We consider deploying deep learning inference service online to be a user-facing application in the future. **The goal of this project**: When you have trained a deep neural net with [Paddle](https://github.com/PaddlePaddle/Paddle), you are also capable to deploy the model online easily. A demo of serving is as follows:
We consider deploying deep learning inference service online to be a user-facing application in the future. **The goal of this project**: When you have trained a deep neural net with [Paddle](https://github.com/PaddlePaddle/Paddle), you are also capable to deploy the model online easily. A demo of Paddle Serving is as follows:
<palign="center">
<imgsrc="doc/demo.gif"width="700">
</p>
...
...
@@ -53,7 +53,7 @@ Paddle Serving provides HTTP and RPC based service for users to access
### HTTP service
Paddle Serving provides a built-in python module called `paddle_serving_server.serve` that can start a rpc service or a http service with one-line command. If we specify the argument `--name uci`, it means that we will have a HTTP service with a url of `$IP:$PORT/uci/prediction`
Paddle Serving provides a built-in python module called `paddle_serving_server.serve` that can start a RPC service or a http service with one-line command. If we specify the argument `--name uci`, it means that we will have a HTTP service with a url of `$IP:$PORT/uci/prediction`
A user can also start a rpc service with `paddle_serving_server.serve`. RPC service is usually faster than HTTP service, although a user needs to do some coding based on Paddle Serving's python client API. Note that we do not specify `--name` here.
A user can also start a RPC service with `paddle_serving_server.serve`. RPC service is usually faster than HTTP service, although a user needs to do some coding based on Paddle Serving's python client API. Note that we do not specify `--name` here.