Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
50e84d55
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
50e84d55
编写于
3月 31, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update doc
上级
65f9d082
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
75 addition
and
95 deletion
+75
-95
doc/HOT_LOADING_IN_SERVING_CN.md
doc/HOT_LOADING_IN_SERVING_CN.md
+75
-95
未找到文件。
doc/HOT_LOADING_IN_SERVING_CN.md
浏览文件 @
50e84d55
...
...
@@ -2,31 +2,44 @@
## 背景
在实际的工业场景下,通常是
定期不间断产出模型,服务端需要在服务不中断的情况下按时更新迭代模型
。
在实际的工业场景下,通常是
远端定期不间断产出模型,线上服务端需要在服务不中断的情况下拉取新模型对旧模型进行更新迭代
。
这里用本地搭建FTP的形式,模拟监控远程模型,拉取更新本地模型,来展示Paddle Serving的模型热加载功能。
Paddle Serving目前支持下面几种类型的远端监控Monitor:
## 示例
| Monitor类型 | 描述 | 特殊选项 |
| :---------: | :----------------------------------------: | :----------------------------------------------------------: |
| General | 远端无认证,可以通过
`wget`
直接访问下载文件 |
`--general_host`
通用远端host |
| HDFS | 远端为HDFS,通过HDFS二进制执行相关命令 |
`--hdfs_bin`
HDFS二进制的位置 |
| FTP | 远端为FTP,可以通过用户名、密码访问 |
`--ftp_host`
FTP host
<br>
`--ftp_port`
FTP port
<br>
`--ftp_username`
FTP username
<br>
`--ftp_password`
FTP password |
| AFS | TODO | TODO |
示例目录结构,示例中用
`local_path`
来模拟本地,用
`remote_path`
来模拟远程:
| Monitor通用选项 | 描述 |
| :----------------------: | :----------------------------------------------------------: |
|
`--type`
| 指定Monitor类型 |
|
`--remote_path`
| 指定远端的基础路径 |
|
`--remote_model_name`
| 指定远端需要拉取的模型名 |
|
`--remote_donefile_name`
| 指定远端标志模型更新完毕的donefile文件名 |
|
`--local_path`
| 指定本地工作路径 |
|
`--local_model_name`
| 指定本地模型名 |
|
`--local_timestamp_file`
| 指定本地用于热加载的时间戳文件,该文件被认为在
`local_path/local_model_name`
下。默认为
`fluid_time_file`
|
|
`--local_tmp_path`
| 指定本地存放临时文件的文件夹路径。默认为
`_serving_monitor_tmp`
,若不存在则自动创建 |
|
`--interval`
| 指定轮询间隔时间 |
```
shell
.
├── local_path
└── remote_path
```
下面通过HDFSMonitor示例来展示Paddle Serving的模型热加载功能。
##
# 远程部分
##
HDFSMonitor示例
进入
`remote_path`
文件夹
:
示例中在
`product_path`
中生产模型上传至hdfs,在
`server_path`
中模拟服务端模型热加载
:
```
shell
cd
remote_path
.
├── server_path
└── product_path
```
###
# 生产远程
模型
###
生产
模型
运行下面的Python代码生产模型
。
在
`product_path`
下运行下面的Python代码生产模型,每隔 60 秒会产出 Boston 房价预测模型
`uci_housing_model`
并上传至hdfs的
`/`
路径下,上传完毕后更新时间戳文件
`donefile`
并上传至hdfs的
`/`
路径下
。
```
python
import
os
...
...
@@ -59,6 +72,11 @@ feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
def
push_to_hdfs
(
local_file_path
,
remote_path
):
hdfs_bin
=
'hdfs'
os
.
system
(
'{} dfs -put -f {} {}'
.
format
(
hdfs_bin
,
local_file_path
,
remote_path
))
for
pass_id
in
range
(
30
):
for
data_train
in
train_reader
():
avg_loss_value
,
=
exe
.
run
(
fluid
.
default_main_program
(),
...
...
@@ -68,37 +86,23 @@ for pass_id in range(30):
serving_io
.
save_model
(
"uci_housing_model"
,
"uci_housing_client"
,
{
"x"
:
x
},
{
"price"
:
y_predict
},
fluid
.
default_main_program
())
push_to_hdfs
(
'uci_housing_model'
,
'/'
)
os
.
system
(
'touch donefile'
)
p
rint
(
'save {}'
.
format
(
pass_id
)
)
p
ush_to_hdfs
(
'donefile'
,
'/'
)
```
上面的代码会每隔 60 秒在当前目录下产出 Boston 房价预测模型
`uci_housing_model`
,并在每次产出后更新时间戳文件
`donefile`
:
hdfs上的文件如下列所示
:
```
shell
.
├── donefile
# timestamp file
├── produce_model.py
├── uci_housing_client
└── uci_housing_model
# output model
```
bash
# hdfs dfs -ls /
Found 2 items
-rw-r--r--
1 root supergroup 0 2020-03-30 09:27 /donefile
drwxr-xr-x - root supergroup 0 2020-03-30 09:27 /uci_housing_model
```
###
# 启动FTP服务
###
服务端加载模型
这里使用
`pyftpdlib`
开启FTP服务,执行下面的命令(您可能需要使用
`pip install pyftpdlib `
来安装相关的库):
```
shell
python
-m
pyftpdlib
-p
8080
```
### 本地部分
进入
`local_path`
文件夹:
```
shell
cd
local_path
```
进入
`server_path`
文件夹。
#### 用初始模型启动Server端
...
...
@@ -117,13 +121,22 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
#### 执行监控程序
用下面的命令来执行
监控程序,通过轮询方式监控远程地址的时间戳文件
`donefile`
,当时间戳变更则认为远程模型已经更新,将远程模型拉取到本地临时路径下(默认为
`./tmp`
),更新本地模型以及Paddle Serving的时间戳文件
`fluid_time_file`
:
用下面的命令来执行
HDFS监控程序
:
```
shell
python
-m
paddle_serving_server.monitor
--type
=
'ftp'
--ftp_ip
=
'127.0.0.1'
--ftp_port
=
'8080'
--remote_path
=
'/'
--remote_model_name
=
'uci_housing_model'
--remote_donefile_name
=
'donefile'
--local_path
=
'./'
--local_model_name
=
'uci_housing_model'
--local_donefile_name
=
'fluid_time_file'
--local_tmp_dir
=
'tmp'
python
-m
paddle_serving_server.monitor
\
--type
=
'hdfs'
\
--hdfs_bin
=
'hdfs'
\
--remote_path
=
'/'
\
--remote_model_name
=
'uci_housing_model'
\
--remote_donefile_name
=
'donefile'
\
--local_path
=
'.'
\
--local_model_name
=
'uci_housing_model'
\
--local_timestamp_file
=
'fluid_time_file'
\
--local_tmp_path
=
'_tmp'
```
上面
的代码会监控远程路径
`ftp://127.0.0.1:8080/`
下的
`donefile`
文件来判断远程模型是否更新,若已经更新则将远程模型
`ftp://127.0.0.1:8080/uci_housing_model`
拉取到本地
`./tmp`
路径下,之后更新本地路径的模型
`./uci_housing_model`
,并更新
Paddle Serving的时间戳文件
`./uci_housing_model/fluid_time_file`
。
上面
代码通过轮询方式监控远程HDFS地址
`/`
的时间戳文件
`/donefile`
,当时间戳变更则认为远程模型已经更新,将远程模型
`/uci_housing_model`
拉取到本地临时路径
`./_tmp/uci_housing_model`
下,更新本地模型
`./uci_housing_model`
以及
Paddle Serving的时间戳文件
`./uci_housing_model/fluid_time_file`
。
#### 查看Server日志
...
...
@@ -136,58 +149,25 @@ tail -f log/serving.INFO
日志中显示模型已经被热加载:
```
shell
W0327 19:00:38.498729 5559 infer.h:509] td_core[0x7f20e8068f10] clone model from pd_core[0x7f20e8005f90] succ, cur_idx[1].
W0327 19:00:38.498737 5559 infer.h:489] Succ load clone model, path[uci_housing_model]
W0327 19:00:38.498744 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:00:38.498752 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:00:48.498860 5559 server.cpp:150] Begin reload framework...
W0327 19:00:48.498947 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:00:48.498970 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:00:58.499076 5559 server.cpp:150] Begin reload framework...
W0327 19:00:58.499167 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:00:58.499181 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:01:08.499277 5559 server.cpp:150] Begin reload framework...
W0327 19:01:08.499366 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:01:08.499379 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:01:18.499492 5559 server.cpp:150] Begin reload framework...
W0327 19:01:18.499637 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:01:18.499655 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:01:28.499745 5559 server.cpp:150] Begin reload framework...
W0327 19:01:28.499814 5559 infer.h:250] begin reload model[uci_housing_model].
I0327 19:01:28.500083 5559 infer.h:66] InferEngineCreationParams: model_path
=
uci_housing_model, enable_memory_optimization
=
0, static_optimization
=
0, force_update_static_cache
=
0
I0327 19:01:28.500160 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.500176 5559 init.cc:159] AVX is available, Please re-compile on
local
machine
I0327 19:01:28.500628 5559 analysis_predictor.cc:833] MODEL VERSION: 0.0.0
I0327 19:01:28.500653 5559 analysis_predictor.cc:835] PREDICTOR VERSION: 1.7.1
I0327 19:01:28.502399 5559 graph_pattern_detector.cc:101]
---
detected 1 subgraphs
I0327 19:01:28.504007 5559 analysis_predictor.cc:462]
=======
optimize end
=======
W0327 19:01:28.504101 5559 infer.h:472] Succ load common model[0x7f20e806b8b0], path[uci_housing_model].
I0327 19:01:28.504154 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504194 5559 infer.h:509] td_core[0x7f20e80b9680] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504287 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504330 5559 infer.h:509] td_core[0x7f20e80bf1e0] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504365 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504403 5559 infer.h:509] td_core[0x7f20e80af2a0] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504436 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504483 5559 infer.h:509] td_core[0x7f20e8004a00] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504516 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504551 5559 infer.h:509] td_core[0x7f20e80a8960] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504580 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504611 5559 infer.h:509] td_core[0x7f20e80a4bd0] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504639 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504669 5559 infer.h:509] td_core[0x7f20e80b8f20] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504699 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504730 5559 infer.h:509] td_core[0x7f20e80a4ab0] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504760 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504796 5559 infer.h:509] td_core[0x7f20e807ee40] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504827 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504904 5559 infer.h:509] td_core[0x7f20e8085900] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.505043 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.505097 5559 infer.h:509] td_core[0x7f20e8088500] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
W0327 19:01:28.505110 5559 infer.h:489] Succ load clone model, path[uci_housing_model]
W0327 19:01:28.505120 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:01:28.505131 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:01:38.505468 5559 server.cpp:150] Begin reload framework...
W0327 19:01:38.505568 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:01:38.505584 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0330 09:38:40.087316 7361 server.cpp:150] Begin reload framework...
W0330 09:38:40.087399 7361 infer.h:656] Succ reload version engine: 18446744073709551615
I0330 09:38:40.087414 7361 manager.h:131] Finish reload 1 workflow
(
s
)
I0330 09:38:50.087535 7361 server.cpp:150] Begin reload framework...
W0330 09:38:50.087641 7361 infer.h:250] begin reload model[uci_housing_model].
I0330 09:38:50.087972 7361 infer.h:66] InferEngineCreationParams: model_path
=
uci_housing_model, enable_memory_optimization
=
0, static_optimization
=
0, force_update_static_cache
=
0
I0330 09:38:50.088027 7361 analysis_predictor.cc:88] Profiler is deactivated, and no profiling report will be generated.
I0330 09:38:50.088393 7361 analysis_predictor.cc:841] MODEL VERSION: 1.7.1
I0330 09:38:50.088413 7361 analysis_predictor.cc:843] PREDICTOR VERSION: 1.6.3
I0330 09:38:50.089519 7361 graph_pattern_detector.cc:96]
---
detected 1 subgraphs
I0330 09:38:50.090925 7361 analysis_predictor.cc:470]
=======
optimize end
=======
W0330 09:38:50.090986 7361 infer.h:472] Succ load common model[0x7fc83c06abd0], path[uci_housing_model].
I0330 09:38:50.091022 7361 analysis_predictor.cc:88] Profiler is deactivated, and no profiling report will be generated.
W0330 09:38:50.091050 7361 infer.h:509] td_core[0x7fc83c0ad770] clone model from pd_core[0x7fc83c06abd0] succ, cur_idx[0].
...
W0330 09:38:50.091784 7361 infer.h:489] Succ load clone model, path[uci_housing_model]
W0330 09:38:50.091794 7361 infer.h:656] Succ reload version engine: 18446744073709551615
I0330 09:38:50.091820 7361 manager.h:131] Finish reload 1 workflow
(
s
)
I0330 09:39:00.091987 7361 server.cpp:150] Begin reload framework...
W0330 09:39:00.092161 7361 infer.h:656] Succ reload version engine: 18446744073709551615
I0330 09:39:00.092177 7361 manager.h:131] Finish reload 1 workflow
(
s
)
```
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录