diff --git a/doc/CUBE_LOCAL.md b/doc/CUBE_LOCAL.md index b285e5f3d44cf60daa04195111d6b64ba5c8f7e3..45f3c9933751f9495199fc0065da04f2326792fe 100644 --- a/doc/CUBE_LOCAL.md +++ b/doc/CUBE_LOCAL.md @@ -10,10 +10,11 @@ The local mode of Cube is different from distributed Cube, which is designed to # Example in directory python/example/criteo_ctr_with_cube, run + ``` -sh local_train.py -seq_generaotr ctr_serving_conf/SparseFeatFactors ./cube_model -cube_prepare.sh & +python local_train.py # train model +cp ../../../build_server/core/predictor/seq_generator seq_generator # copy the sequence file generator +cube_prepare.sh & # generate shard file and cube load it ``` you will convert the Sparse Parameters from trained model to the Cube Server. @@ -50,9 +51,10 @@ seq_generator SparseFeatFactor SparseSeqFile For the local version of Cube, the number of shard is 1. run ``` -cube-builder -shard_num 1 -version 0 -input ./input -output ./output +cube-builder -dict_name=test_dict -job_mode=base -last_version=0 -cur_version=0 -depend_version=0 -input_path=./cube_model -output_path=./cube/data -shard_num=1 -only_build=false ``` + ## Deliver to Cube-Server The process of the cube local version is very simple, you only need to store the index files. in ./data folder where the cube binary program is located.