 1) {
// 普通的非lod feedvar
// 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
_total_shape0_batch_in[feedvar_index] +=
tm.feed_shape0_range[feedvar_index][1] -
tm.feed_shape0_range[feedvar_index][0];
} else if (tm.feedvar_type[feedvar_index] == 2) {
// lod类型的feedvar
// 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
_total_shape0_batch_in[feedvar_index] +=
tm.feed_shape0_range[feedvar_index][1] -
tm.feed_shape0_range[feedvar_index][0];
// 在Lod最前面加0
if (_batch_in_lod[feedvar_index].size() <= 0) {
_batch_in_lod[feedvar_index].push_back({0});
} else if (_batch_in_lod[feedvar_index][0].size() <= 0) {
_batch_in_lod[feedvar_index][0].push_back(0);
}
// 将lod加上前一组lod的结尾最大值,组合Lod
size_t last_lod_value = _batch_in_lod[feedvar_index][0].back();
for (size_t lod_index = 0;
lod_index < tm.feed_lod_vector[feedvar_index].size();
++lod_index) {
_batch_in_lod[feedvar_index][0].push_back(
last_lod_value + tm.feed_lod_vector[feedvar_index][lod_index]);
}
} else {
// tm.feedvar_type[feedvar_index] == 3
// nobatch类型的feedvar.
// 此时不累加,且值应为1
_total_shape0_batch_in[feedvar_index] =
tm.feed_shape0_range[feedvar_index][1] -
tm.feed_shape0_range[feedvar_index][0];
}
}
task->rem -= add;
_rem_size -= add;
return _rem_size;
......@@ -281,72 +564,56 @@ class BatchTasks {
// cause maybe next time we don`t need to do the extra copy.
// directly copy the every Task into the Predictor.
// lod is not supported.
// if lod is set, we should not allow to use the bsf task.
// batch.merge_tasks() is thread-safe function
// cause batch is a local variable and Task is just read, not written.
void merge_tasks() {
if (_taskmeta_vector.size() <= 0) {
return;
}
// Temporarily, the batch of each feedvar is consistent
// If not consistent, use feedvar_batch_size instead of task->batch_size().
int temp_batch = 0;
for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
TaskMetaT& tm = _taskmeta_vector[ti];
temp_batch += tm.task->batch_size();
}
if (temp_batch > _batch_size) {
LOG(ERROR) << "_realNumber_batch_in >_batch_size, error.";
return;
}
int feedvar_num = _taskmeta_vector[0].task->inVectorT_ptr->size();
if (_batch_in_offset.size() == 0) {
_batch_in_offset.resize(feedvar_num, 0);
_realNumber_batch_in.resize(feedvar_num, temp_batch);
}
for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
TaskMetaT& tm = _taskmeta_vector[ti];
for (int index = 0; index < feedvar_num; ++index) {
for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
++feedvar_index) {
const paddle::PaddleTensor& feedVarTensor =
(*tm.task->inVectorT_ptr)[index];
size_t feedvar_bytesize = tm.task->feedvar_bytesize(index);
(*tm.task->inVectorT_ptr)[feedvar_index];
size_t feedvar_bytesize = tm.task->feedvar_bytesize(feedvar_index);
if (ti == 0) {
if (feedVarTensor.lod.size() > 0 && feedVarTensor.lod[0].size() > 0) {
LOG(ERROR) << "lod Tensor is not supported now.";
return;
}
// Create the entire tensor at once
// for now, we assume that every task feedvar_bytesize is the same.
// which means we dont support auto embedding.
// but for different feedvar, it is different.
paddle::PaddleTensor paddleTensor;
paddleTensor.dtype = feedVarTensor.dtype;
paddleTensor.name = feedVarTensor.name;
paddleTensor.lod = feedVarTensor.lod;
paddleTensor.lod = _batch_in_lod[feedvar_index];
paddleTensor.shape = feedVarTensor.shape;
paddleTensor.shape[0] = _realNumber_batch_in[index];
paddleTensor.shape[0] = _total_shape0_batch_in[feedvar_index];
paddleTensor.data.Resize(feedvar_bytesize *
_realNumber_batch_in[index]);
_total_shape0_batch_in[feedvar_index]);
_batch_in.push_back(paddleTensor);
}
void* dst_ptr = _batch_in[index].data.data() + _batch_in_offset[index];
void* dst_ptr = _batch_in[feedvar_index].data.data() +
_batch_in_offset[feedvar_index];
void* source_ptr =
feedVarTensor.data.data() + feedvar_bytesize * tm.begin;
size_t length = feedvar_bytesize * (tm.end - tm.begin);
feedVarTensor.data.data() +
feedvar_bytesize * tm.feed_shape0_range[feedvar_index][0];
size_t length =
feedvar_bytesize * (tm.feed_shape0_range[feedvar_index][1] -
tm.feed_shape0_range[feedvar_index][0]);
memcpy(dst_ptr, source_ptr, length);
_batch_in_offset[index] += length;
// nobatch类型的feedvar,不叠加.
if (tm.feedvar_type[feedvar_index] != 3)
_batch_in_offset[feedvar_index] += length;
}
}
}
bool check_fetchvar_valid(int fetchvar_index) {
bool check_fetchvar_valid(size_t fetchvar_index) {
if (fetchvar_index < 0 || _batch_out.size() <= fetchvar_index) {
LOG(ERROR) << "fetchvar doesnt exsit or fetchvar_index error";
return 0;
......@@ -360,19 +627,11 @@ class BatchTasks {
return 1;
}
size_t fetchvar_batch_size(int fetchvar_index) {
size_t fetchvar_element_bytesize(size_t fetchvar_index) {
if (!check_fetchvar_valid(fetchvar_index)) {
return 0;
}
return _batch_out[fetchvar_index].shape[0];
}
size_t fetchvar_element_bytesize(int fetchvar_index) {
if (!check_fetchvar_valid(fetchvar_index)) {
return 0;
}
int dtype = _batch_out[fetchvar_index].dtype;
size_t dtype = _batch_out[fetchvar_index].dtype;
if (dtype == paddle::PaddleDType::INT64) {
return sizeof(int64_t);
}
......@@ -390,7 +649,7 @@ class BatchTasks {
// Now, the implementation of this function is based on assumption
// that shape [0] = batch_size.
size_t fetchvar_element_num(int fetchvar_index) {
size_t fetchvar_element_num(size_t fetchvar_index) {
if (!check_fetchvar_valid(fetchvar_index)) {
return 0;
}
......@@ -400,35 +659,66 @@ class BatchTasks {
return 1;
}
// start from shape[1], cause shape[0] = batch_size.
for (int i = 1; i < _batch_out[fetchvar_index].shape.size(); ++i) {
for (size_t i = 1; i < _batch_out[fetchvar_index].shape.size(); ++i) {
element_num *= _batch_out[fetchvar_index].shape[i];
}
return element_num;
}
size_t fetchvar_bytesize(int fetchvar_index) {
size_t fetchvar_bytesize(size_t fetchvar_index) {
return fetchvar_element_num(fetchvar_index) *
fetchvar_element_bytesize(fetchvar_index);
}
bool check_fetchvar_batch_align() {
int batch_size_align = fetchvar_batch_size(0);
for (int fetchvar_index = 0; fetchvar_index < _batch_out.size();
++fetchvar_index) {
if (fetchvar_batch_size(fetchvar_index) != batch_size_align) {
size_t fetchvar_batch_size(size_t fetchvar_index) {
if (!check_fetchvar_valid(fetchvar_index)) {
return 0;
}
// if lod, 'lod[0].size()-1' is batch.
// for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
// for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
// for lod, the batch < shape[0].
if (_batch_out[fetchvar_index].lod.size() > 0 &&
_batch_out[fetchvar_index].lod[0].size() > 0) {
return _batch_out[fetchvar_index].lod[0].size() - 1;
}
return 1;
// if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
return _batch_out[fetchvar_index].shape[0];
}
size_t fetchvar_batch_size() {
if (check_fetchvar_batch_align()) {
return fetchvar_batch_size(0);
size_t fetchvar_batch_size() { return _total_fetch_batch; }
bool deal_batch_out() {
_total_fetch_batch = fetchvar_batch_size(0);
if (_total_fetch_batch <= 0) return false;
for (size_t fetchvar_index = 0; fetchvar_index < _batch_out.size();
++fetchvar_index) {
// TODO(HexToString): Distinguish between nobatch and batch =
// 1(By:HexToString)
// 当数据中fetchvar-1: 带batch,且batch =1,shape[0] = 1
// fetchvar-2:不带batch,由于不带batch导致shape[0] =1
// 此时,无法分辨是否是天然nobatch,此时set_fetch_nobatch_index会漏掉
// 后续希望在其他地方能够区分两者。
if (fetchvar_batch_size(fetchvar_index) != _total_fetch_batch) {
// which means error.
if (fetchvar_batch_size(fetchvar_index) != 1 &&
_total_fetch_batch != 1) {
return false;
} else {
// which means fetchvar shape[0] = 1.
// shape[0] does not change with batch
set_fetch_nobatch_index.insert(fetchvar_index);
_total_fetch_batch =
std::max(fetchvar_batch_size(fetchvar_index), _total_fetch_batch);
}
}
// 将lod fetchvar index加入到vector中。
if (_batch_out[fetchvar_index].lod.size() > 0 &&
_batch_out[fetchvar_index].lod[0].size() > 0) {
vector_fetch_lod_index.push_back(fetchvar_index);
}
return 0;
}
return true;
}
void notify_tasks() {
......@@ -436,12 +726,16 @@ class BatchTasks {
LOG(ERROR) << "_taskmeta_vector.size() <=0, error.";
return;
}
if (_realNumber_batch_in[0] != fetchvar_batch_size()) {
// 根据_batch_out,求出输出的整体batch
// 并将lod类型和nobatch类型的fetchvar的index记录到set中,方便后续查看。
deal_batch_out();
// 若输出的batch不是1,且不与输入batch对应,则错误
if (_total_feed_batch != _total_fetch_batch && _total_fetch_batch != 1) {
LOG(ERROR) << "_batch_out`s batch != _batch_in`s batch, error.";
return;
}
int fetchvar_num = _batch_out.size();
size_t fetchvar_num = _batch_out.size();
if (_batch_out_offset.size() == 0) {
_batch_out_offset.resize(fetchvar_num, 0);
}
......@@ -451,44 +745,132 @@ class BatchTasks {
size_t begin = _taskmeta_vector[ti].begin;
size_t end = _taskmeta_vector[ti].end;
size_t add = end - begin;
size_t taskmeta_index = _taskmeta_vector[ti].taskmeta_index;
// 对task中的outVectorT_ptr进行初始化
// 如果是lod输出+多个taskmeta,此时对outLodTensorVector也需要初始化
if (!task->task_fetch_init(*this)) {
LOG(ERROR) << " task_fetch_init error.";
return;
}
size_t fetch_lod_index = 0;
for (int index = 0; index < fetchvar_num; ++index) {
// the task->outVectorT_ptr is null before core->run().
// first time we should copy from _batch_out
// so we need init.
size_t fetchvar_bytesize_index = fetchvar_bytesize(index);
if (task->outVectorT_ptr->size() <= index) {
paddle::PaddleTensor tensor_out;
tensor_out.name = _batch_out[index].name;
tensor_out.dtype = paddle::PaddleDType(_batch_out[index].dtype);
tensor_out.shape = _batch_out[index].shape;
tensor_out.shape[0] = task->batch_size();
tensor_out.lod = _batch_out[index].lod;
// resize all batch memory at one time
size_t databuf_size = task->batch_size() * fetchvar_bytesize_index;
tensor_out.data.Resize(databuf_size);
task->outVectorT_ptr->push_back(tensor_out);
}
paddle::PaddleTensor& fetchVarTensor = (*task->outVectorT_ptr)[index];
for (size_t fetchvar_index = 0; fetchvar_index < fetchvar_num;
++fetchvar_index) {
size_t fetchvar_bytesize_index = fetchvar_bytesize(fetchvar_index);
if (set_fetch_nobatch_index.size() > 0 &&
set_fetch_nobatch_index.find(fetchvar_index) !=
set_fetch_nobatch_index.end()) {
// nobatch fetchvar情况
// 无论输入是多少batch,该index的fetchvar始终就shape[0] = 1
paddle::PaddleTensor& fetchVarTensor =
(*task->outVectorT_ptr)[fetchvar_index];
void* dst_ptr = fetchVarTensor.data.data();
size_t length = fetchvar_bytesize_index * 1;
void* source_ptr = _batch_out[fetchvar_index].data.data();
memcpy(dst_ptr, source_ptr, length);
} else if (vector_fetch_lod_index.size() > 0 &&
std::find(vector_fetch_lod_index.begin(),
vector_fetch_lod_index.end(),
fetchvar_index) != vector_fetch_lod_index.end()) {
// lod fetchvar情况,此时无法确定总的shape[0]
// 根据task中的task_num总数开辟task_num个临时空间
// 每个lod型的fetchvar拷贝到对应的临时空间中
// 最后再计算临时空间的总量,合并fetchvar和lod
size_t last_batch = _batch_out_offset[fetchvar_index];
size_t shape0_index_start =
_batch_out[fetchvar_index].lod[0][last_batch];
size_t shape0_index_end =
_batch_out[fetchvar_index].lod[0][last_batch + add];
size_t shape0_length = shape0_index_end - shape0_index_start;
// task被拆分为多个taskmeta时,不能直接拷入task->outVectorT_ptr
// 此时,先拷入task->outLodTensorVector[taskmeta_index]
// 当task所有的taskmeta都完成时,再按照顺序进行拷贝回task->outVectorT_ptr。
if (task->taskmeta_num > 1) {
paddle::PaddleTensor& fetchVarTensor =
task->outLodTensorVector[taskmeta_index][fetch_lod_index];
size_t length = fetchvar_bytesize_index * shape0_length;
fetchVarTensor.shape[0] = shape0_length;
fetchVarTensor.data.Resize(length);
void* dst_ptr = fetchVarTensor.data.data();
void* source_ptr = _batch_out[fetchvar_index].data.data() +
shape0_index_start * fetchvar_bytesize_index;
memcpy(dst_ptr, source_ptr, length);
// 由于是拆分的各个lod,不要补0,在最后合并给Task中的outVectorT_ptr时再补。
if (fetchVarTensor.lod.size() <= 0) {
fetchVarTensor.lod.push_back({});
}
fetchVarTensor.lod[0].resize(add, 0);
size_t last_lod_value =
_batch_out[fetchvar_index].lod[0][last_batch];
for (size_t lod_index = last_batch + 1, my_index = 0;
lod_index < last_batch + add + 1;
++lod_index, ++my_index) {
fetchVarTensor.lod[0][my_index] =
(_batch_out[fetchvar_index].lod[0][lod_index] -
last_lod_value);
}
} else {
// task未被拆分为多个taskmeta,故只有某个线程中的taskmeta会操作task不存在多线程竞争
// 此时resize后,直接写入task->outVectorT_ptr中即可。
paddle::PaddleTensor& fetchVarTensor =
(*task->outVectorT_ptr)[fetchvar_index];
size_t length = fetchvar_bytesize_index * shape0_length;
fetchVarTensor.shape[0] = shape0_length;
fetchVarTensor.data.Resize(length);
void* dst_ptr = fetchVarTensor.data.data();
void* source_ptr = _batch_out[fetchvar_index].data.data() +
shape0_index_start * fetchvar_bytesize_index;
memcpy(dst_ptr, source_ptr, length);
// task中的lod补0
if (fetchVarTensor.lod.size() <= 0) {
fetchVarTensor.lod.push_back({0});
} else if (fetchVarTensor.lod[0].size() <= 0) {
fetchVarTensor.lod[0].push_back(0);
}
// 将合并的lod信息对应的batch,拆分到task中。
// 注意,此时需要去掉前面lod导致的前置积累。
// 例如: 合lod = [0,2,5;7,10],是由两组batch=2的task合并后预测的。
// 此时拆分,第一组时,都减去0,得到[2,5]+(由于前面已经补了0了) =
// [0,2,5]
// 第二组,都需要减5,得到[2,5],这样处理才对。
fetchVarTensor.lod[0].resize(add + 1, 0);
size_t last_lod_value =
_batch_out[fetchvar_index].lod[0][last_batch];
for (size_t lod_index = last_batch + 1, my_index = 1;
lod_index < last_batch + add + 1;
++lod_index, ++my_index) {
fetchVarTensor.lod[0][my_index] =
(_batch_out[fetchvar_index].lod[0][lod_index] -
last_lod_value);
}
}
fetch_lod_index++;
} else {
// 普通fetchvar情况,此时该Task总的fetchvar_batch =
// 输入的总的batch_size()
// 输出的batch应与输入的batch对应相等。
paddle::PaddleTensor& fetchVarTensor =
(*task->outVectorT_ptr)[fetchvar_index];
void* dst_ptr =
fetchVarTensor.data.data() + fetchvar_bytesize_index * begin;
size_t length = fetchvar_bytesize_index * add;
if (_batch_out_offset[index] + length >
fetchvar_batch_size() * fetchvar_bytesize(index)) {
LOG(ERROR) << "_batch_out is less than taskmeta, error.";
return;
}
void* source_ptr =
_batch_out[index].data.data() + _batch_out_offset[index];
_batch_out[fetchvar_index].data.data() +
_batch_out_offset[fetchvar_index] * fetchvar_bytesize_index;
memcpy(dst_ptr, source_ptr, length);
_batch_out_offset[index] += length;
}
_batch_out_offset[fetchvar_index] += add;
}
// index是局部变量,fetch_add是原子操作,成功则返回原值。
// 只有最后一个taskmeta都完成后,该线程的index+add才能>task->batch_size()
// 故只有一个线程能进入if{}内.不会造成多线程竞争的问题。
size_t index = task->index.fetch_add(add);
if ((index + add) >= task->batch_size()) {
task->combine_taskmeta();
char c = 0;
while (write(task->write_fd, &c, 1) != 1 && errno == EINTR) {
}
......@@ -503,17 +885,32 @@ class BatchTasks {
size_t task_size() { return _taskmeta_vector.size(); }
const size_t get_rem_size() { return _rem_size; }
bool get_overrun() { return _overrun; }
bool get_allow_split_request() { return _allow_split_request; }
private:
std::vector<TaskMetaT> _taskmeta_vector;
typename TaskT::InVectorT _batch_in;
std::vector<size_t> _batch_in_offset;
std::vector<size_t> _realNumber_batch_in;
std::vector<size_t> _total_shape0_batch_in;
size_t _total_feed_batch;
std::vector<PaddleTensorLod> _batch_in_lod;
typename TaskT::OutVectorT _batch_out;
std::vector<size_t> _batch_out_offset;
std::vector<size_t> _realNumber_batch_out;
// std::vector<size_t> _total_shape0_batch_out;
size_t _total_fetch_batch;
// std::vector<PaddleTensorLod> _batch_out_lod;
std::set<size_t> set_fetch_nobatch_index;
std::vector<size_t> vector_fetch_lod_index;
size_t _rem_size;
size_t _batch_size;
bool _batch_align;
bool _overrun;
bool _allow_split_request;
};
// BSF task handle
......@@ -589,6 +986,8 @@ class TaskExecutor {
typedef typename TaskT::OutVectorT OutVectorT;
typedef std::vector<TaskT> TaskArrayT;
typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
typedef std::vector<size_t> ShapeVector;
typedef std::vector<ShapeVector> VectorOfShapeVector;
TaskExecutor()
: _stop(false),
......@@ -596,7 +995,7 @@ class TaskExecutor {
_thread_reset_fn(NULL),
_user_thread_contexts(NULL),
_batch_size(DEFAULT_BATCH_SIZE),
_batch_align(false),
_overrun(false),
_fn(NULL) {
THREAD_MUTEX_INIT(&_mut, NULL);
THREAD_COND_INIT(&_cond, NULL);
......@@ -617,7 +1016,11 @@ class TaskExecutor {
void set_batch_size(size_t batch_size) { _batch_size = batch_size; }
void set_batch_align(size_t batch_align) { _batch_align = batch_align; }
void set_overrun(bool overrun) { _overrun = overrun; }
void set_allow_split_request(bool allow_split_request) {
_allow_split_request = allow_split_request;
}
void set_thread_init_fn(boost::function<int(void*)> init_fn,
void** contexts = NULL) {
......@@ -642,7 +1045,7 @@ class TaskExecutor {
TaskHandler<TaskT> schedule(const void*, void*);
bool move_task_to_batch(BatchTasks<TaskT>& batch); // NOLINT
bool move_task_to_batch(BatchTasks<TaskT>& batchTask); // NOLINT
private:
TaskExecutor(TaskExecutor<TaskT> const& other) = delete;
......@@ -669,7 +1072,8 @@ class TaskExecutor {
std::vector<ThreadContext<TaskT>*> _thread_contexts;
size_t _batch_size;
bool _batch_align;
bool _overrun;
bool _allow_split_request;
boost::function<void(const void*, void*)> _fn;
};
......@@ -687,12 +1091,12 @@ class TaskExecutorVector {
void resize(int size) { _vector_executor.resize(size); }
TaskExecutor<TaskT>& operator[](int index) {
if (_vector_executor.size() <= index || index <= -1) {
LOG(ERROR) << "_vector_executor.size() <= index or <= -1";
throw "_vector_executor.size() <= index or <= -1";
TaskExecutor<TaskT>& operator[](int task_index) {
if (_vector_executor.size() <= task_index || task_index <= -1) {
LOG(ERROR) << "_vector_executor.size() <= task_index or <= -1";
throw "_vector_executor.size() <= task_index or <= -1";
}
return _vector_executor[index];
return _vector_executor[task_index];
}
private:
......@@ -717,8 +1121,8 @@ class TaskManager {
typedef typename TaskT::InVectorT InVectorT;
typedef typename TaskT::OutVectorT OutVectorT;
explicit TaskManager(uint32_t index) // NOLINT
: _model_index(index) {}
explicit TaskManager(uint32_t model_index) // NOLINT
: _model_index(model_index) {}
~TaskManager() { wait(); }
......
......@@ -25,7 +25,8 @@ int ReloadableInferEngine::proc_initialize_impl(
_model_dir = conf.model_dir();
_infer_thread_num = conf.runtime_thread_num();
_infer_batch_size = conf.batch_infer_size();
_infer_batch_align = conf.enable_batch_align();
_infer_overrun = conf.enable_overrun();
_allow_split_request = conf.allow_split_request();
_conf = conf;
......@@ -56,9 +57,6 @@ int ReloadableInferEngine::proc_initialize(const configure::EngineDesc& conf,
}
// init bsf framework
im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index]
.set_thread_init_fn(
boost::bind(&InferEngine::thrd_initialize_impl, this));
im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index]
.set_thread_init_fn(
boost::bind(&InferEngine::thrd_initialize_impl, this));
......@@ -69,8 +67,10 @@ int ReloadableInferEngine::proc_initialize(const configure::EngineDesc& conf,
boost::bind(&InferEngine::task_infer_impl, this, _1, _2));
im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index].set_batch_size(
_infer_batch_size);
im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index].set_batch_align(
_infer_batch_align);
im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index].set_overrun(
_infer_overrun);
im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index]
.set_allow_split_request(_allow_split_request);
if (im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index].start(
_infer_thread_num) != 0) {
LOG(ERROR) << "Failed start bsf executor, threads:" << _infer_thread_num;
......@@ -79,7 +79,8 @@ int ReloadableInferEngine::proc_initialize(const configure::EngineDesc& conf,
LOG(WARNING) << "Enable batch schedule framework, thread_num:"
<< _infer_thread_num << ", batch_size:" << _infer_batch_size
<< ", enable_batch_align:" << _infer_batch_align;
<< ", enable_overrun:" << _infer_overrun
<< ", allow_split_request:" << _allow_split_request;
return 0;
}
......@@ -391,6 +392,11 @@ int VersionedInferEngine::task_infer_impl(const void* in,
return -1;
}
int InferManager::set_taskexecutor_num(size_t total_engine_num) {
im::bsf::TaskExecutorVector<TaskT>::instance().resize(total_engine_num);
return 0;
}
int InferManager::proc_initialize(const char* path,
const char* file,
std::shared_ptr<int> engine_index_ptr) {
......@@ -400,8 +406,6 @@ int InferManager::proc_initialize(const char* path,
return -1;
}
uint32_t engine_num = model_toolkit_conf.engines_size();
im::bsf::TaskExecutorVector<TaskT>::instance().resize(*engine_index_ptr +
engine_num);
for (uint32_t ei = 0; ei < engine_num; ++ei) {
LOG(INFO) << "model_toolkit_conf.engines(" << ei
<< ").name: " << model_toolkit_conf.engines(ei).name();
......
......@@ -135,6 +135,17 @@ int Resource::initialize(const std::string& path, const std::string& file) {
if (FLAGS_enable_model_toolkit) {
size_t model_toolkit_num = resource_conf.model_toolkit_path_size();
// 此处暂时认为,每个model_toolkit仅包含一个engine
// 故认为 model_toolkit_num == engine总数
// 若以后出现model_toolkit仅包含多个engine
// 则应先for循环统计engine总数,再set_taskexecutor_num
// 切不可动态im::bsf::TaskExecutorVector<TaskT>::instance().resize
// TaskExecutor是线程池,内含锁,在engine进程初始化时已开始work加锁循环运行了
// 之后再resize内存搬运,会导致work使用原锁,而搬运后的TaskExecutor的锁内存已改变
if (InferManager::instance().set_taskexecutor_num(model_toolkit_num) != 0) {
LOG(ERROR) << "failed set_taskexecutor_num";
return -1;
}
std::shared_ptr<int> engine_index_ptr(new int(0));
for (size_t mi = 0; mi < model_toolkit_num; ++mi) {
std::string model_toolkit_path = resource_conf.model_toolkit_path(mi);
......
......@@ -52,7 +52,9 @@ Java的HttpClient使用示例见[`java/examples/src/main/java/PaddleServingClien
如果不能满足您的需求,您也可以在此基础上添加一些功能。
如需支持https或者自定义Response的Status Code等,则需要对C++端brpc-Server进行一定的二次开发,请参考https://github.com/apache/incubator-brpc/blob/master/docs/cn/http_service.md,后续如果需求很大,我们也会将这部分功能加入到Server中,尽情期待。
如需支持https或者自定义Response的Status Code等,则需要对C++端brpc-Server进行一定的二次开发,请参考https://github.com/apache/incubator-brpc/blob/master/docs/cn/http_service.md
后续如果需求很大,我们也会将这部分功能加入到Server中,尽情期待。
### curl方式发送Http请求(基本原理)
......
......@@ -23,11 +23,9 @@ args = benchmark_args()
reader = ChineseBertReader({"max_seq_len": 128})
fetch = ["pooled_output"]
client = HttpClient(ip='127.0.0.1', port='9292')
endpoint_list = ['127.0.0.1:9292']
client = HttpClient()
client.load_client_config(args.model)
#client.set_ip('127.0.0.1')
#client.set_port('9292')
'''
if you want use GRPC-client, set_use_grpc_client(True)
or you can directly use client.grpc_client_predict(...)
......@@ -49,6 +47,7 @@ we recommend use Proto data format in HTTP-body, set True(which is default)
if you want use JSON data format in HTTP-body, set False
'''
#client.set_http_proto(True)
client.connect(endpoint_list)
for line in sys.stdin:
feed_dict = reader.process(line)
......
......@@ -20,8 +20,6 @@ import time
client = HttpClient()
client.load_client_config(sys.argv[1])
#client.set_ip('127.0.0.1')
#client.set_port('9393')
'''
if you want use GRPC-client, set_use_grpc_client(True)
or you can directly use client.grpc_client_predict(...)
......@@ -43,13 +41,14 @@ we recommend use Proto data format in HTTP-body, set True(which is default)
if you want use JSON data format in HTTP-body, set False
'''
#client.set_http_proto(True)
client.connect(["127.0.0.1:9393"])
fetch_list = client.get_fetch_names()
import paddle
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500),
batch_size=1)
fetch_list = client.get_fetch_names()
for data in test_reader():
new_data = np.zeros((1, 13)).astype("float32")
new_data[0] = data[0][0]
......
......@@ -18,10 +18,8 @@ from paddle_serving_app.reader import Sequential, URL2Image, Resize
from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
import time
client = HttpClient(ip='127.0.0.1', port='9696')
client = HttpClient()
client.load_client_config(sys.argv[1])
#client.set_ip('127.0.0.1')
#client.set_port('9292')
'''
if you want use GRPC-client, set_use_grpc_client(True)
or you can directly use client.grpc_client_predict(...)
......@@ -43,6 +41,7 @@ we recommend use Proto data format in HTTP-body, set True(which is default)
if you want use JSON data format in HTTP-body, set False
'''
#client.set_http_proto(True)
client.connect(["127.0.0.1:9696"])
label_dict = {}
label_idx = 0
......
......@@ -17,10 +17,8 @@ from paddle_serving_app.reader.imdb_reader import IMDBDataset
import sys
import numpy as np
client = HttpClient(ip='127.0.0.1', port='9292')
client = HttpClient()
client.load_client_config(sys.argv[1])
#client.set_ip('127.0.0.1')
#client.set_port('9292')
'''
if you want use GRPC-client, set_use_grpc_client(True)
or you can directly use client.grpc_client_predict(...)
......@@ -42,6 +40,7 @@ we recommend use Proto data format in HTTP-body, set True(which is default)
if you want use JSON data format in HTTP-body, set False
'''
#client.set_http_proto(True)
client.connect(["127.0.0.1:9292"])
# you can define any english sentence or dataset here
# This example reuses imdb reader in training, you
......
......@@ -21,10 +21,8 @@ import os
import io
import numpy as np
client = HttpClient(ip='127.0.0.1', port='9292')
client = HttpClient()
client.load_client_config(sys.argv[1])
#client.set_ip('127.0.0.1')
#client.set_port('9292')
'''
if you want use GRPC-client, set_use_grpc_client(True)
or you can directly use client.grpc_client_predict(...)
......@@ -46,6 +44,7 @@ we recommend use Proto data format in HTTP-body, set True(which is default)
if you want use JSON data format in HTTP-body, set False
'''
#client.set_http_proto(True)
client.connect(["127.0.0.1:9292"])
reader = LACReader()
for line in sys.stdin:
......
# coding=utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_server.web_service import WebService
from paddle_serving_app.reader import ChineseBertReader
import sys
import os
import numpy as np
class BertService(WebService):
def load(self):
self.reader = ChineseBertReader({
"vocab_file": "vocab.txt",
"max_seq_len": 128
})
def preprocess(self, feed=[], fetch=[]):
feed_res = []
is_batch = False
for ins in feed:
feed_dict = self.reader.process(ins["words"].encode("utf-8"))
for key in feed_dict.keys():
feed_dict[key] = np.array(feed_dict[key]).reshape(
(len(feed_dict[key]), 1))
feed_res.append(feed_dict)
return feed_res, fetch, is_batch
bert_service = BertService(name="bert")
bert_service.load()
bert_service.load_model_config(sys.argv[1])
bert_service.prepare_server(
workdir="workdir", port=int(sys.argv[2]), use_lite=True, use_xpu=True, ir_optim=True)
bert_service.run_rpc_service()
bert_service.run_web_service()
# coding=utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_server.web_service import WebService
from paddle_serving_app.reader import ChineseBertReader
import sys
import os
import numpy as np
class BertService(WebService):
def load(self):
self.reader = ChineseBertReader({
"vocab_file": "vocab.txt",
"max_seq_len": 128
})
def preprocess(self, feed=[], fetch=[]):
feed_res = []
is_batch = False
for ins in feed:
feed_dict = self.reader.process(ins["words"].encode("utf-8"))
for key in feed_dict.keys():
feed_dict[key] = np.array(feed_dict[key]).reshape(
(len(feed_dict[key]), 1))
feed_res.append(feed_dict)
return feed_res, fetch, is_batch
bert_service = BertService(name="bert")
bert_service.load()
bert_service.load_model_config(sys.argv[1])
bert_service.prepare_server(
workdir="workdir", port=int(sys.argv[2]), use_lite=True, use_xpu=True, ir_optim=True)
bert_service.run_rpc_service()
bert_service.run_web_service()
......@@ -23,18 +23,3 @@ The `paddlepaddle` package is used in `test_client.py`, and you may need to down
``` shell
python3 test_client.py uci_housing_client/serving_client_conf.prototxt
```
## HTTP service
### Start server
Start a web service with default web service hosting modules:
``` shell
python3 -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393 --use_lite --use_xpu --ir_optim --name uci
```
### Client prediction
``` shell
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}], "fetch":["price"]}' http://127.0.0.1:9393/uci/prediction
```
......@@ -31,19 +31,3 @@ python3 -m paddle_serving_server.serve --model uci_housing_model --thread 10 --p
``` shell
python3 test_client.py uci_housing_client/serving_client_conf.prototxt
```
## HTTP服务
### 开启服务端
通过下面的一行代码开启默认web服务:
``` shell
python3 -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393 --use_lite --use_xpu --ir_optim --name uci
```
### 客户端预测
``` shell
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}], "fetch":["price"]}' http://127.0.0.1:9393/uci/prediction
```
......@@ -289,6 +289,7 @@ class Client(object):
log_id=0):
self.profile_.record('py_prepro_0')
# fetch 可以为空,此时会取所有的输出结果
if feed is None:
raise ValueError("You should specify feed for prediction")
......@@ -297,6 +298,7 @@ class Client(object):
fetch_list = [fetch]
elif isinstance(fetch, list):
fetch_list = fetch
# fetch 可以为空,此时会取所有的输出结果
elif fetch == None:
pass
else:
......@@ -441,6 +443,7 @@ class Client(object):
model_engine_names = result_batch_handle.get_engine_names()
for mi, engine_name in enumerate(model_engine_names):
result_map = {}
# fetch 为空,则会取所有的输出结果
if len(fetch_names) == 0:
fetch_names = result_batch_handle.get_tensor_alias_names(mi)
# result map needs to be a numpy array
......
......@@ -22,6 +22,7 @@ import gzip
from collections import Iterable
import base64
import sys
import re
import grpc
from .proto import general_model_service_pb2
......@@ -98,7 +99,7 @@ class HttpClient(object):
self.headers["Content-Type"] = "application/proto"
self.max_body_size = 512 * 1024 * 1024
self.use_grpc_client = False
self.url = None
self.http_s = "http://"
# 使用连接池能够不用反复建立连接
self.requests_session = requests.session()
......@@ -170,7 +171,6 @@ class HttpClient(object):
def set_max_body_size(self, max_body_size):
self.max_body_size = max_body_size
self.init_grpc_stub()
def set_timeout_ms(self, timeout_ms):
if not isinstance(timeout_ms, int):
......@@ -183,25 +183,46 @@ class HttpClient(object):
raise ValueError("retry_times must be int type.")
else:
self.requests_session.mount(
'http://', HTTPAdapter(max_retries=retry_times))
def set_ip(self, ip):
self.ip = ip
self.init_grpc_stub()
self.http_s, HTTPAdapter(max_retries=retry_times))
def set_service_name(self, service_name):
self.service_name = service_name
def set_port(self, port):
self.port = port
self.server_port = port
def connect(self, url=None, encryption=False):
if isinstance(url, (list, tuple)):
if len(url) > 1:
raise ValueError("HttpClient only support 1 endpoint")
else:
url = url[0]
if isinstance(url, str):
if url.startswith("https://"):
url = url[8:]
self.http_s = "https://"
if url.startswith("http://"):
url = url[7:]
self.http_s = "http://"
url_parts = url.split(':')
if len(url_parts) != 2 or self.check_ip(url_parts[0]) == False:
raise ValueError(
"url not right, it should be like 127.0.0.1:9393 or http://127.0.0.1:9393"
)
else:
self.ip = url_parts[0]
self.port = url_parts[1]
self.server_port = url_parts[1]
if encryption:
self.get_serving_port()
if self.use_grpc_client:
self.init_grpc_stub()
def set_url(self, url):
if isinstance(url, str):
self.url = url
def check_ip(self, ipAddr):
compile_ip = re.compile(
'^(1\d{2}|2[0-4]\d|25[0-5]|[1-9]\d|[1-9])\.(1\d{2}|2[0-4]\d|25[0-5]|[1-9]\d|\d)\.(1\d{2}|2[0-4]\d|25[0-5]|[1-9]\d|\d)\.(1\d{2}|2[0-4]\d|25[0-5]|[1-9]\d|\d)$'
)
if compile_ip.match(ipAddr):
return True
else:
print("url must be str")
return False
def add_http_headers(self, headers):
if isinstance(headers, dict):
......@@ -229,10 +250,9 @@ class HttpClient(object):
def use_key(self, key_filename):
with open(key_filename, "rb") as f:
self.key = f.read()
self.get_serving_port()
def get_serving_port(self):
encrypt_url = "http://" + str(self.ip) + ":" + str(self.port)
encrypt_url = self.http_s + str(self.ip) + ":" + str(self.port)
if self.key is not None:
req = json.dumps({"key": base64.b64encode(self.key).decode()})
else:
......@@ -481,13 +501,7 @@ class HttpClient(object):
postData = self.process_json_data(feed_dict, fetch_list, batch,
log_id)
web_url = "http://" + self.ip + ":" + self.server_port + self.service_name
if self.url != None:
if "http" not in self.url:
self.url = "http://" + self.url
if "self.service_name" not in self.url:
self.url = self.url + self.service_name
web_url = self.url
web_url = self.http_s + self.ip + ":" + self.server_port + self.service_name
# 当数据区长度大于512字节时才压缩.
self.headers.pop("Content-Encoding", "nokey")
try:
......
......@@ -228,7 +228,8 @@ class Server(object):
engine.batch_infer_size = self.op_max_batch[index %
len(self.op_max_batch)]
engine.enable_batch_align = 1
engine.enable_overrun = False
engine.allow_split_request = True
engine.model_dir = model_config_path
engine.enable_memory_optimization = self.memory_optimization
engine.enable_ir_optimization = self.ir_optimization
......
......@@ -40,9 +40,9 @@ go env -w GO111MODULE=auto
build_whl_list=(build_cpu_server build_gpu_server build_client build_app)
rpc_model_list=(grpc_fit_a_line grpc_yolov4 pipeline_imagenet bert_rpc_gpu bert_rpc_cpu ResNet50_rpc \
lac_rpc cnn_rpc bow_rpc lstm_rpc fit_a_line_rpc deeplabv3_rpc mobilenet_rpc unet_rpc resnetv2_rpc \
lac_rpc_asyn cnn_rpc_asyn bow_rpc lstm_rpc fit_a_line_rpc deeplabv3_rpc mobilenet_rpc unet_rpc resnetv2_rpc \
criteo_ctr_rpc_cpu criteo_ctr_rpc_gpu ocr_rpc yolov4_rpc_gpu faster_rcnn_hrnetv2p_w18_1x_encrypt \
faster_rcnn_model_rpc low_precision_resnet50_int8 ocr_c++_service)
faster_rcnn_model_rpc low_precision_resnet50_int8 ocr_c++_service ocr_c++_service_asyn)
http_model_list=(fit_a_line_http lac_http imdb_http_proto imdb_http_json imdb_grpc ResNet50_http bert_http \
pipeline_ocr_cpu_http)
......@@ -492,7 +492,7 @@ function ResNet101_rpc() {
kill_server_process
}
function cnn_rpc() {
function cnn_rpc_asyn() {
dir=${log_dir}rpc_model/cnn_rpc/
check_dir ${dir}
unsetproxy
......@@ -500,8 +500,9 @@ function cnn_rpc() {
data_dir=${data}imdb/
link_data ${data_dir}
sed -i 's/9292/8865/g' test_client.py
${py_version} -m paddle_serving_server.serve --model imdb_cnn_model/ --port 8865 > ${dir}server_log.txt 2>&1 &
check_result server 5
${py_version} -m paddle_serving_server.serve --model imdb_cnn_model/ --port 8865 --op_num 4 --thread 10 --gpu_ids 0 > ${dir}server_log.txt 2>&1 &
check_result server 8
check_gpu_memory 0
head test_data/part-0 | ${py_version} test_client.py imdb_cnn_client_conf/serving_client_conf.prototxt imdb.vocab > ${dir}client_log.txt 2>&1
check_result client "cnn_CPU_RPC server test completed"
kill_server_process
......@@ -537,7 +538,7 @@ function lstm_rpc() {
kill_server_process
}
function lac_rpc() {
function lac_rpc_asyn() {
dir=${log_dir}rpc_model/lac_rpc/
check_dir ${dir}
unsetproxy
......@@ -545,8 +546,9 @@ function lac_rpc() {
data_dir=${data}lac/
link_data ${data_dir}
sed -i 's/9292/8868/g' lac_client.py
${py_version} -m paddle_serving_server.serve --model lac_model/ --port 8868 > ${dir}server_log.txt 2>&1 &
check_result server 5
${py_version} -m paddle_serving_server.serve --model lac_model/ --port 8868 --gpu_ids 0 --op_num 2 > ${dir}server_log.txt 2>&1 &
check_result server 8
check_gpu_memory 0
echo "我爱北京天安门" | ${py_version} lac_client.py lac_client/serving_client_conf.prototxt lac_dict/ > ${dir}client_log.txt 2>&1
check_result client "lac_CPU_RPC server test completed"
kill_server_process
......@@ -923,6 +925,23 @@ function ocr_c++_service() {
kill_server_process
}
function ocr_c++_service_asyn() {
dir=${log_dir}rpc_model/ocr_c++_serving/
cd ${build_path}/python/examples/ocr
check_dir ${dir}
echo -e "${GREEN_COLOR}OCR_C++_Service_GPU_RPC asyn_server started${RES}"
$py_version -m paddle_serving_server.serve --model ocr_det_model ocr_rec_model --port 9293 --gpu_id 0 --op_num 4 > ${dir}server_log.txt 2>&1 &
check_result server 8
check_gpu_memory 0
echo -e "${GREEN_COLOR}OCR_C++_Service_GPU_RPC client started${RES}"
echo "------------------first:"
$py_version ocr_cpp_client.py ocr_det_client ocr_rec_client
echo "------------------second:"
$py_version ocr_cpp_client.py ocr_det_client ocr_rec_client > ${dir}client_log.txt 2>&1
check_result client "OCR_C++_Service_GPU_RPC server test completed"
kill_server_process
}
function build_all_whl() {
for whl in ${build_whl_list[@]}
do
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册