Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
4198f671
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4198f671
编写于
4月 23, 2020
作者:
W
wangjiawei04
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix code style
上级
1e1168af
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
6 addition
and
561 deletion
+6
-561
python/examples/faster_rcnn_model/test_client.py
python/examples/faster_rcnn_model/test_client.py
+5
-5
python/paddle_serving_app/pddet/__init__.py
python/paddle_serving_app/pddet/__init__.py
+1
-556
未找到文件。
python/examples/faster_rcnn_model/test_client.py
浏览文件 @
4198f671
...
...
@@ -16,7 +16,7 @@ from paddle_serving_client import Client
import
sys
import
os
import
time
from
paddle_serving_app.pddet
import
preprocess
,
postprocess
,
ArgParse
from
paddle_serving_app.pddet
import
Detection
,
ArgParse
import
numpy
as
np
py_version
=
sys
.
version_info
[
0
]
...
...
@@ -24,12 +24,12 @@ py_version = sys.version_info[0]
feed_var_names
=
[
'image'
,
'im_shape'
,
'im_info'
]
fetch_var_names
=
[
'multiclass_nms'
]
FLAGS
=
ArgParse
()
feed_dict
=
preprocess
(
feed_var_names
)
pddet
=
Detection
(
FLAGS
.
config_path
,
FLAGS
.
visualize
,
FLAGS
.
dump_result
,
FLAGS
.
output_dir
)
feed_dict
=
pddet
.
preprocess
(
feed_var_names
,
FLAGS
.
infer_img
)
client
=
Client
()
client
.
load_client_config
(
FLAGS
.
serving_client_conf
)
client
.
connect
([
'127.0.0.1:9494'
])
fetch_map
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch_var_names
)
print
(
type
(
fetch_map
[
'multiclass_nms'
]))
outs
=
fetch_map
.
values
()
print
(
len
(
outs
[
0
]),
len
(
outs
[
0
][
0
]))
postprocess
(
fetch_map
,
fetch_var_names
)
pddet
.
postprocess
(
fetch_map
,
fetch_var_names
)
python/paddle_serving_app/pddet/__init__.py
浏览文件 @
4198f671
...
...
@@ -14,563 +14,8 @@
import
os
import
time
import
numpy
as
np
from
PIL
import
Image
,
ImageDraw
import
paddle.fluid
as
fluid
import
argparse
import
cv2
import
yaml
import
copy
import
json
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
precision_map
=
{
'trt_int8'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Int8
,
'trt_fp32'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Float32
,
'trt_fp16'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Half
}
def
create_config
(
model_path
,
mode
=
'fluid'
,
batch_size
=
1
,
min_subgraph_size
=
3
):
model_file
=
os
.
path
.
join
(
model_path
,
'__model__'
)
params_file
=
os
.
path
.
join
(
model_path
,
'__params__'
)
config
=
fluid
.
core
.
AnalysisConfig
(
model_file
,
params_file
)
config
.
enable_use_gpu
(
100
,
0
)
config
.
switch_use_feed_fetch_ops
(
False
)
config
.
switch_specify_input_names
(
True
)
logger
.
info
(
'min_subgraph_size = %d.'
%
(
min_subgraph_size
))
if
mode
in
precision_map
.
keys
():
config
.
enable_tensorrt_engine
(
workspace_size
=
1
<<
30
,
max_batch_size
=
batch_size
,
min_subgraph_size
=
min_subgraph_size
,
precision_mode
=
precision_map
[
mode
],
use_static
=
False
,
use_calib_mode
=
mode
==
'trt_int8'
)
logger
.
info
(
'Run inference by {}.'
.
format
(
mode
))
elif
mode
==
'fluid'
:
logger
.
info
(
'Run inference by Fluid FP32.'
)
else
:
logger
.
fatal
(
'Wrong mode, only support trt_int8, trt_fp32, trt_fp16, fluid.'
)
return
config
def
offset_to_lengths
(
lod
):
offset
=
lod
[
0
]
lengths
=
[
offset
[
i
+
1
]
-
offset
[
i
]
for
i
in
range
(
len
(
offset
)
-
1
)]
return
[
lengths
]
def
DecodeImage
(
im_path
):
assert
os
.
path
.
exists
(
im_path
),
"Image path {} can not be found"
.
format
(
im_path
)
with
open
(
im_path
,
'rb'
)
as
f
:
im
=
f
.
read
()
data
=
np
.
frombuffer
(
im
,
dtype
=
'uint8'
)
im
=
cv2
.
imdecode
(
data
,
1
)
# BGR mode, but need RGB mode
im
=
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_BGR2RGB
)
return
im
def
get_extra_info
(
im
,
arch
,
shape
,
scale
):
info
=
[]
input_shape
=
[]
im_shape
=
[]
logger
.
info
(
'The architecture is {}'
.
format
(
arch
))
if
'YOLO'
in
arch
:
im_size
=
np
.
array
([
shape
[:
2
]]).
astype
(
'int32'
)
logger
.
info
(
'Extra info: im_size'
)
info
.
append
(
im_size
)
elif
'SSD'
in
arch
:
im_shape
=
np
.
array
([
shape
[:
2
]]).
astype
(
'int32'
)
logger
.
info
(
'Extra info: im_shape'
)
info
.
append
([
im_shape
])
elif
'RetinaNet'
in
arch
:
input_shape
.
extend
(
im
.
shape
[
2
:])
im_info
=
np
.
array
([
input_shape
+
[
scale
]]).
astype
(
'float32'
)
logger
.
info
(
'Extra info: im_info'
)
info
.
append
(
im_info
)
elif
'RCNN'
in
arch
:
input_shape
.
extend
(
im
.
shape
[
2
:])
im_shape
.
extend
(
shape
[:
2
])
im_info
=
np
.
array
([
input_shape
+
[
scale
]]).
astype
(
'float32'
)
im_shape
=
np
.
array
([
im_shape
+
[
1.
]]).
astype
(
'float32'
)
logger
.
info
(
'Extra info: im_info, im_shape'
)
info
.
append
(
im_info
)
info
.
append
(
im_shape
)
else
:
logger
.
error
(
"Unsupported arch: {}, expect YOLO, SSD, RetinaNet and RCNN"
.
format
(
arch
))
return
info
class
Resize
(
object
):
def
__init__
(
self
,
target_size
,
max_size
=
0
,
interp
=
cv2
.
INTER_LINEAR
,
use_cv2
=
True
,
image_shape
=
None
):
super
(
Resize
,
self
).
__init__
()
self
.
target_size
=
target_size
self
.
max_size
=
max_size
self
.
interp
=
interp
self
.
use_cv2
=
use_cv2
self
.
image_shape
=
image_shape
def
__call__
(
self
,
im
):
origin_shape
=
im
.
shape
[:
2
]
im_c
=
im
.
shape
[
2
]
if
self
.
max_size
!=
0
:
im_size_min
=
np
.
min
(
origin_shape
[
0
:
2
])
im_size_max
=
np
.
max
(
origin_shape
[
0
:
2
])
im_scale
=
float
(
self
.
target_size
)
/
float
(
im_size_min
)
if
np
.
round
(
im_scale
*
im_size_max
)
>
self
.
max_size
:
im_scale
=
float
(
self
.
max_size
)
/
float
(
im_size_max
)
im_scale_x
=
im_scale
im_scale_y
=
im_scale
resize_w
=
int
(
im_scale_x
*
float
(
origin_shape
[
1
]))
resize_h
=
int
(
im_scale_y
*
float
(
origin_shape
[
0
]))
else
:
im_scale_x
=
float
(
self
.
target_size
)
/
float
(
origin_shape
[
1
])
im_scale_y
=
float
(
self
.
target_size
)
/
float
(
origin_shape
[
0
])
resize_w
=
self
.
target_size
resize_h
=
self
.
target_size
if
self
.
use_cv2
:
im
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
self
.
interp
)
else
:
if
self
.
max_size
!=
0
:
raise
TypeError
(
'If you set max_size to cap the maximum size of image,'
'please set use_cv2 to True to resize the image.'
)
im
=
im
.
astype
(
'uint8'
)
im
=
Image
.
fromarray
(
im
)
im
=
im
.
resize
((
int
(
resize_w
),
int
(
resize_h
)),
self
.
interp
)
im
=
np
.
array
(
im
)
# padding im
if
self
.
max_size
!=
0
and
self
.
image_shape
is
not
None
:
padding_im
=
np
.
zeros
(
(
self
.
max_size
,
self
.
max_size
,
im_c
),
dtype
=
np
.
float32
)
im_h
,
im_w
=
im
.
shape
[:
2
]
padding_im
[:
im_h
,
:
im_w
,
:]
=
im
im
=
padding_im
return
im
,
im_scale_x
class
Normalize
(
object
):
def
__init__
(
self
,
mean
,
std
,
is_scale
=
True
,
is_channel_first
=
False
):
super
(
Normalize
,
self
).
__init__
()
self
.
mean
=
mean
self
.
std
=
std
self
.
is_scale
=
is_scale
self
.
is_channel_first
=
is_channel_first
def
__call__
(
self
,
im
):
im
=
im
.
astype
(
np
.
float32
,
copy
=
False
)
if
self
.
is_channel_first
:
mean
=
np
.
array
(
self
.
mean
)[:,
np
.
newaxis
,
np
.
newaxis
]
std
=
np
.
array
(
self
.
std
)[:,
np
.
newaxis
,
np
.
newaxis
]
else
:
mean
=
np
.
array
(
self
.
mean
)[
np
.
newaxis
,
np
.
newaxis
,
:]
std
=
np
.
array
(
self
.
std
)[
np
.
newaxis
,
np
.
newaxis
,
:]
if
self
.
is_scale
:
im
=
im
/
255.0
im
-=
mean
im
/=
std
return
im
class
Permute
(
object
):
def
__init__
(
self
,
to_bgr
=
False
,
channel_first
=
True
):
self
.
to_bgr
=
to_bgr
self
.
channel_first
=
channel_first
def
__call__
(
self
,
im
):
if
self
.
channel_first
:
im
=
im
.
transpose
((
2
,
0
,
1
))
if
self
.
to_bgr
:
im
=
im
[[
2
,
1
,
0
],
:,
:]
return
im
.
copy
()
class
PadStride
(
object
):
def
__init__
(
self
,
stride
=
0
):
assert
stride
>=
0
,
"Unsupported stride: {},"
" the stride in PadStride must be greater "
"or equal to 0"
.
format
(
stride
)
self
.
coarsest_stride
=
stride
def
__call__
(
self
,
im
):
coarsest_stride
=
self
.
coarsest_stride
if
coarsest_stride
==
0
:
return
im
im_c
,
im_h
,
im_w
=
im
.
shape
pad_h
=
int
(
np
.
ceil
(
float
(
im_h
)
/
coarsest_stride
)
*
coarsest_stride
)
pad_w
=
int
(
np
.
ceil
(
float
(
im_w
)
/
coarsest_stride
)
*
coarsest_stride
)
padding_im
=
np
.
zeros
((
im_c
,
pad_h
,
pad_w
),
dtype
=
np
.
float32
)
padding_im
[:,
:
im_h
,
:
im_w
]
=
im
return
padding_im
def
Preprocess
(
img_path
,
arch
,
config
):
img
=
DecodeImage
(
img_path
)
orig_shape
=
img
.
shape
scale
=
1.
data
=
[]
data_config
=
copy
.
deepcopy
(
config
)
for
data_aug_conf
in
data_config
:
obj
=
data_aug_conf
.
pop
(
'type'
)
preprocess
=
eval
(
obj
)(
**
data_aug_conf
)
if
obj
==
'Resize'
:
img
,
scale
=
preprocess
(
img
)
else
:
img
=
preprocess
(
img
)
img
=
img
[
np
.
newaxis
,
:]
# N, C, H, W
data
.
append
(
img
)
extra_info
=
get_extra_info
(
img
,
arch
,
orig_shape
,
scale
)
data
+=
extra_info
return
data
def
get_category_info
(
with_background
,
label_list
):
if
label_list
[
0
]
!=
'background'
and
with_background
:
label_list
.
insert
(
0
,
'background'
)
if
label_list
[
0
]
==
'background'
and
not
with_background
:
label_list
=
label_list
[
1
:]
clsid2catid
=
{
i
:
i
for
i
in
range
(
len
(
label_list
))}
catid2name
=
{
i
:
name
for
i
,
name
in
enumerate
(
label_list
)}
return
clsid2catid
,
catid2name
def
bbox2out
(
results
,
clsid2catid
,
is_bbox_normalized
=
False
):
"""
Args:
results: request a dict, should include: `bbox`, `im_id`,
if is_bbox_normalized=True, also need `im_shape`.
clsid2catid: class id to category id map of COCO2017 dataset.
is_bbox_normalized: whether or not bbox is normalized.
"""
xywh_res
=
[]
for
t
in
results
:
bboxes
=
t
[
'bbox'
][
0
]
lengths
=
t
[
'bbox'
][
1
][
0
]
if
bboxes
.
shape
==
(
1
,
1
)
or
bboxes
is
None
:
continue
k
=
0
for
i
in
range
(
len
(
lengths
)):
num
=
lengths
[
i
]
for
j
in
range
(
num
):
dt
=
bboxes
[
k
]
clsid
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
catid
=
(
clsid2catid
[
int
(
clsid
)])
if
is_bbox_normalized
:
xmin
,
ymin
,
xmax
,
ymax
=
\
clip_bbox
([
xmin
,
ymin
,
xmax
,
ymax
])
w
=
xmax
-
xmin
h
=
ymax
-
ymin
im_shape
=
t
[
'im_shape'
][
0
][
i
].
tolist
()
im_height
,
im_width
=
int
(
im_shape
[
0
]),
int
(
im_shape
[
1
])
xmin
*=
im_width
ymin
*=
im_height
w
*=
im_width
h
*=
im_height
else
:
w
=
xmax
-
xmin
+
1
h
=
ymax
-
ymin
+
1
bbox
=
[
xmin
,
ymin
,
w
,
h
]
coco_res
=
{
'category_id'
:
catid
,
'bbox'
:
bbox
,
'score'
:
score
}
xywh_res
.
append
(
coco_res
)
k
+=
1
return
xywh_res
def
expand_boxes
(
boxes
,
scale
):
"""
Expand an array of boxes by a given scale.
"""
w_half
=
(
boxes
[:,
2
]
-
boxes
[:,
0
])
*
.
5
h_half
=
(
boxes
[:,
3
]
-
boxes
[:,
1
])
*
.
5
x_c
=
(
boxes
[:,
2
]
+
boxes
[:,
0
])
*
.
5
y_c
=
(
boxes
[:,
3
]
+
boxes
[:,
1
])
*
.
5
w_half
*=
scale
h_half
*=
scale
boxes_exp
=
np
.
zeros
(
boxes
.
shape
)
boxes_exp
[:,
0
]
=
x_c
-
w_half
boxes_exp
[:,
2
]
=
x_c
+
w_half
boxes_exp
[:,
1
]
=
y_c
-
h_half
boxes_exp
[:,
3
]
=
y_c
+
h_half
return
boxes_exp
def
mask2out
(
results
,
clsid2catid
,
resolution
,
thresh_binarize
=
0.5
):
import
pycocotools.mask
as
mask_util
scale
=
(
resolution
+
2.0
)
/
resolution
segm_res
=
[]
for
t
in
results
:
bboxes
=
t
[
'bbox'
][
0
]
lengths
=
t
[
'bbox'
][
1
][
0
]
if
bboxes
.
shape
==
(
1
,
1
)
or
bboxes
is
None
:
continue
if
len
(
bboxes
.
tolist
())
==
0
:
continue
masks
=
t
[
'mask'
][
0
]
s
=
0
# for each sample
for
i
in
range
(
len
(
lengths
)):
num
=
lengths
[
i
]
im_shape
=
t
[
'im_shape'
][
i
]
bbox
=
bboxes
[
s
:
s
+
num
][:,
2
:]
clsid_scores
=
bboxes
[
s
:
s
+
num
][:,
0
:
2
]
mask
=
masks
[
s
:
s
+
num
]
s
+=
num
im_h
=
int
(
im_shape
[
0
])
im_w
=
int
(
im_shape
[
1
])
expand_bbox
=
expand_boxes
(
bbox
,
scale
)
expand_bbox
=
expand_bbox
.
astype
(
np
.
int32
)
padded_mask
=
np
.
zeros
(
(
resolution
+
2
,
resolution
+
2
),
dtype
=
np
.
float32
)
for
j
in
range
(
num
):
xmin
,
ymin
,
xmax
,
ymax
=
expand_bbox
[
j
].
tolist
()
clsid
,
score
=
clsid_scores
[
j
].
tolist
()
clsid
=
int
(
clsid
)
padded_mask
[
1
:
-
1
,
1
:
-
1
]
=
mask
[
j
,
clsid
,
:,
:]
catid
=
clsid2catid
[
clsid
]
w
=
xmax
-
xmin
+
1
h
=
ymax
-
ymin
+
1
w
=
np
.
maximum
(
w
,
1
)
h
=
np
.
maximum
(
h
,
1
)
resized_mask
=
cv2
.
resize
(
padded_mask
,
(
w
,
h
))
resized_mask
=
np
.
array
(
resized_mask
>
thresh_binarize
,
dtype
=
np
.
uint8
)
im_mask
=
np
.
zeros
((
im_h
,
im_w
),
dtype
=
np
.
uint8
)
x0
=
min
(
max
(
xmin
,
0
),
im_w
)
x1
=
min
(
max
(
xmax
+
1
,
0
),
im_w
)
y0
=
min
(
max
(
ymin
,
0
),
im_h
)
y1
=
min
(
max
(
ymax
+
1
,
0
),
im_h
)
im_mask
[
y0
:
y1
,
x0
:
x1
]
=
resized_mask
[(
y0
-
ymin
):(
y1
-
ymin
),
(
x0
-
xmin
):(
x1
-
xmin
)]
segm
=
mask_util
.
encode
(
np
.
array
(
im_mask
[:,
:,
np
.
newaxis
],
order
=
'F'
))[
0
]
catid
=
clsid2catid
[
clsid
]
segm
[
'counts'
]
=
segm
[
'counts'
].
decode
(
'utf8'
)
coco_res
=
{
'category_id'
:
catid
,
'segmentation'
:
segm
,
'score'
:
score
}
segm_res
.
append
(
coco_res
)
return
segm_res
def
color_map
(
num_classes
):
color_map
=
num_classes
*
[
0
,
0
,
0
]
for
i
in
range
(
0
,
num_classes
):
j
=
0
lab
=
i
while
lab
:
color_map
[
i
*
3
]
|=
(((
lab
>>
0
)
&
1
)
<<
(
7
-
j
))
color_map
[
i
*
3
+
1
]
|=
(((
lab
>>
1
)
&
1
)
<<
(
7
-
j
))
color_map
[
i
*
3
+
2
]
|=
(((
lab
>>
2
)
&
1
)
<<
(
7
-
j
))
j
+=
1
lab
>>=
3
color_map
=
np
.
array
(
color_map
).
reshape
(
-
1
,
3
)
return
color_map
def
draw_bbox
(
image
,
catid2name
,
bboxes
,
threshold
,
color_list
):
"""
draw bbox on image
"""
draw
=
ImageDraw
.
Draw
(
image
)
for
dt
in
np
.
array
(
bboxes
):
catid
,
bbox
,
score
=
dt
[
'category_id'
],
dt
[
'bbox'
],
dt
[
'score'
]
if
score
<
threshold
:
continue
xmin
,
ymin
,
w
,
h
=
bbox
xmax
=
xmin
+
w
ymax
=
ymin
+
h
color
=
tuple
(
color_list
[
catid
])
# draw bbox
draw
.
line
(
[(
xmin
,
ymin
),
(
xmin
,
ymax
),
(
xmax
,
ymax
),
(
xmax
,
ymin
),
(
xmin
,
ymin
)],
width
=
2
,
fill
=
color
)
# draw label
text
=
"{} {:.2f}"
.
format
(
catid2name
[
catid
],
score
)
tw
,
th
=
draw
.
textsize
(
text
)
draw
.
rectangle
(
[(
xmin
+
1
,
ymin
-
th
),
(
xmin
+
tw
+
1
,
ymin
)],
fill
=
color
)
draw
.
text
((
xmin
+
1
,
ymin
-
th
),
text
,
fill
=
(
255
,
255
,
255
))
return
image
def
draw_mask
(
image
,
masks
,
threshold
,
color_list
,
alpha
=
0.7
):
"""
Draw mask on image
"""
mask_color_id
=
0
w_ratio
=
.
4
img_array
=
np
.
array
(
image
).
astype
(
'float32'
)
for
dt
in
np
.
array
(
masks
):
segm
,
score
=
dt
[
'segmentation'
],
dt
[
'score'
]
if
score
<
threshold
:
continue
import
pycocotools.mask
as
mask_util
mask
=
mask_util
.
decode
(
segm
)
*
255
color_mask
=
color_list
[
mask_color_id
%
len
(
color_list
),
0
:
3
]
mask_color_id
+=
1
for
c
in
range
(
3
):
color_mask
[
c
]
=
color_mask
[
c
]
*
(
1
-
w_ratio
)
+
w_ratio
*
255
idx
=
np
.
nonzero
(
mask
)
img_array
[
idx
[
0
],
idx
[
1
],
:]
*=
1.0
-
alpha
img_array
[
idx
[
0
],
idx
[
1
],
:]
+=
alpha
*
color_mask
return
Image
.
fromarray
(
img_array
.
astype
(
'uint8'
))
def
get_bbox_result
(
fetch_map
,
fetch_name
,
result
,
conf
,
clsid2catid
):
is_bbox_normalized
=
True
if
'SSD'
in
conf
[
'arch'
]
else
False
output
=
fetch_map
[
fetch_name
]
lod
=
[
fetch_map
[
fetch_name
+
'.lod'
]]
lengths
=
offset_to_lengths
(
lod
)
np_data
=
np
.
array
(
output
)
result
[
'bbox'
]
=
(
np_data
,
lengths
)
result
[
'im_id'
]
=
np
.
array
([[
0
]])
bbox_results
=
bbox2out
([
result
],
clsid2catid
,
is_bbox_normalized
)
return
bbox_results
def
get_mask_result
(
fetch_map
,
fetch_var_names
,
result
,
conf
,
clsid2catid
):
resolution
=
conf
[
'mask_resolution'
]
bbox_out
,
mask_out
=
fetch_map
[
fetch_var_names
]
print
(
bbox_out
,
mask_out
)
lengths
=
offset_to_lengths
(
bbox_out
.
lod
())
bbox
=
np
.
array
(
bbox_out
)
mask
=
np
.
array
(
mask_out
)
result
[
'bbox'
]
=
(
bbox
,
lengths
)
result
[
'mask'
]
=
(
mask
,
lengths
)
mask_results
=
mask2out
([
result
],
clsid2catid
,
conf
[
'mask_resolution'
])
return
mask_results
def
visualize
(
bbox_results
,
catid2name
,
num_classes
,
mask_results
=
None
):
image
=
Image
.
open
(
FLAGS
.
infer_img
).
convert
(
'RGB'
)
color_list
=
color_map
(
num_classes
)
image
=
draw_bbox
(
image
,
catid2name
,
bbox_results
,
0.5
,
color_list
)
if
mask_results
is
not
None
:
image
=
draw_mask
(
image
,
mask_results
,
0.5
,
color_list
)
image_path
=
os
.
path
.
split
(
FLAGS
.
infer_img
)[
-
1
]
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
image_path
)
image
.
save
(
out_path
,
quality
=
95
)
logger
.
info
(
'Save visualize result to {}'
.
format
(
out_path
))
def
preprocess
(
feed_var_names
):
global
FLAGS
config_path
=
FLAGS
.
config_path
res
=
{}
assert
config_path
is
not
None
,
"Config path: {} des not exist!"
.
format
(
model_path
)
with
open
(
config_path
)
as
f
:
conf
=
yaml
.
safe_load
(
f
)
img_data
=
Preprocess
(
FLAGS
.
infer_img
,
conf
[
'arch'
],
conf
[
'Preprocess'
])
if
'SSD'
in
conf
[
'arch'
]:
img_data
,
res
[
'im_shape'
]
=
img_data
img_data
=
[
img_data
]
if
len
(
feed_var_names
)
!=
len
(
img_data
):
raise
ValueError
(
'the length of feed vars does not equals the length of preprocess of img data, please check your feed dict'
)
def
processImg
(
v
):
np_data
=
np
.
array
(
v
[
0
])
res
=
np_data
return
res
feed_dict
=
{
k
:
processImg
(
v
)
for
k
,
v
in
zip
(
feed_var_names
,
img_data
)}
return
feed_dict
def
postprocess
(
fetch_map
,
fetch_var_names
):
config_path
=
FLAGS
.
config_path
res
=
{}
with
open
(
config_path
)
as
f
:
conf
=
yaml
.
safe_load
(
f
)
if
'SSD'
in
conf
[
'arch'
]:
img_data
,
res
[
'im_shape'
]
=
img_data
img_data
=
[
img_data
]
clsid2catid
,
catid2name
=
get_category_info
(
conf
[
'with_background'
],
conf
[
'label_list'
])
bbox_result
=
get_bbox_result
(
fetch_map
,
fetch_var_names
[
0
],
res
,
conf
,
clsid2catid
)
mask_result
=
None
if
'mask_resolution'
in
conf
:
res
[
'im_shape'
]
=
img_data
[
-
1
]
mask_result
=
get_mask_result
(
fetch_map
,
fetch_var_names
,
res
,
conf
,
clsid2catid
)
if
FLAGS
.
visualize
:
if
os
.
path
.
isdir
(
FLAGS
.
output_dir
)
is
False
:
os
.
mkdir
(
FLAGS
.
output_dir
)
visualize
(
bbox_result
,
catid2name
,
len
(
conf
[
'label_list'
]),
mask_result
)
if
FLAGS
.
dump_result
:
if
os
.
path
.
isdir
(
FLAGS
.
output_dir
)
is
False
:
os
.
mkdir
(
FLAGS
.
output_dir
)
bbox_file
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
'bbox.json'
)
logger
.
info
(
'dump bbox to {}'
.
format
(
bbox_file
))
with
open
(
bbox_file
,
'w'
)
as
f
:
json
.
dump
(
bbox_result
,
f
,
indent
=
4
)
if
mask_result
is
not
None
:
mask_file
=
os
.
path
.
join
(
flags
.
output_dir
,
'mask.json'
)
logger
.
info
(
'dump mask to {}'
.
format
(
mask_file
))
with
open
(
mask_file
,
'w'
)
as
f
:
json
.
dump
(
mask_result
,
f
,
indent
=
4
)
from
.image_tool
import
Resize
,
Detection
def
ArgParse
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录