Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
44165107
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
44165107
编写于
5月 11, 2021
作者:
J
Jiawei Wang
提交者:
GitHub
5月 11, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1213 from bjjwwang/v0.6.0
V0.6.0 cherrypick 2 pr 1199 1206
上级
39cfa6bc
aadc63e4
变更
29
显示空白变更内容
内联
并排
Showing
29 changed file
with
1165 addition
and
3 deletion
+1165
-3
python/examples/pipeline/PaddleDetection/faster_rcnn/000000570688.jpg
...les/pipeline/PaddleDetection/faster_rcnn/000000570688.jpg
+0
-0
python/examples/pipeline/PaddleDetection/faster_rcnn/README.md
...n/examples/pipeline/PaddleDetection/faster_rcnn/README.md
+18
-0
python/examples/pipeline/PaddleDetection/faster_rcnn/benchmark.py
...xamples/pipeline/PaddleDetection/faster_rcnn/benchmark.py
+93
-0
python/examples/pipeline/PaddleDetection/faster_rcnn/benchmark.sh
...xamples/pipeline/PaddleDetection/faster_rcnn/benchmark.sh
+36
-0
python/examples/pipeline/PaddleDetection/faster_rcnn/benchmark_config.yaml
...ipeline/PaddleDetection/faster_rcnn/benchmark_config.yaml
+32
-0
python/examples/pipeline/PaddleDetection/faster_rcnn/config.yml
.../examples/pipeline/PaddleDetection/faster_rcnn/config.yml
+17
-0
python/examples/pipeline/PaddleDetection/faster_rcnn/label_list.txt
...mples/pipeline/PaddleDetection/faster_rcnn/label_list.txt
+80
-0
python/examples/pipeline/PaddleDetection/faster_rcnn/pipeline_http_client.py
...eline/PaddleDetection/faster_rcnn/pipeline_http_client.py
+35
-0
python/examples/pipeline/PaddleDetection/faster_rcnn/web_service.py
...mples/pipeline/PaddleDetection/faster_rcnn/web_service.py
+68
-0
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/000000570688.jpg
...les/pipeline/PaddleDetection/ppyolo_mbv3/000000570688.jpg
+0
-0
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/README.md
...n/examples/pipeline/PaddleDetection/ppyolo_mbv3/README.md
+20
-0
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/benchmark.py
...xamples/pipeline/PaddleDetection/ppyolo_mbv3/benchmark.py
+93
-0
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/benchmark.sh
...xamples/pipeline/PaddleDetection/ppyolo_mbv3/benchmark.sh
+36
-0
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/benchmark_config.yaml
...ipeline/PaddleDetection/ppyolo_mbv3/benchmark_config.yaml
+32
-0
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/config.yml
.../examples/pipeline/PaddleDetection/ppyolo_mbv3/config.yml
+17
-0
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/label_list.txt
...mples/pipeline/PaddleDetection/ppyolo_mbv3/label_list.txt
+80
-0
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/pipeline_http_client.py
...eline/PaddleDetection/ppyolo_mbv3/pipeline_http_client.py
+35
-0
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/web_service.py
...mples/pipeline/PaddleDetection/ppyolo_mbv3/web_service.py
+69
-0
python/examples/pipeline/PaddleDetection/yolov3/000000570688.jpg
...examples/pipeline/PaddleDetection/yolov3/000000570688.jpg
+0
-0
python/examples/pipeline/PaddleDetection/yolov3/README.md
python/examples/pipeline/PaddleDetection/yolov3/README.md
+20
-0
python/examples/pipeline/PaddleDetection/yolov3/benchmark.py
python/examples/pipeline/PaddleDetection/yolov3/benchmark.py
+93
-0
python/examples/pipeline/PaddleDetection/yolov3/benchmark.sh
python/examples/pipeline/PaddleDetection/yolov3/benchmark.sh
+36
-0
python/examples/pipeline/PaddleDetection/yolov3/benchmark_config.yaml
...les/pipeline/PaddleDetection/yolov3/benchmark_config.yaml
+32
-0
python/examples/pipeline/PaddleDetection/yolov3/config.yml
python/examples/pipeline/PaddleDetection/yolov3/config.yml
+17
-0
python/examples/pipeline/PaddleDetection/yolov3/label_list.txt
...n/examples/pipeline/PaddleDetection/yolov3/label_list.txt
+80
-0
python/examples/pipeline/PaddleDetection/yolov3/pipeline_http_client.py
...s/pipeline/PaddleDetection/yolov3/pipeline_http_client.py
+35
-0
python/examples/pipeline/PaddleDetection/yolov3/web_service.py
...n/examples/pipeline/PaddleDetection/yolov3/web_service.py
+68
-0
python/paddle_serving_app/reader/image_reader.py
python/paddle_serving_app/reader/image_reader.py
+4
-1
tools/scripts/ipipe_py3.sh
tools/scripts/ipipe_py3.sh
+19
-2
未找到文件。
python/examples/pipeline/PaddleDetection/faster_rcnn/000000570688.jpg
0 → 100644
浏览文件 @
44165107
135.1 KB
python/examples/pipeline/PaddleDetection/faster_rcnn/README.md
0 → 100644
浏览文件 @
44165107
# Faster RCNN model on Pipeline Paddle Serving
### Get The Faster RCNN Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/faster_rcnn_r50_fpn_1x_coco.tar
```
### Start the service
```
tar xf faster_rcnn_r50_fpn_1x_coco.tar
python web_service.py
```
### Perform prediction
```
python pipeline_http_client.py
```
python/examples/pipeline/PaddleDetection/faster_rcnn/benchmark.py
0 → 100644
浏览文件 @
44165107
import
sys
import
os
import
yaml
import
requests
import
time
import
json
import
cv2
import
base64
try
:
from
paddle_serving_server_gpu.pipeline
import
PipelineClient
except
ImportError
:
from
paddle_serving_server.pipeline
import
PipelineClient
import
numpy
as
np
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
,
show_latency
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
def
parse_benchmark
(
filein
,
fileout
):
with
open
(
filein
,
"r"
)
as
fin
:
res
=
yaml
.
load
(
fin
)
del_list
=
[]
for
key
in
res
[
"DAG"
].
keys
():
if
"call"
in
key
:
del_list
.
append
(
key
)
for
key
in
del_list
:
del
res
[
"DAG"
][
key
]
with
open
(
fileout
,
"w"
)
as
fout
:
yaml
.
dump
(
res
,
fout
,
default_flow_style
=
False
)
def
gen_yml
(
device
,
gpu_id
):
fin
=
open
(
"config.yml"
,
"r"
)
config
=
yaml
.
load
(
fin
)
fin
.
close
()
config
[
"dag"
][
"tracer"
]
=
{
"interval_s"
:
30
}
if
device
==
"gpu"
:
config
[
"op"
][
"faster_rcnn"
][
"local_service_conf"
][
"device_type"
]
=
1
config
[
"op"
][
"faster_rcnn"
][
"local_service_conf"
][
"devices"
]
=
gpu_id
with
open
(
"config2.yml"
,
"w"
)
as
fout
:
yaml
.
dump
(
config
,
fout
,
default_flow_style
=
False
)
def
run_http
(
idx
,
batch_size
):
print
(
"start thread ({})"
.
format
(
idx
))
url
=
"http://127.0.0.1:18082/faster_rcnn/prediction"
with
open
(
os
.
path
.
join
(
"."
,
"000000570688.jpg"
),
'rb'
)
as
file
:
image_data1
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
start
=
time
.
time
()
while
True
:
data
=
{
"key"
:
[],
"value"
:
[]}
for
j
in
range
(
batch_size
):
data
[
"key"
].
append
(
"image_"
+
str
(
j
))
data
[
"value"
].
append
(
image
)
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
))
end
=
time
.
time
()
if
end
-
start
>
70
:
print
(
"70s end"
)
break
return
[[
end
-
start
]]
def
multithread_http
(
thread
,
batch_size
):
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
run_http
,
thread
,
batch_size
)
def
run_rpc
(
thread
,
batch_size
):
pass
def
multithread_rpc
(
thraed
,
batch_size
):
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
run_rpc
,
thread
,
batch_size
)
if
__name__
==
"__main__"
:
if
sys
.
argv
[
1
]
==
"yaml"
:
mode
=
sys
.
argv
[
2
]
# brpc/ local predictor
thread
=
int
(
sys
.
argv
[
3
])
device
=
sys
.
argv
[
4
]
gpu_id
=
sys
.
argv
[
5
]
gen_yml
(
device
,
gpu_id
)
elif
sys
.
argv
[
1
]
==
"run"
:
mode
=
sys
.
argv
[
2
]
# http/ rpc
thread
=
int
(
sys
.
argv
[
3
])
batch_size
=
int
(
sys
.
argv
[
4
])
if
mode
==
"http"
:
multithread_http
(
thread
,
batch_size
)
elif
mode
==
"rpc"
:
multithread_rpc
(
thread
,
batch_size
)
elif
sys
.
argv
[
1
]
==
"dump"
:
filein
=
sys
.
argv
[
2
]
fileout
=
sys
.
argv
[
3
]
parse_benchmark
(
filein
,
fileout
)
python/examples/pipeline/PaddleDetection/faster_rcnn/benchmark.sh
0 → 100644
浏览文件 @
44165107
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"faster_rcnn_r50_fpn_1x_coco"
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----FasterRCNN thread num:
$thread_num
batch size:
$batch_size
mode:http ----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleDetection/faster_rcnn/benchmark_config.yaml
0 → 100644
浏览文件 @
44165107
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.2"
cpu
:
"
Xeon
6148"
gpu
:
"
P4"
xpu
:
"
None"
api
:
"
"
owner
:
"
wangjiawei04"
model_name
:
"
faster_rcnn"
model_type
:
"
static"
model_source
:
"
paddledetection"
model_url
:
"
"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,
480,
640"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
true
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleDetection/faster_rcnn/config.yml
0 → 100644
浏览文件 @
44165107
dag
:
is_thread_op
:
false
tracer
:
interval_s
:
30
http_port
:
18082
op
:
faster_rcnn
:
local_service_conf
:
client_type
:
local_predictor
concurrency
:
2
device_type
:
1
devices
:
'
2'
fetch_list
:
-
save_infer_model/scale_0.tmp_1
model_config
:
serving_server/
rpc_port
:
9998
worker_num
:
20
python/examples/pipeline/PaddleDetection/faster_rcnn/label_list.txt
0 → 100644
浏览文件 @
44165107
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
python/examples/pipeline/PaddleDetection/faster_rcnn/pipeline_http_client.py
0 → 100644
浏览文件 @
44165107
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# from paddle_serving_server.pipeline import PipelineClient
import
numpy
as
np
import
requests
import
json
import
cv2
import
base64
import
os
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
url
=
"http://127.0.0.1:18082/faster_rcnn/prediction"
with
open
(
os
.
path
.
join
(
"."
,
"000000570688.jpg"
),
'rb'
)
as
file
:
image_data1
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
for
i
in
range
(
1
):
data
=
{
"key"
:
[
"image"
],
"value"
:
[
image
]}
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
))
print
(
r
.
json
())
python/examples/pipeline/PaddleDetection/faster_rcnn/web_service.py
0 → 100644
浏览文件 @
44165107
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_server.web_service
import
WebService
,
Op
import
logging
import
numpy
as
np
import
sys
import
cv2
from
paddle_serving_app.reader
import
*
import
base64
class
FasterRCNNOp
(
Op
):
def
init_op
(
self
):
self
.
img_preprocess
=
Sequential
([
BGR2RGB
(),
Div
(
255.0
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
False
),
Resize
((
640
,
640
)),
Transpose
((
2
,
0
,
1
))
])
self
.
img_postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
def
preprocess
(
self
,
input_dicts
,
data_id
,
log_id
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
imgs
=
[]
#print("keys", input_dict.keys())
for
key
in
input_dict
.
keys
():
data
=
base64
.
b64decode
(
input_dict
[
key
].
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
im
=
self
.
img_preprocess
(
im
)
imgs
.
append
({
"image"
:
im
[
np
.
newaxis
,:],
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,:],
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)[
np
.
newaxis
,:],
})
feed_dict
=
{
"image"
:
np
.
concatenate
([
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"im_shape"
:
np
.
concatenate
([
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
([
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
}
#for key in feed_dict.keys():
# print(key, feed_dict[key].shape)
return
feed_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
#print(fetch_dict)
res_dict
=
{
"bbox_result"
:
str
(
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
))}
return
res_dict
,
None
,
""
class
FasterRCNNService
(
WebService
):
def
get_pipeline_response
(
self
,
read_op
):
faster_rcnn_op
=
FasterRCNNOp
(
name
=
"faster_rcnn"
,
input_ops
=
[
read_op
])
return
faster_rcnn_op
fasterrcnn_service
=
FasterRCNNService
(
name
=
"faster_rcnn"
)
fasterrcnn_service
.
prepare_pipeline_config
(
"config2.yml"
)
fasterrcnn_service
.
run_service
()
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/000000570688.jpg
0 → 100644
浏览文件 @
44165107
135.1 KB
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/README.md
0 → 100644
浏览文件 @
44165107
# PPYOLO model on Pipeline Paddle Serving
(
[
简体中文
](
./README_CN.md
)
|English)
### Get Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/ppyolo_mbv3_large_coco.tar
```
### Start the service
```
tar xf ppyolo_mbv3_large_coco.tar
python web_service.py
```
### Perform prediction
```
python pipeline_http_client.py
```
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/benchmark.py
0 → 100644
浏览文件 @
44165107
import
sys
import
os
import
yaml
import
requests
import
time
import
json
import
cv2
import
base64
try
:
from
paddle_serving_server_gpu.pipeline
import
PipelineClient
except
ImportError
:
from
paddle_serving_server.pipeline
import
PipelineClient
import
numpy
as
np
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
,
show_latency
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
def
parse_benchmark
(
filein
,
fileout
):
with
open
(
filein
,
"r"
)
as
fin
:
res
=
yaml
.
load
(
fin
)
del_list
=
[]
for
key
in
res
[
"DAG"
].
keys
():
if
"call"
in
key
:
del_list
.
append
(
key
)
for
key
in
del_list
:
del
res
[
"DAG"
][
key
]
with
open
(
fileout
,
"w"
)
as
fout
:
yaml
.
dump
(
res
,
fout
,
default_flow_style
=
False
)
def
gen_yml
(
device
,
gpu_id
):
fin
=
open
(
"config.yml"
,
"r"
)
config
=
yaml
.
load
(
fin
)
fin
.
close
()
config
[
"dag"
][
"tracer"
]
=
{
"interval_s"
:
30
}
if
device
==
"gpu"
:
config
[
"op"
][
"ppyolo_mbv3"
][
"local_service_conf"
][
"device_type"
]
=
1
config
[
"op"
][
"ppyolo_mbv3"
][
"local_service_conf"
][
"devices"
]
=
gpu_id
with
open
(
"config2.yml"
,
"w"
)
as
fout
:
yaml
.
dump
(
config
,
fout
,
default_flow_style
=
False
)
def
run_http
(
idx
,
batch_size
):
print
(
"start thread ({})"
.
format
(
idx
))
url
=
"http://127.0.0.1:18082/ppyolo_mbv3/prediction"
with
open
(
os
.
path
.
join
(
"."
,
"000000570688.jpg"
),
'rb'
)
as
file
:
image_data1
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
start
=
time
.
time
()
while
True
:
data
=
{
"key"
:
[],
"value"
:
[]}
for
j
in
range
(
batch_size
):
data
[
"key"
].
append
(
"image_"
+
str
(
j
))
data
[
"value"
].
append
(
image
)
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
))
end
=
time
.
time
()
if
end
-
start
>
70
:
print
(
"70s end"
)
break
return
[[
end
-
start
]]
def
multithread_http
(
thread
,
batch_size
):
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
run_http
,
thread
,
batch_size
)
def
run_rpc
(
thread
,
batch_size
):
pass
def
multithread_rpc
(
thraed
,
batch_size
):
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
run_rpc
,
thread
,
batch_size
)
if
__name__
==
"__main__"
:
if
sys
.
argv
[
1
]
==
"yaml"
:
mode
=
sys
.
argv
[
2
]
# brpc/ local predictor
thread
=
int
(
sys
.
argv
[
3
])
device
=
sys
.
argv
[
4
]
gpu_id
=
sys
.
argv
[
5
]
gen_yml
(
device
,
gpu_id
)
elif
sys
.
argv
[
1
]
==
"run"
:
mode
=
sys
.
argv
[
2
]
# http/ rpc
thread
=
int
(
sys
.
argv
[
3
])
batch_size
=
int
(
sys
.
argv
[
4
])
if
mode
==
"http"
:
multithread_http
(
thread
,
batch_size
)
elif
mode
==
"rpc"
:
multithread_rpc
(
thread
,
batch_size
)
elif
sys
.
argv
[
1
]
==
"dump"
:
filein
=
sys
.
argv
[
2
]
fileout
=
sys
.
argv
[
3
]
parse_benchmark
(
filein
,
fileout
)
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/benchmark.sh
0 → 100644
浏览文件 @
44165107
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"ppyolo_mbv3_large"
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----PPyolo thread num:
$thread_num
batch size:
$batch_size
mode:http ----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/benchmark_config.yaml
0 → 100644
浏览文件 @
44165107
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.2"
cpu
:
"
Xeon
6148"
gpu
:
"
P4"
xpu
:
"
None"
api
:
"
"
owner
:
"
wangjiawei04"
model_name
:
"
ppyolo"
model_type
:
"
static"
model_source
:
"
paddledetection"
model_url
:
"
"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,
480,
640"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
true
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/config.yml
0 → 100644
浏览文件 @
44165107
dag
:
is_thread_op
:
false
tracer
:
interval_s
:
30
http_port
:
18082
op
:
ppyolo_mbv3
:
local_service_conf
:
client_type
:
local_predictor
concurrency
:
10
device_type
:
1
devices
:
'
2'
fetch_list
:
-
save_infer_model/scale_0.tmp_1
model_config
:
serving_server/
rpc_port
:
9998
worker_num
:
20
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/label_list.txt
0 → 100644
浏览文件 @
44165107
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/pipeline_http_client.py
0 → 100644
浏览文件 @
44165107
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# from paddle_serving_server.pipeline import PipelineClient
import
numpy
as
np
import
requests
import
json
import
cv2
import
base64
import
os
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
url
=
"http://127.0.0.1:18082/ppyolo_mbv3/prediction"
with
open
(
os
.
path
.
join
(
"."
,
"000000570688.jpg"
),
'rb'
)
as
file
:
image_data1
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
for
i
in
range
(
1
):
data
=
{
"key"
:
[
"image"
],
"value"
:
[
image
]}
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
))
print
(
r
.
json
())
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/web_service.py
0 → 100644
浏览文件 @
44165107
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_server.web_service
import
WebService
,
Op
import
logging
import
numpy
as
np
import
sys
import
cv2
from
paddle_serving_app.reader
import
*
import
base64
class
PPYoloMbvOp
(
Op
):
def
init_op
(
self
):
self
.
img_preprocess
=
Sequential
([
BGR2RGB
(),
Div
(
255.0
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
False
),
Resize
((
320
,
320
)),
Transpose
((
2
,
0
,
1
))
])
self
.
img_postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
def
preprocess
(
self
,
input_dicts
,
data_id
,
log_id
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
imgs
=
[]
#print("keys", input_dict.keys())
for
key
in
input_dict
.
keys
():
data
=
base64
.
b64decode
(
input_dict
[
key
].
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
im
=
self
.
img_preprocess
(
im
)
imgs
.
append
({
"image"
:
im
[
np
.
newaxis
,:],
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,:],
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)[
np
.
newaxis
,:],
})
feed_dict
=
{
"image"
:
np
.
concatenate
([
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"im_shape"
:
np
.
concatenate
([
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
([
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
}
for
key
in
feed_dict
.
keys
():
print
(
key
,
feed_dict
[
key
].
shape
)
return
feed_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
#print(fetch_dict)
res_dict
=
{
"bbox_result"
:
str
(
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
))}
return
res_dict
,
None
,
""
class
PPYoloMbv
(
WebService
):
def
get_pipeline_response
(
self
,
read_op
):
ppyolo_mbv3_op
=
PPYoloMbvOp
(
name
=
"ppyolo_mbv3"
,
input_ops
=
[
read_op
])
return
ppyolo_mbv3_op
ppyolo_mbv3_service
=
PPYoloMbv
(
name
=
"ppyolo_mbv3"
)
ppyolo_mbv3_service
.
prepare_pipeline_config
(
"config2.yml"
)
ppyolo_mbv3_service
.
run_service
()
python/examples/pipeline/PaddleDetection/yolov3/000000570688.jpg
0 → 100644
浏览文件 @
44165107
135.1 KB
python/examples/pipeline/PaddleDetection/yolov3/README.md
0 → 100644
浏览文件 @
44165107
# YOLOv3 model on Pipeline Paddle Serving
(
[
简体中文
](
./README_CN.md
)
|English)
### Get Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/yolov3_darknet53_270e_coco.tar
```
### Start the service
```
tar xf yolov3_darknet53_270e_coco.tar
python web_service.py
```
### Perform prediction
```
python pipeline_http_client.py
```
python/examples/pipeline/PaddleDetection/yolov3/benchmark.py
0 → 100644
浏览文件 @
44165107
import
sys
import
os
import
yaml
import
requests
import
time
import
json
import
cv2
import
base64
try
:
from
paddle_serving_server_gpu.pipeline
import
PipelineClient
except
ImportError
:
from
paddle_serving_server.pipeline
import
PipelineClient
import
numpy
as
np
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
,
show_latency
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
def
parse_benchmark
(
filein
,
fileout
):
with
open
(
filein
,
"r"
)
as
fin
:
res
=
yaml
.
load
(
fin
)
del_list
=
[]
for
key
in
res
[
"DAG"
].
keys
():
if
"call"
in
key
:
del_list
.
append
(
key
)
for
key
in
del_list
:
del
res
[
"DAG"
][
key
]
with
open
(
fileout
,
"w"
)
as
fout
:
yaml
.
dump
(
res
,
fout
,
default_flow_style
=
False
)
def
gen_yml
(
device
,
gpu_id
):
fin
=
open
(
"config.yml"
,
"r"
)
config
=
yaml
.
load
(
fin
)
fin
.
close
()
config
[
"dag"
][
"tracer"
]
=
{
"interval_s"
:
30
}
if
device
==
"gpu"
:
config
[
"op"
][
"faster_rcnn"
][
"local_service_conf"
][
"device_type"
]
=
1
config
[
"op"
][
"faster_rcnn"
][
"local_service_conf"
][
"devices"
]
=
gpu_id
with
open
(
"config2.yml"
,
"w"
)
as
fout
:
yaml
.
dump
(
config
,
fout
,
default_flow_style
=
False
)
def
run_http
(
idx
,
batch_size
):
print
(
"start thread ({})"
.
format
(
idx
))
url
=
"http://127.0.0.1:18082/yolov3/prediction"
with
open
(
os
.
path
.
join
(
"."
,
"000000570688.jpg"
),
'rb'
)
as
file
:
image_data1
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
start
=
time
.
time
()
while
True
:
data
=
{
"key"
:
[],
"value"
:
[]}
for
j
in
range
(
batch_size
):
data
[
"key"
].
append
(
"image_"
+
str
(
j
))
data
[
"value"
].
append
(
image
)
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
))
end
=
time
.
time
()
if
end
-
start
>
70
:
print
(
"70s end"
)
break
return
[[
end
-
start
]]
def
multithread_http
(
thread
,
batch_size
):
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
run_http
,
thread
,
batch_size
)
def
run_rpc
(
thread
,
batch_size
):
pass
def
multithread_rpc
(
thraed
,
batch_size
):
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
run_rpc
,
thread
,
batch_size
)
if
__name__
==
"__main__"
:
if
sys
.
argv
[
1
]
==
"yaml"
:
mode
=
sys
.
argv
[
2
]
# brpc/ local predictor
thread
=
int
(
sys
.
argv
[
3
])
device
=
sys
.
argv
[
4
]
gpu_id
=
sys
.
argv
[
5
]
gen_yml
(
device
,
gpu_id
)
elif
sys
.
argv
[
1
]
==
"run"
:
mode
=
sys
.
argv
[
2
]
# http/ rpc
thread
=
int
(
sys
.
argv
[
3
])
batch_size
=
int
(
sys
.
argv
[
4
])
if
mode
==
"http"
:
multithread_http
(
thread
,
batch_size
)
elif
mode
==
"rpc"
:
multithread_rpc
(
thread
,
batch_size
)
elif
sys
.
argv
[
1
]
==
"dump"
:
filein
=
sys
.
argv
[
2
]
fileout
=
sys
.
argv
[
3
]
parse_benchmark
(
filein
,
fileout
)
python/examples/pipeline/PaddleDetection/yolov3/benchmark.sh
0 → 100644
浏览文件 @
44165107
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"yolov3_darknet53_270e_coco"
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
python3 benchmark.py yaml local_predictor 1 cpu
rm
-rf
profile_log_
$modelname
for
thread_num
in
1 8 16
do
for
batch_size
in
1
do
echo
"#----Yolov3 thread num:
$thread_num
batch size:
$batch_size
mode:http ----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleDetection/yolov3/benchmark_config.yaml
0 → 100644
浏览文件 @
44165107
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.2"
cpu
:
"
Xeon
6148"
gpu
:
"
P4"
xpu
:
"
None"
api
:
"
"
owner
:
"
wangjiawei04"
model_name
:
"
yolov3"
model_type
:
"
static"
model_source
:
"
paddledetection"
model_url
:
"
"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,
480,
640"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
true
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleDetection/yolov3/config.yml
0 → 100644
浏览文件 @
44165107
dag
:
is_thread_op
:
false
tracer
:
interval_s
:
30
http_port
:
18082
op
:
yolov3
:
local_service_conf
:
client_type
:
local_predictor
concurrency
:
10
device_type
:
1
devices
:
'
2'
fetch_list
:
-
save_infer_model/scale_0.tmp_1
model_config
:
serving_server/
rpc_port
:
9998
worker_num
:
20
python/examples/pipeline/PaddleDetection/yolov3/label_list.txt
0 → 100644
浏览文件 @
44165107
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
python/examples/pipeline/PaddleDetection/yolov3/pipeline_http_client.py
0 → 100644
浏览文件 @
44165107
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# from paddle_serving_server.pipeline import PipelineClient
import
numpy
as
np
import
requests
import
json
import
cv2
import
base64
import
os
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
url
=
"http://127.0.0.1:18082/yolov3/prediction"
with
open
(
os
.
path
.
join
(
"."
,
"000000570688.jpg"
),
'rb'
)
as
file
:
image_data1
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
for
i
in
range
(
1
):
data
=
{
"key"
:
[
"image"
],
"value"
:
[
image
]}
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
))
print
(
r
.
json
())
python/examples/pipeline/PaddleDetection/yolov3/web_service.py
0 → 100644
浏览文件 @
44165107
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_server.web_service
import
WebService
,
Op
import
logging
import
numpy
as
np
import
sys
import
cv2
from
paddle_serving_app.reader
import
*
import
base64
class
Yolov3Op
(
Op
):
def
init_op
(
self
):
self
.
img_preprocess
=
Sequential
([
BGR2RGB
(),
Div
(
255.0
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
False
),
Resize
((
640
,
640
)),
Transpose
((
2
,
0
,
1
))
])
self
.
img_postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
def
preprocess
(
self
,
input_dicts
,
data_id
,
log_id
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
imgs
=
[]
#print("keys", input_dict.keys())
for
key
in
input_dict
.
keys
():
data
=
base64
.
b64decode
(
input_dict
[
key
].
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
im
=
self
.
img_preprocess
(
im
)
imgs
.
append
({
"image"
:
im
[
np
.
newaxis
,:],
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,:],
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)[
np
.
newaxis
,:],
})
feed_dict
=
{
"image"
:
np
.
concatenate
([
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"im_shape"
:
np
.
concatenate
([
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
([
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
}
#for key in feed_dict.keys():
# print(key, feed_dict[key].shape)
return
feed_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
#print(fetch_dict)
res_dict
=
{
"bbox_result"
:
str
(
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
))}
return
res_dict
,
None
,
""
class
Yolov3Service
(
WebService
):
def
get_pipeline_response
(
self
,
read_op
):
yolov3_op
=
Yolov3Op
(
name
=
"yolov3"
,
input_ops
=
[
read_op
])
return
yolov3_op
yolov3_service
=
Yolov3Service
(
name
=
"yolov3"
)
yolov3_service
.
prepare_pipeline_config
(
"config2.yml"
)
yolov3_service
.
run_service
()
python/paddle_serving_app/reader/image_reader.py
浏览文件 @
44165107
...
...
@@ -415,7 +415,7 @@ class RCNNPostprocess(object):
out_path
=
os
.
path
.
join
(
self
.
output_dir
,
image_path
)
image
.
save
(
out_path
,
quality
=
95
)
def
__call__
(
self
,
image_with_bbox
):
def
__call__
(
self
,
image_with_bbox
,
visualize
=
True
):
fetch_name
=
""
for
key
in
image_with_bbox
:
if
key
==
"image"
:
...
...
@@ -427,6 +427,8 @@ class RCNNPostprocess(object):
self
.
clsid2catid
)
if
os
.
path
.
isdir
(
self
.
output_dir
)
is
False
:
os
.
mkdir
(
self
.
output_dir
)
if
visualize
is
False
:
return
bbox_result
self
.
visualize
(
image_with_bbox
[
"image"
],
bbox_result
,
self
.
catid2name
,
len
(
self
.
label_list
))
if
os
.
path
.
isdir
(
self
.
output_dir
)
is
False
:
...
...
@@ -434,6 +436,7 @@ class RCNNPostprocess(object):
bbox_file
=
os
.
path
.
join
(
self
.
output_dir
,
'bbox.json'
)
with
open
(
bbox_file
,
'w'
)
as
f
:
json
.
dump
(
bbox_result
,
f
,
indent
=
4
)
return
bbox_result
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"label_file: {1}, output_dir: {2}"
.
format
(
...
...
tools/scripts/ipipe_py3.sh
浏览文件 @
44165107
...
...
@@ -39,7 +39,8 @@ go get -u google.golang.org/grpc@v1.33.0
build_whl_list
=(
build_cpu_server build_gpu_server build_client build_app
)
rpc_model_list
=(
grpc_fit_a_line grpc_yolov4 pipeline_imagenet bert_rpc_gpu bert_rpc_cpu ResNet50_rpc
\
lac_rpc cnn_rpc bow_rpc lstm_rpc fit_a_line_rpc deeplabv3_rpc mobilenet_rpc unet_rpc resnetv2_rpc
\
criteo_ctr_rpc_cpu criteo_ctr_rpc_gpu ocr_rpc yolov4_rpc_gpu faster_rcnn_hrnetv2p_w18_1x_encrypt
)
criteo_ctr_rpc_cpu criteo_ctr_rpc_gpu ocr_rpc yolov4_rpc_gpu faster_rcnn_hrnetv2p_w18_1x_encrypt
\
low_precision_resnet50_int8
)
http_model_list
=(
fit_a_line_http lac_http cnn_http bow_http lstm_http ResNet50_http bert_http
\
pipeline_ocr_cpu_http
)
...
...
@@ -148,7 +149,7 @@ function before_hook() {
setproxy
unsetproxy
cd
${
build_path
}
/python
python3.6
-m
pip
install
--upgrade
pip
==
20.0.1
python3.6
-m
pip
install
--upgrade
pip
python3.6
-m
pip
install
requests
python3.6
-m
pip
install
-r
requirements.txt
-i
https://mirror.baidu.com/pypi/simple
python3.6
-m
pip
install
numpy
==
1.16.4
...
...
@@ -260,6 +261,22 @@ function build_app() {
python3.6
-m
pip
install
${
build_path
}
/build/python/dist/
*
}
function
low_precision_resnet50_int8
()
{
dir
=
${
log_dir
}
rpc_model/low_precision/resnet50/
cd
${
build_path
}
/python/examples/low_precision/resnet50/
check_dir
${
dir
}
wget https://paddle-inference-dist.bj.bcebos.com/inference_demo/python/resnet50/ResNet50_quant.tar.gz
tar
zxvf ResNet50_quant.tar.gz
python3.6
-m
paddle_serving_client.convert
--dirname
ResNet50_quant
echo
-e
"
${
GREEN_COLOR
}
low_precision_resnet50_int8_GPU_RPC server started
${
RES
}
"
|
tee
-a
${
log_dir
}
server_total.txt
python3.6
-m
paddle_serving_server.serve
--model
serving_server
--port
9393
--gpu_ids
0
--use_trt
--precision
int8
>
${
dir
}
server_log.txt 2>&1 &
check_result server 10
echo
-e
"
${
GREEN_COLOR
}
low_precision_resnet50_int8_GPU_RPC client started
${
RES
}
"
|
tee
-a
${
log_dir
}
client_total.txt
python3.6 resnet50_client.py
>
${
dir
}
client_log.txt 2>&1
check_result client
"low_precision_resnet50_int8_GPU_RPC server test completed"
kill_server_process
}
function
faster_rcnn_hrnetv2p_w18_1x_encrypt
()
{
dir
=
${
log_dir
}
rpc_model/faster_rcnn_hrnetv2p_w18_1x/
cd
${
build_path
}
/python/examples/detection/faster_rcnn_hrnetv2p_w18_1x
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录