diff --git a/doc/Latest_Packages_CN.md b/doc/Latest_Packages_CN.md index 8f0d1e5789f0b0c357c51e2c90fd173d7141b1fb..efd26bc805ee0ac6ba083a32c8197d0499f35445 100644 --- a/doc/Latest_Packages_CN.md +++ b/doc/Latest_Packages_CN.md @@ -41,31 +41,10 @@ https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.0.0-py3-none-any.whl ``` -## Baidu Kunlun user -for kunlun user who uses arm-xpu or x86-xpu can download the wheel packages as follows. Users should use the xpu-beta docker [DOCKER IMAGES](./Docker_Images_CN.md) -**We only support Python 3.6 for Kunlun Users.** - -### Wheel Package Links - -for arm kunlun user -``` -https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_server_xpu-0.7.0.post2-cp36-cp36m-linux_aarch64.whl -https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_client-0.7.0-cp36-cp36m-linux_aarch64.whl -https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_app-0.7.0-cp36-cp36m-linux_aarch64.whl -``` - -for x86 kunlun user -``` -https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_server_xpu-0.7.0.post2-cp36-cp36m-linux_x86_64.whl -https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_client-0.7.0-cp36-cp36m-linux_x86_64.whl -https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_app-0.7.0-cp36-cp36m-linux_x86_64.whl -``` - - -### Binary Package +## Binary Package for most users, we do not need to read this section. But if you deploy your Paddle Serving on a machine without network, you will encounter a problem that the binary executable tar file cannot be downloaded. Therefore, here we give you all the download links for various environment. -#### Bin links +### Bin links ``` # CPU AVX MKL https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-mkl-0.0.0.tar.gz @@ -83,9 +62,32 @@ https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-1028-0.0.0.tar.gz https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-112-0.0.0.tar.gz ``` -#### How to setup SERVING_BIN offline? +### How to setup SERVING_BIN offline? - download the serving server whl package and bin package, and make sure they are for the same environment - download the serving client whl and serving app whl, pay attention to the Python version. - `pip install ` the serving and `tar xf ` the binary package, then `export SERVING_BIN=$PWD/serving-gpu-cuda11-0.0.0/serving` (take Cuda 11 as the example) + + +## Baidu Kunlun user +for kunlun user who uses arm-xpu or x86-xpu can download the wheel packages as follows. Users should use the xpu-beta docker [DOCKER IMAGES](./Docker_Images_CN.md) +**We only support Python 3.6 for Kunlun Users.** + +### Wheel Package Links + +for arm kunlun user +``` +https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_server_xpu-0.7.0.post2-cp36-cp36m-linux_aarch64.whl +https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_client-0.7.0-cp36-cp36m-linux_aarch64.whl +https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_app-0.7.0-cp36-cp36m-linux_aarch64.whl +``` + +for x86 kunlun user +``` +https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_server_xpu-0.7.0.post2-cp36-cp36m-linux_x86_64.whl +https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_client-0.7.0-cp36-cp36m-linux_x86_64.whl +https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_app-0.7.0-cp36-cp36m-linux_x86_64.whl +``` + +