Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
4ee4f83b
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4ee4f83b
编写于
4月 13, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
recover code
上级
bde4471c
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
702 addition
and
0 deletion
+702
-0
core/general-server/op/general_copy_op.cpp
core/general-server/op/general_copy_op.cpp
+102
-0
core/general-server/op/general_copy_op.h
core/general-server/op/general_copy_op.h
+47
-0
core/general-server/op/general_dist_kv_infer_op.cpp
core/general-server/op/general_dist_kv_infer_op.cpp
+173
-0
core/general-server/op/general_dist_kv_infer_op.h
core/general-server/op/general_dist_kv_infer_op.h
+46
-0
core/general-server/op/general_dist_kv_quant_infer_op.cpp
core/general-server/op/general_dist_kv_quant_infer_op.cpp
+204
-0
core/general-server/op/general_dist_kv_quant_infer_op.h
core/general-server/op/general_dist_kv_quant_infer_op.h
+46
-0
ensemble-demo/client.py
ensemble-demo/client.py
+41
-0
ensemble-demo/server.py
ensemble-demo/server.py
+43
-0
未找到文件。
core/general-server/op/general_copy_op.cpp
0 → 100644
浏览文件 @
4ee4f83b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_copy_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/util/include/timer.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
FeedInst
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralCopyOp
::
inference
()
{
// reade request from client
const
std
::
vector
<
std
::
string
>
pre_node_names
=
pre_names
();
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
return
-
1
;
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
VLOG
(
2
)
<<
"precedent name: "
<<
pre_name
;
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
VLOG
(
2
)
<<
"input size: "
<<
in
->
size
();
int
batch_size
=
input_blob
->
GetBatchSize
();
int
input_var_num
=
0
;
GeneralBlob
*
res
=
mutable_data
<
GeneralBlob
>
();
TensorVector
*
out
=
&
res
->
tensor_vector
;
VLOG
(
2
)
<<
"input batch size: "
<<
batch_size
;
res
->
SetBatchSize
(
batch_size
);
if
(
!
res
)
{
LOG
(
ERROR
)
<<
"Failed get op tls reader object output"
;
}
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
VLOG
(
2
)
<<
"Going to init lod tensor"
;
for
(
int
i
=
0
;
i
<
in
->
size
();
++
i
)
{
paddle
::
PaddleTensor
lod_tensor
;
CopyLod
(
&
in
->
at
(
i
),
&
lod_tensor
);
lod_tensor
.
dtype
=
in
->
at
(
i
).
dtype
;
lod_tensor
.
name
=
in
->
at
(
i
).
name
;
VLOG
(
2
)
<<
"lod tensor ["
<<
i
<<
"].name = "
<<
lod_tensor
.
name
;
out
->
push_back
(
lod_tensor
);
}
VLOG
(
2
)
<<
"pack done."
;
for
(
int
i
=
0
;
i
<
out
->
size
();
++
i
)
{
int64_t
*
src_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
i
).
data
.
data
());
out
->
at
(
i
).
data
.
Resize
(
out
->
at
(
i
).
lod
[
0
].
back
()
*
sizeof
(
int64_t
));
out
->
at
(
i
).
shape
=
{
out
->
at
(
i
).
lod
[
0
].
back
(),
1
};
int64_t
*
tgt_ptr
=
static_cast
<
int64_t
*>
(
out
->
at
(
i
).
data
.
data
());
for
(
int
j
=
0
;
j
<
out
->
at
(
i
).
lod
[
0
].
back
();
++
j
)
{
tgt_ptr
[
j
]
=
src_ptr
[
j
];
}
}
VLOG
(
2
)
<<
"output done."
;
timeline
.
Pause
();
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
res
);
AddBlobInfo
(
res
,
start
);
AddBlobInfo
(
res
,
end
);
VLOG
(
2
)
<<
"read data from client success"
;
return
0
;
}
DEFINE_OP
(
GeneralCopyOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_copy_op.h
0 → 100644
浏览文件 @
4ee4f83b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/framework/resource.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
class
GeneralCopyOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralCopyOp
);
int
inference
();
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_dist_kv_infer_op.cpp
0 → 100755
浏览文件 @
4ee4f83b
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_dist_kv_infer_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include <unordered_map>
#include <utility>
#include "core/cube/cube-api/include/cube_api.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
FetchInst
;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralDistKVInferOp
::
inference
()
{
VLOG
(
2
)
<<
"Going to run inference"
;
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
return
-
1
;
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
VLOG
(
2
)
<<
"Get precedent op name: "
<<
pre_name
;
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op:"
<<
pre_name
;
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
GetBatchSize
();
VLOG
(
2
)
<<
"input batch size: "
<<
batch_size
;
std
::
vector
<
uint64_t
>
keys
;
std
::
vector
<
rec
::
mcube
::
CubeValue
>
values
;
int
sparse_count
=
0
;
int
dense_count
=
0
;
std
::
vector
<
std
::
pair
<
int64_t
*
,
size_t
>>
dataptr_size_pairs
;
size_t
key_len
=
0
;
for
(
size_t
i
=
0
;
i
<
in
->
size
();
++
i
)
{
if
(
in
->
at
(
i
).
dtype
!=
paddle
::
PaddleDType
::
INT64
)
{
++
dense_count
;
continue
;
}
++
sparse_count
;
size_t
elem_num
=
1
;
for
(
size_t
s
=
0
;
s
<
in
->
at
(
i
).
shape
.
size
();
++
s
)
{
elem_num
*=
in
->
at
(
i
).
shape
[
s
];
}
key_len
+=
elem_num
;
int64_t
*
data_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
i
).
data
.
data
());
dataptr_size_pairs
.
push_back
(
std
::
make_pair
(
data_ptr
,
elem_num
));
}
keys
.
resize
(
key_len
);
int
key_idx
=
0
;
for
(
size_t
i
=
0
;
i
<
dataptr_size_pairs
.
size
();
++
i
)
{
std
::
copy
(
dataptr_size_pairs
[
i
].
first
,
dataptr_size_pairs
[
i
].
first
+
dataptr_size_pairs
[
i
].
second
,
keys
.
begin
()
+
key_idx
);
key_idx
+=
dataptr_size_pairs
[
i
].
second
;
}
rec
::
mcube
::
CubeAPI
*
cube
=
rec
::
mcube
::
CubeAPI
::
instance
();
std
::
vector
<
std
::
string
>
table_names
=
cube
->
get_table_names
();
if
(
table_names
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"cube init error or cube config not given."
;
return
-
1
;
}
int
ret
=
cube
->
seek
(
table_names
[
0
],
keys
,
&
values
);
if
(
values
.
size
()
!=
keys
.
size
()
||
values
[
0
].
buff
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"cube value return null"
;
}
size_t
EMBEDDING_SIZE
=
values
[
0
].
buff
.
size
()
/
sizeof
(
float
);
TensorVector
sparse_out
;
sparse_out
.
resize
(
sparse_count
);
TensorVector
dense_out
;
dense_out
.
resize
(
dense_count
);
int
cube_val_idx
=
0
;
int
sparse_idx
=
0
;
int
dense_idx
=
0
;
std
::
unordered_map
<
int
,
int
>
in_out_map
;
baidu
::
paddle_serving
::
predictor
::
Resource
&
resource
=
baidu
::
paddle_serving
::
predictor
::
Resource
::
instance
();
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
();
for
(
size_t
i
=
0
;
i
<
in
->
size
();
++
i
)
{
if
(
in
->
at
(
i
).
dtype
!=
paddle
::
PaddleDType
::
INT64
)
{
dense_out
[
dense_idx
]
=
in
->
at
(
i
);
++
dense_idx
;
continue
;
}
sparse_out
[
sparse_idx
].
lod
.
resize
(
in
->
at
(
i
).
lod
.
size
());
for
(
size_t
x
=
0
;
x
<
sparse_out
[
sparse_idx
].
lod
.
size
();
++
x
)
{
sparse_out
[
sparse_idx
].
lod
[
x
].
resize
(
in
->
at
(
i
).
lod
[
x
].
size
());
std
::
copy
(
in
->
at
(
i
).
lod
[
x
].
begin
(),
in
->
at
(
i
).
lod
[
x
].
end
(),
sparse_out
[
sparse_idx
].
lod
[
x
].
begin
());
}
sparse_out
[
sparse_idx
].
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
sparse_out
[
sparse_idx
].
shape
.
push_back
(
sparse_out
[
sparse_idx
].
lod
[
0
].
back
());
sparse_out
[
sparse_idx
].
shape
.
push_back
(
EMBEDDING_SIZE
);
sparse_out
[
sparse_idx
].
name
=
model_config
->
_feed_name
[
i
];
sparse_out
[
sparse_idx
].
data
.
Resize
(
sparse_out
[
sparse_idx
].
lod
[
0
].
back
()
*
EMBEDDING_SIZE
*
sizeof
(
float
));
float
*
dst_ptr
=
static_cast
<
float
*>
(
sparse_out
[
sparse_idx
].
data
.
data
());
for
(
int
x
=
0
;
x
<
sparse_out
[
sparse_idx
].
lod
[
0
].
back
();
++
x
)
{
float
*
data_ptr
=
dst_ptr
+
x
*
EMBEDDING_SIZE
;
memcpy
(
data_ptr
,
values
[
cube_val_idx
].
buff
.
data
(),
values
[
cube_val_idx
].
buff
.
size
());
cube_val_idx
++
;
}
++
sparse_idx
;
}
TensorVector
infer_in
;
infer_in
.
insert
(
infer_in
.
end
(),
dense_out
.
begin
(),
dense_out
.
end
());
infer_in
.
insert
(
infer_in
.
end
(),
sparse_out
.
begin
(),
sparse_out
.
end
());
output_blob
->
SetBatchSize
(
batch_size
);
VLOG
(
2
)
<<
"infer batch size: "
<<
batch_size
;
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
if
(
InferManager
::
instance
().
infer
(
GENERAL_MODEL_NAME
,
&
infer_in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
GENERAL_MODEL_NAME
;
return
-
1
;
}
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
start
);
AddBlobInfo
(
output_blob
,
end
);
return
0
;
}
DEFINE_OP
(
GeneralDistKVInferOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_dist_kv_infer_op.h
0 → 100644
浏览文件 @
4ee4f83b
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
class
GeneralDistKVInferOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralDistKVInferOp
);
int
inference
();
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_dist_kv_quant_infer_op.cpp
0 → 100644
浏览文件 @
4ee4f83b
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_dist_kv_quant_infer_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include <unordered_map>
#include <utility>
#include "core/cube/cube-api/include/cube_api.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/predictor/tools/quant.h"
#include "core/util/include/timer.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
FetchInst
;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralDistKVQuantInferOp
::
inference
()
{
VLOG
(
2
)
<<
"Going to run inference"
;
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
return
-
1
;
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
VLOG
(
2
)
<<
"Get precedent op name: "
<<
pre_name
;
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op:"
<<
pre_name
;
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
GetBatchSize
();
VLOG
(
2
)
<<
"input batch size: "
<<
batch_size
;
std
::
vector
<
uint64_t
>
keys
;
std
::
vector
<
rec
::
mcube
::
CubeValue
>
values
;
int
sparse_count
=
0
;
int
dense_count
=
0
;
std
::
vector
<
std
::
pair
<
int64_t
*
,
size_t
>>
dataptr_size_pairs
;
size_t
key_len
=
0
;
for
(
size_t
i
=
0
;
i
<
in
->
size
();
++
i
)
{
if
(
in
->
at
(
i
).
dtype
!=
paddle
::
PaddleDType
::
INT64
)
{
++
dense_count
;
continue
;
}
++
sparse_count
;
size_t
elem_num
=
1
;
for
(
size_t
s
=
0
;
s
<
in
->
at
(
i
).
shape
.
size
();
++
s
)
{
elem_num
*=
in
->
at
(
i
).
shape
[
s
];
}
key_len
+=
elem_num
;
int64_t
*
data_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
i
).
data
.
data
());
dataptr_size_pairs
.
push_back
(
std
::
make_pair
(
data_ptr
,
elem_num
));
}
keys
.
resize
(
key_len
);
int
key_idx
=
0
;
for
(
size_t
i
=
0
;
i
<
dataptr_size_pairs
.
size
();
++
i
)
{
std
::
copy
(
dataptr_size_pairs
[
i
].
first
,
dataptr_size_pairs
[
i
].
first
+
dataptr_size_pairs
[
i
].
second
,
keys
.
begin
()
+
key_idx
);
key_idx
+=
dataptr_size_pairs
[
i
].
second
;
}
rec
::
mcube
::
CubeAPI
*
cube
=
rec
::
mcube
::
CubeAPI
::
instance
();
std
::
vector
<
std
::
string
>
table_names
=
cube
->
get_table_names
();
if
(
table_names
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"cube init error or cube config not given."
;
return
-
1
;
}
int
ret
=
cube
->
seek
(
table_names
[
0
],
keys
,
&
values
);
if
(
values
.
size
()
!=
keys
.
size
()
||
values
[
0
].
buff
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"cube value return null"
;
}
TensorVector
sparse_out
;
sparse_out
.
resize
(
sparse_count
);
TensorVector
dense_out
;
dense_out
.
resize
(
dense_count
);
int
cube_val_idx
=
0
;
int
sparse_idx
=
0
;
int
dense_idx
=
0
;
std
::
unordered_map
<
int
,
int
>
in_out_map
;
baidu
::
paddle_serving
::
predictor
::
Resource
&
resource
=
baidu
::
paddle_serving
::
predictor
::
Resource
::
instance
();
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
();
int
cube_quant_bits
=
resource
.
get_cube_quant_bits
();
size_t
EMBEDDING_SIZE
=
0
;
if
(
cube_quant_bits
==
0
)
{
EMBEDDING_SIZE
=
values
[
0
].
buff
.
size
()
/
sizeof
(
float
);
}
else
{
EMBEDDING_SIZE
=
values
[
0
].
buff
.
size
()
-
2
*
sizeof
(
float
);
}
for
(
size_t
i
=
0
;
i
<
in
->
size
();
++
i
)
{
if
(
in
->
at
(
i
).
dtype
!=
paddle
::
PaddleDType
::
INT64
)
{
dense_out
[
dense_idx
]
=
in
->
at
(
i
);
++
dense_idx
;
continue
;
}
sparse_out
[
sparse_idx
].
lod
.
resize
(
in
->
at
(
i
).
lod
.
size
());
for
(
size_t
x
=
0
;
x
<
sparse_out
[
sparse_idx
].
lod
.
size
();
++
x
)
{
sparse_out
[
sparse_idx
].
lod
[
x
].
resize
(
in
->
at
(
i
).
lod
[
x
].
size
());
std
::
copy
(
in
->
at
(
i
).
lod
[
x
].
begin
(),
in
->
at
(
i
).
lod
[
x
].
end
(),
sparse_out
[
sparse_idx
].
lod
[
x
].
begin
());
}
sparse_out
[
sparse_idx
].
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
sparse_out
[
sparse_idx
].
shape
.
push_back
(
sparse_out
[
sparse_idx
].
lod
[
0
].
back
());
sparse_out
[
sparse_idx
].
shape
.
push_back
(
EMBEDDING_SIZE
);
sparse_out
[
sparse_idx
].
name
=
model_config
->
_feed_name
[
i
];
sparse_out
[
sparse_idx
].
data
.
Resize
(
sparse_out
[
sparse_idx
].
lod
[
0
].
back
()
*
EMBEDDING_SIZE
*
sizeof
(
float
));
// END HERE
float
*
dst_ptr
=
static_cast
<
float
*>
(
sparse_out
[
sparse_idx
].
data
.
data
());
for
(
int
x
=
0
;
x
<
sparse_out
[
sparse_idx
].
lod
[
0
].
back
();
++
x
)
{
float
*
data_ptr
=
dst_ptr
+
x
*
EMBEDDING_SIZE
;
if
(
cube_quant_bits
==
0
)
{
memcpy
(
data_ptr
,
values
[
cube_val_idx
].
buff
.
data
(),
values
[
cube_val_idx
].
buff
.
size
());
}
else
{
// min (float), max (float), num, num, num... (Byte)
size_t
num_of_float
=
values
[
cube_val_idx
].
buff
.
size
()
-
2
*
sizeof
(
float
);
float
*
float_ptr
=
new
float
[
num_of_float
];
char
*
src_ptr
=
new
char
[
values
[
cube_val_idx
].
buff
.
size
()];
memcpy
(
src_ptr
,
values
[
cube_val_idx
].
buff
.
data
(),
values
[
cube_val_idx
].
buff
.
size
());
float
*
minmax
=
reinterpret_cast
<
float
*>
(
src_ptr
);
dequant
(
src_ptr
+
2
*
sizeof
(
float
),
float_ptr
,
minmax
[
0
],
minmax
[
1
],
num_of_float
,
cube_quant_bits
);
memcpy
(
data_ptr
,
float_ptr
,
sizeof
(
float
)
*
num_of_float
);
delete
float_ptr
;
delete
src_ptr
;
}
cube_val_idx
++
;
}
++
sparse_idx
;
}
TensorVector
infer_in
;
infer_in
.
insert
(
infer_in
.
end
(),
dense_out
.
begin
(),
dense_out
.
end
());
infer_in
.
insert
(
infer_in
.
end
(),
sparse_out
.
begin
(),
sparse_out
.
end
());
output_blob
->
SetBatchSize
(
batch_size
);
VLOG
(
2
)
<<
"infer batch size: "
<<
batch_size
;
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
if
(
InferManager
::
instance
().
infer
(
GENERAL_MODEL_NAME
,
&
infer_in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
GENERAL_MODEL_NAME
;
return
-
1
;
}
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
start
);
AddBlobInfo
(
output_blob
,
end
);
return
0
;
}
DEFINE_OP
(
GeneralDistKVQuantInferOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_dist_kv_quant_infer_op.h
0 → 100644
浏览文件 @
4ee4f83b
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
class
GeneralDistKVQuantInferOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralDistKVQuantInferOp
);
int
inference
();
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
ensemble-demo/client.py
0 → 100644
浏览文件 @
4ee4f83b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
paddle_serving_client
import
Client
from
imdb_reader
import
IMDBDataset
import
sys
client
=
Client
()
client
.
load_client_config
(
'imdb_bow_client_conf/serving_client_conf.prototxt'
)
client
.
connect
([
"127.0.0.1:9393"
])
# you can define any english sentence or dataset here
# This example reuses imdb reader in training, you
# can define your own data preprocessing easily.
imdb_dataset
=
IMDBDataset
()
imdb_dataset
.
load_resource
(
'imdb.vocab'
)
for
i
in
range
(
400
):
line
=
'i am very sad | 0'
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
feed
=
{
"words"
:
word_ids
}
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
fetch_maps
=
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
if
len
(
fetch_maps
)
==
1
:
print
(
"step: {}, res: {}"
.
format
(
i
,
fetch_maps
[
'prediction'
][
1
]))
else
:
for
mi
,
fetch_map
in
enumerate
(
fetch_maps
):
print
(
"step: {}, model: {}, res: {}"
.
format
(
i
,
mi
,
fetch_map
[
'prediction'
][
1
]))
# print('bow: 0.633530199528, cnn: 0.560272455215')
# exit(0)
ensemble-demo/server.py
0 → 100644
浏览文件 @
4ee4f83b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import
os
import
sys
from
paddle_serving_server
import
OpMaker
from
paddle_serving_server
import
OpSeqMaker
from
paddle_serving_server
import
Server
op_maker
=
OpMaker
()
read_op
=
op_maker
.
create
(
'general_reader'
)
g1_infer_op
=
op_maker
.
create
(
'general_infer'
,
node_name
=
'g1'
)
g2_infer_op
=
op_maker
.
create
(
'general_infer'
,
node_name
=
'g2'
)
# add_op = op_maker.create('general_add')
response_op
=
op_maker
.
create
(
'general_response'
)
op_seq_maker
=
OpSeqMaker
()
op_seq_maker
.
add_op
(
read_op
)
op_seq_maker
.
add_op
(
g1_infer_op
,
dependent_nodes
=
[
read_op
])
op_seq_maker
.
add_op
(
g2_infer_op
,
dependent_nodes
=
[
read_op
])
# op_seq_maker.add_op(add_op, dependent_nodes=[g1_infer_op, g2_infer_op])
# op_seq_maker.add_op(response_op, dependent_nodes=[add_op])
op_seq_maker
.
add_op
(
response_op
,
dependent_nodes
=
[
g1_infer_op
,
g2_infer_op
])
server
=
Server
()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
# server.load_model_config(sys.argv[1])
model_configs
=
{
'g1'
:
'imdb_cnn_model'
,
'g2'
:
'imdb_bow_model'
}
server
.
load_model_config
(
model_configs
)
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
9393
,
device
=
"cpu"
)
server
.
run_server
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录