Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
3aa1ad8a
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3aa1ad8a
编写于
3月 16, 2020
作者:
M
MRXLT
提交者:
GitHub
3月 16, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #281 from MRXLT/general-server-doc
refine demo script and readme
上级
c6d97c14
7bbb4123
变更
31
显示空白变更内容
内联
并排
Showing
31 changed file
with
528 addition
and
170 deletion
+528
-170
python/examples/bert/README.md
python/examples/bert/README.md
+23
-9
python/examples/bert/benchmark.py
python/examples/bert/benchmark.py
+23
-16
python/examples/bert/benchmark.sh
python/examples/bert/benchmark.sh
+4
-2
python/examples/bert/benchmark_batch.py
python/examples/bert/benchmark_batch.py
+22
-29
python/examples/bert/benchmark_batch.sh
python/examples/bert/benchmark_batch.sh
+7
-3
python/examples/bert/bert_web_service.py
python/examples/bert/bert_web_service.py
+2
-1
python/examples/bert/get_data.sh
python/examples/bert/get_data.sh
+1
-0
python/examples/criteo_ctr/README.md
python/examples/criteo_ctr/README.md
+24
-1
python/examples/criteo_ctr/benchmark.py
python/examples/criteo_ctr/benchmark.py
+76
-0
python/examples/criteo_ctr/benchmark.sh
python/examples/criteo_ctr/benchmark.sh
+9
-0
python/examples/criteo_ctr/benchmark_batch.py
python/examples/criteo_ctr/benchmark_batch.py
+80
-0
python/examples/criteo_ctr/benchmark_batch.sh
python/examples/criteo_ctr/benchmark_batch.sh
+12
-0
python/examples/criteo_ctr/get_data.sh
python/examples/criteo_ctr/get_data.sh
+1
-1
python/examples/criteo_ctr/test_client.py
python/examples/criteo_ctr/test_client.py
+7
-3
python/examples/imagenet/README.md
python/examples/imagenet/README.md
+13
-5
python/examples/imagenet/benchmark.py
python/examples/imagenet/benchmark.py
+18
-9
python/examples/imagenet/benchmark.sh
python/examples/imagenet/benchmark.sh
+9
-0
python/examples/imagenet/benchmark_batch.py
python/examples/imagenet/benchmark_batch.py
+75
-0
python/examples/imagenet/benchmark_batch.sh
python/examples/imagenet/benchmark_batch.sh
+12
-0
python/examples/imagenet/get_model.sh
python/examples/imagenet/get_model.sh
+7
-2
python/examples/imagenet/image_http_client.py
python/examples/imagenet/image_http_client.py
+1
-2
python/examples/imdb/README.md
python/examples/imdb/README.md
+22
-8
python/examples/imdb/benchmark.py
python/examples/imdb/benchmark.py
+10
-10
python/examples/imdb/benchmark.sh
python/examples/imdb/benchmark.sh
+9
-0
python/examples/imdb/benchmark_batch.py
python/examples/imdb/benchmark_batch.py
+39
-61
python/examples/imdb/benchmark_batch.sh
python/examples/imdb/benchmark_batch.sh
+12
-0
python/examples/imdb/local_train.py
python/examples/imdb/local_train.py
+2
-2
python/examples/imdb/test_client.py
python/examples/imdb/test_client.py
+2
-2
python/examples/imdb/text_classify_service.py
python/examples/imdb/text_classify_service.py
+3
-2
python/examples/util/show_profile.py
python/examples/util/show_profile.py
+2
-2
python/paddle_serving_client/utils/__init__.py
python/paddle_serving_client/utils/__init__.py
+1
-0
未找到文件。
python/examples/bert/README.md
浏览文件 @
3aa1ad8a
...
...
@@ -12,29 +12,43 @@ python prepare_model.py
生成server端配置文件与模型文件,存放在serving_server_model文件夹
生成client端配置文件,存放在serving_client_conf文件夹
### 启动预测服务
### 获取词典和样例数据
```
sh get_data.sh
```
脚本将下载中文词典vocab.txt和中文样例数据data-c.txt
### 启动RPC预测服务
执行
```
python
bert_server.py serving_server_model 9292
#启动cpu预测服务
python
-m paddle_serving_server.serve --model serving_server_model/ --port 9292
#启动cpu预测服务
```
或者
```
python
bert_gpu_server.py serving_server_model 9292
0 #在gpu 0上启动gpu预测服务
python
-m paddle_serving_server_gpu.serve --model serving_server_model/ --port 9292 --gpu_ids
0 #在gpu 0上启动gpu预测服务
```
### 执行预测
执行
```
sh get_data.sh
python bert_rpc_client.py --thread 4
```
获取中文样例数据
启动client读取data-c.txt中的数据进行预测,--thread参数控制client的进程数,预测结束后会打印出每个进程的耗时,server端的地址在脚本中修改。
### 启动HTTP预测服务
```
export CUDA_VISIBLE_DEVICES=0,1
```
通过环境变量指定gpu预测服务使用的gpu,示例中指定索引为0和1的两块gpu
```
python bert_web_service.py serving_server_model/ 9292 #启动gpu预测服务
```
### 执行预测
执行
```
head data-c.txt | python bert_client.py
curl -H "Content-Type:application/json" -X POST -d '{"words": "hello", "fetch":["pooled_output"]}' http://127.0.0.1:9292/bert/prediction
```
将预测样例数据中的前十条样例,并将向量表示打印到标准输出。
### Benchmark
...
...
python/examples/bert/benchmark.py
浏览文件 @
3aa1ad8a
...
...
@@ -33,25 +33,32 @@ args = benchmark_args()
def
single_func
(
idx
,
resource
):
fin
=
open
(
"data-c.txt"
)
dataset
=
[]
for
line
in
fin
:
dataset
.
append
(
line
.
strip
())
if
args
.
request
==
"rpc"
:
reader
=
BertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
128
)
reader
=
BertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
20
)
fetch
=
[
"pooled_output"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
resource
[
"endpoint"
][
idx
%
4
]])
client
.
connect
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])
]])
start
=
time
.
time
()
for
line
in
fin
:
feed_dict
=
reader
.
process
(
line
)
for
i
in
range
(
1000
):
if
args
.
batch_size
==
1
:
feed_dict
=
reader
.
process
(
dataset
[
i
])
result
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch
)
end
=
time
.
time
()
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
start
=
time
.
time
()
header
=
{
"Content-Type"
:
"application/json"
}
for
line
in
fin
:
dict_data
=
{
"words"
:
line
,
"fetch"
:
[
"pooled_output"
]}
for
i
in
range
(
1000
)
:
dict_data
=
{
"words"
:
dataset
[
i
]
,
"fetch"
:
[
"pooled_output"
]}
r
=
requests
.
post
(
'http://{}/bert/prediction'
.
format
(
resource
[
"endpoint"
][
0
]),
'http://{}/bert/prediction'
.
format
(
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]),
data
=
json
.
dumps
(
dict_data
),
headers
=
header
)
end
=
time
.
time
()
...
...
@@ -60,11 +67,11 @@ def single_func(idx, resource):
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[]
card_num
=
4
for
i
in
range
(
args
.
thread
):
endpoint_list
.
append
(
"127.0.0.1:{}"
.
format
(
9494
+
i
%
card_num
))
print
(
endpoint_list
)
endpoint_list
=
[
"127.0.0.1:9292"
]
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
print
(
result
)
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"average total cost {} s."
.
format
(
avg_cost
))
python/examples/bert/benchmark.sh
浏览文件 @
3aa1ad8a
rm
profile_log
for
thread_num
in
1
4 8 12 16 20 24
for
thread_num
in
1
2 4 8 16
do
$PYTHONROOT
/bin/python benchmark.py serving_client_conf/serving_client_conf.prototxt data.txt
$thread_num
$batch_size
>
profile 2>&1
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--model
serving_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
python/examples/bert/benchmark_batch.py
浏览文件 @
3aa1ad8a
...
...
@@ -27,52 +27,45 @@ import tokenization
import
requests
import
json
from
bert_reader
import
BertReader
args
=
benchmark_args
()
batch_size
=
24
def
single_func
(
idx
,
resource
):
fin
=
open
(
"data-c.txt"
)
dataset
=
[]
for
line
in
fin
:
dataset
.
append
(
line
.
strip
())
if
args
.
request
==
"rpc"
:
reader
=
BertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
128
)
reader
=
BertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
20
)
fetch
=
[
"pooled_output"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
resource
[
"endpoint"
][
idx
%
4
]])
client
.
connect
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])
]])
start
=
time
.
time
()
idx
=
0
batch_data
=
[]
for
line
in
fin
:
feed_dict
=
reader
.
process
(
line
)
batch_data
.
append
(
feed_dict
)
idx
+=
1
if
idx
%
batch_size
==
0
:
for
i
in
range
(
1000
):
if
args
.
batch_size
>=
1
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
feed_batch
.
append
(
reader
.
process
(
dataset
[
i
]))
result
=
client
.
batch_predict
(
feed_batch
=
batch_data
,
fetch
=
fetch
)
batch_data
=
[]
end
=
time
.
time
()
feed_batch
=
feed_batch
,
fetch
=
fetch
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
header
=
{
"Content-Type"
:
"application/json"
}
for
line
in
fin
:
dict_data
=
{
"words"
:
line
,
"fetch"
:
[
"pooled_output"
]}
r
=
requests
.
post
(
'http://{}/bert/prediction'
.
format
(
resource
[
"endpoint"
][
0
]),
data
=
json
.
dumps
(
dict_data
),
headers
=
header
)
raise
(
"no batch predict for http"
)
end
=
time
.
time
()
return
[[
end
-
start
]]
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[]
card_num
=
4
for
i
in
range
(
args
.
thread
):
endpoint_list
.
append
(
"127.0.0.1:{}"
.
format
(
9494
+
i
%
card_num
))
print
(
endpoint_list
)
endpoint_list
=
[
"127.0.0.1:9292"
]
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
print
(
result
)
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"average total cost {} s."
.
format
(
avg_cost
))
python/examples/bert/benchmark_batch.sh
浏览文件 @
3aa1ad8a
rm
profile_log
thread_num
=
1
for
batch_size
in
1 4 8 16 32 64 128 256
for
thread_num
in
1 2 4 8 16
do
$PYTHONROOT
/bin/python benchmark_batch.py serving_client_conf/serving_client_conf.prototxt data.txt
$thread_num
$batch_size
>
profile 2>&1
for
batch_size
in
1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT
/bin/python benchmark_batch.py
--thread
$thread_num
--batch_size
$batch_size
--model
serving_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
done
python/examples/bert/bert_web_service.py
浏览文件 @
3aa1ad8a
...
...
@@ -34,5 +34,6 @@ bert_service.load_model_config(sys.argv[1])
gpu_ids
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
gpus
=
[
int
(
x
)
for
x
in
gpu_ids
.
split
(
","
)]
bert_service
.
set_gpus
(
gpus
)
bert_service
.
prepare_server
(
workdir
=
"workdir"
,
port
=
9494
,
device
=
"gpu"
)
bert_service
.
prepare_server
(
workdir
=
"workdir"
,
port
=
int
(
sys
.
argv
[
2
]),
device
=
"gpu"
)
bert_service
.
run_server
()
python/examples/bert/get_data.sh
浏览文件 @
3aa1ad8a
wget https://paddle-serving.bj.bcebos.com/bert_example/data-c.txt
--no-check-certificate
wget https://paddle-serving.bj.bcebos.com/bert_example/vocab.txt
--no-check-certificate
python/examples/criteo_ctr/README.md
浏览文件 @
3aa1ad8a
# CTR task on Criteo Dataset
## CTR预测服务
### 获取样例数据
```
sh get_data.sh
```
### 保存模型和配置文件
```
python local_train.py
```
执行脚本后会在当前目录生成serving_server_model和serving_client_config文件夹。
### 启动RPC预测服务
```
python -m paddle_serving_server.serve --model ctr_serving_model/ --port 9292
```
### 执行预测
```
python test_client.py ctr_client_conf/serving_client_conf.prototxt raw_data/
```
python/examples/criteo_ctr/benchmark.py
0 → 100644
浏览文件 @
3aa1ad8a
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
__future__
import
unicode_literals
,
absolute_import
import
os
import
sys
import
time
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
import
requests
import
json
import
criteo_reader
as
criteo
args
=
benchmark_args
()
def
single_func
(
idx
,
resource
):
batch
=
1
buf_size
=
100
dataset
=
criteo
.
CriteoDataset
()
dataset
.
setup
(
1000001
)
test_filelists
=
[
"./raw_data/part-%d"
%
x
for
x
in
range
(
len
(
os
.
listdir
(
"./raw_data"
)))
]
reader
=
dataset
.
infer_reader
(
test_filelists
[
len
(
test_filelists
)
-
40
:],
batch
,
buf_size
)
if
args
.
request
==
"rpc"
:
fetch
=
[
"prob"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]])
start
=
time
.
time
()
for
i
in
range
(
1000
):
if
args
.
batch_size
==
1
:
data
=
reader
().
next
()
feed_dict
=
{}
for
i
in
range
(
1
,
27
):
feed_dict
[
"sparse_{}"
.
format
(
i
-
1
)]
=
data
[
0
][
i
]
result
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
raise
(
"Not support http service."
)
end
=
time
.
time
()
return
[[
end
-
start
]]
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:9292"
]
#endpoint_list = endpoint_list + endpoint_list + endpoint_list
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
#result = single_func(0, {"endpoint": endpoint_list})
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"average total cost {} s."
.
format
(
avg_cost
))
python/examples/criteo_ctr/benchmark.sh
0 → 100644
浏览文件 @
3aa1ad8a
rm
profile_log
for
thread_num
in
1 2 4 8 16
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--model
ctr_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
python/examples/criteo_ctr/benchmark_batch.py
0 → 100644
浏览文件 @
3aa1ad8a
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
__future__
import
unicode_literals
,
absolute_import
import
os
import
sys
import
time
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
import
requests
import
json
import
criteo_reader
as
criteo
args
=
benchmark_args
()
def
single_func
(
idx
,
resource
):
batch
=
1
buf_size
=
100
dataset
=
criteo
.
CriteoDataset
()
dataset
.
setup
(
1000001
)
test_filelists
=
[
"./raw_data/part-%d"
%
x
for
x
in
range
(
len
(
os
.
listdir
(
"./raw_data"
)))
]
reader
=
dataset
.
infer_reader
(
test_filelists
[
len
(
test_filelists
)
-
40
:],
batch
,
buf_size
)
if
args
.
request
==
"rpc"
:
fetch
=
[
"prob"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]])
start
=
time
.
time
()
for
i
in
range
(
1000
):
if
args
.
batch_size
>=
1
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
feed_dict
=
{}
data
=
reader
().
next
()
for
i
in
range
(
1
,
27
):
feed_dict
[
"sparse_{}"
.
format
(
i
-
1
)]
=
data
[
0
][
i
]
feed_batch
.
append
(
feed_dict
)
result
=
client
.
batch_predict
(
feed_batch
=
feed_batch
,
fetch
=
fetch
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
raise
(
"no batch predict for http"
)
end
=
time
.
time
()
return
[[
end
-
start
]]
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:9292"
]
#endpoint_list = endpoint_list + endpoint_list + endpoint_list
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
#result = single_func(0, {"endpoint": endpoint_list})
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"average total cost {} s."
.
format
(
avg_cost
))
python/examples/criteo_ctr/benchmark_batch.sh
0 → 100644
浏览文件 @
3aa1ad8a
rm
profile_log
for
thread_num
in
1 2 4 8 16
do
for
batch_size
in
1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT
/bin/python benchmark_batch.py
--thread
$thread_num
--batch_size
$batch_size
--model
serving_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
done
python/examples/criteo_ctr/get_data.sh
浏览文件 @
3aa1ad8a
wget
--no-check-certificate
https://paddle-serving.bj.bcebos.com/data/ctr_prediction/ctr_data.tar.gz
tar
-zxvf
*
ctr_data.tar.gz
tar
-zxvf
ctr_data.tar.gz
python/examples/criteo_ctr/test_client.py
浏览文件 @
3aa1ad8a
...
...
@@ -17,6 +17,7 @@ from paddle_serving_client import Client
import
paddle
import
sys
import
os
import
time
import
criteo_reader
as
criteo
from
paddle_serving_client.metric
import
auc
...
...
@@ -34,12 +35,15 @@ test_filelists = [
]
reader
=
dataset
.
infer_reader
(
test_filelists
[
len
(
test_filelists
)
-
40
:],
batch
,
buf_size
)
label_list
=
[]
prob_list
=
[]
for
data
in
reader
():
start
=
time
.
time
()
for
ei
in
range
(
1000
):
data
=
reader
().
next
()
feed_dict
=
{}
for
i
in
range
(
1
,
27
):
feed_dict
[
"sparse_{}"
.
format
(
i
-
1
)]
=
data
[
0
][
i
]
fetch_map
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
[
"prob"
])
print
(
fetch_map
)
#print(fetch_map)
end
=
time
.
time
()
print
(
end
-
start
)
python/examples/imagenet/README.md
浏览文件 @
3aa1ad8a
...
...
@@ -2,26 +2,34 @@
示例中采用ResNet50_vd模型执行imagenet 1000分类任务。
###
模型及配置文件获取
###
获取模型配置文件和样例数据
```
sh get_model.sh
```
### 执行
wb service
预测服务
### 执行
HTTP
预测服务
启动server端
```
python image_classification_service.py
conf_and_model/serving_server_model workdir 9393
python image_classification_service.py
ResNet50_vd_model workdir 9393 #cpu预测服务
```
```
python image_classification_service_gpu.py ResNet50_vd_model workdir 9393 #gpu预测服务
```
client端进行预测
```
python image_http_client.py
```
### 执行
rpc service
预测服务
### 执行
RPC
预测服务
启动server端
```
python -m paddle_serving_server.serve --model conf_and_model/serving_server_model/ --port 9393
python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9393 #cpu预测服务
```
```
python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9393 --gpu_ids 0 #gpu预测服务
```
client端进行预测
...
...
python/examples/imagenet/benchmark.py
浏览文件 @
3aa1ad8a
...
...
@@ -18,23 +18,28 @@ from paddle_serving_client import Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
import
time
import
os
args
=
benchmark_args
()
def
single_func
(
idx
,
resource
):
file_list
=
[]
for
file_name
in
os
.
listdir
(
"./image_data/n01440764"
):
file_list
.
append
(
file_name
)
img_list
=
[]
for
i
in
range
(
1000
):
img_list
.
append
(
open
(
"./image_data/n01440764/"
+
file_list
[
i
]).
read
())
if
args
.
request
==
"rpc"
:
reader
=
ImageReader
()
fetch
=
[
"score"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
resource
[
"endpoint"
][
idx
%
4
]])
client
.
connect
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])
]])
start
=
time
.
time
()
for
i
in
range
(
1000
):
with
open
(
"./data/n01440764_10026.JPEG"
)
as
f
:
img
=
f
.
read
()
img
=
reader
.
process_image
(
img
).
reshape
(
-
1
)
img
=
reader
.
process_image
(
img_list
[
i
]).
reshape
(
-
1
)
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
img
},
fetch
=
[
"score"
])
end
=
time
.
time
()
return
[[
end
-
start
]]
...
...
@@ -43,10 +48,14 @@ def single_func(idx, resource):
if
__name__
==
"__main__"
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[]
card_num
=
4
for
i
in
range
(
args
.
thread
):
endpoint_list
.
append
(
"127.0.0.1:{}"
.
format
(
9295
+
i
%
card_num
))
endpoint_list
=
[
"127.0.0.1:9393"
]
#
card_num = 4
#
for i in range(args.thread):
#
endpoint_list.append("127.0.0.1:{}".format(9295 + i % card_num))
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
print
(
result
)
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"average total cost {} s."
.
format
(
avg_cost
))
python/examples/imagenet/benchmark.sh
0 → 100644
浏览文件 @
3aa1ad8a
rm
profile_log
for
thread_num
in
1 2 4 8 16
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--model
ResNet101_vd_client_config/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
python/examples/imagenet/benchmark_batch.py
0 → 100644
浏览文件 @
3aa1ad8a
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
__future__
import
unicode_literals
,
absolute_import
import
os
import
sys
import
time
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
import
requests
import
json
from
image_reader
import
ImageReader
args
=
benchmark_args
()
def
single_func
(
idx
,
resource
):
file_list
=
[]
for
file_name
in
os
.
listdir
(
"./image_data/n01440764"
):
file_list
.
append
(
file_name
)
img_list
=
[]
for
i
in
range
(
1000
):
img_list
.
append
(
open
(
"./image_data/n01440764/"
+
file_list
[
i
]).
read
())
if
args
.
request
==
"rpc"
:
reader
=
ImageReader
()
fetch
=
[
"score"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]])
start
=
time
.
time
()
for
i
in
range
(
1000
):
if
args
.
batch_size
>=
1
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
img
=
reader
.
process_image
(
img_list
[
i
])
img
=
img
.
reshape
(
-
1
)
feed_batch
.
append
({
"image"
:
img
})
result
=
client
.
batch_predict
(
feed_batch
=
feed_batch
,
fetch
=
fetch
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
raise
(
"no batch predict for http"
)
end
=
time
.
time
()
return
[[
end
-
start
]]
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:9393"
]
#endpoint_list = endpoint_list + endpoint_list + endpoint_list
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
#result = single_func(0, {"endpoint": endpoint_list})
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"average total cost {} s."
.
format
(
avg_cost
))
python/examples/imagenet/benchmark_batch.sh
0 → 100644
浏览文件 @
3aa1ad8a
rm
profile_log
for
thread_num
in
1 2 4 8 16
do
for
batch_size
in
1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT
/bin/python benchmark_batch.py
--thread
$thread_num
--batch_size
$batch_size
--model
ResNet101_vd_client_config/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
done
python/examples/imagenet/get_model.sh
浏览文件 @
3aa1ad8a
wget
--no-check-certificate
https://paddle-serving.bj.bcebos.com/imagenet-example/conf_and_model.tar.gz
tar
-xzvf
conf_and_model.tar.gz
wget
--no-check-certificate
https://paddle-serving.bj.bcebos.com/imagenet-example/ResNet50_vd.tar.gz
tar
-xzvf
ResNet50_vd.tar.gz
wget
--no-check-certificate
https://paddle-serving.bj.bcebos.com/imagenet-example/ResNet101_vd.tar.gz
tar
-xzvf
ResNet101_vd.tar.gz
wget
--no-check-certificate
https://paddle-serving.bj.bcebos.com/imagenet-example/image_data.tar.gz
tar
-xzvf
imgae_data.tar.gz
python/examples/imagenet/image_http_client.py
浏览文件 @
3aa1ad8a
...
...
@@ -26,11 +26,10 @@ def predict(image_path, server):
if
__name__
==
"__main__"
:
server
=
"http://127.0.0.1:9
292
/image/prediction"
server
=
"http://127.0.0.1:9
393
/image/prediction"
image_path
=
"./data/n01440764_10026.JPEG"
start
=
time
.
time
()
for
i
in
range
(
1000
):
predict
(
image_path
,
server
)
print
(
i
)
end
=
time
.
time
()
print
(
end
-
start
)
python/examples/imdb/README.md
浏览文件 @
3aa1ad8a
##
# 使用方法
##
IMDB评论情绪预测服务
假设数据文件为test.data,配置文件为inference.conf
单进程client
### 获取模型文件和样例数据
```
sh get_data.sh
```
脚本会下载和解压出cnn、lstm和bow三种模型的配置文文件以及test_data和train_data。
### 启动RPC预测服务
```
cat test.data | python test_client.py inference.conf > result
python -m paddle_serving_server.serve --model imdb_bow_model/ --port 9292
```
多进程client,若进程数为4
### 执行预测
```
python test_client_multithread.py inference.conf test.data 4 > result
head test_data/part-0 | python test_client.py imdb_lstm_client_conf/serving_client_conf.prototxt imdb.vocab
```
batch clienit,若batch size为4
预测test_data/part-0的前十个样例。
### 启动HTTP预测服务
```
python text_classify_service.py imdb_cnn_model/ workdir/ 9292 imdb.vocab
```
### 执行预测
```
c
at test.data | python test_client_batch.py inference.conf 4 > result
c
url -H "Content-Type:application/json" -X POST -d '{"words": "i am very sad | 0", "fetch":["prediction"]}' http://127.0.0.1:9292/imdb/prediction
```
### Benchmark
...
...
python/examples/imdb/benchmark.py
浏览文件 @
3aa1ad8a
...
...
@@ -26,24 +26,24 @@ args = benchmark_args()
def
single_func
(
idx
,
resource
):
imdb_dataset
=
IMDBDataset
()
imdb_dataset
.
load_resource
(
args
.
vocab
)
filelist_fn
=
args
.
filelist
filelist
=
[]
start
=
time
.
time
()
with
open
(
filelist_fn
)
as
fin
:
imdb_dataset
.
load_resource
(
"./imdb.vocab"
)
dataset
=
[]
with
open
(
"./test_data/part-0"
)
as
fin
:
for
line
in
fin
:
filelis
t
.
append
(
line
.
strip
())
filelist
=
filelist
[
idx
::
args
.
thread
]
datase
t
.
append
(
line
.
strip
())
start
=
time
.
time
()
if
args
.
request
==
"rpc"
:
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
args
.
endpoint
])
for
fn
in
filelist
:
fin
=
open
(
fn
)
for
line
in
fin
:
for
i
in
range
(
1000
):
if
args
.
batch_size
==
1
:
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
fetch_map
=
client
.
predict
(
feed
=
{
"words"
:
word_ids
},
fetch
=
[
"prediction"
])
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
for
fn
in
filelist
:
fin
=
open
(
fn
)
...
...
python/examples/imdb/benchmark.sh
0 → 100644
浏览文件 @
3aa1ad8a
rm
profile_log
for
thread_num
in
1 2 4 8 16
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--model
imdbo_bow_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
python/examples/imdb/benchmark_batch.py
浏览文件 @
3aa1ad8a
...
...
@@ -11,77 +11,55 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import
sys
import
time
import
requests
from
imdb_reader
import
IMDBDataset
from
paddle_serving_client
import
Client
from
paddle_serving_client.metric
import
auc
from
paddle_serving_client.utils
import
MultiThreadRunner
import
time
from
paddle_serving_client.utils
import
benchmark_args
args
=
benchmark_args
()
def
predict
(
thr_id
,
resource
):
client
=
Client
()
client
.
load_client_config
(
resource
[
"conf_file"
])
client
.
connect
(
resource
[
"server_endpoint"
])
thread_num
=
resource
[
"thread_num"
]
file_list
=
resource
[
"filelist"
]
line_id
=
0
prob
=
[]
label_list
=
[]
def
single_func
(
idx
,
resource
):
imdb_dataset
=
IMDBDataset
()
imdb_dataset
.
load_resource
(
"./imdb.vocab"
)
dataset
=
[]
for
fn
in
file_list
:
fin
=
open
(
fn
)
with
open
(
"./test_data/part-0"
)
as
fin
:
for
line
in
fin
:
if
line_id
%
thread_num
==
thr_id
-
1
:
group
=
line
.
strip
().
split
()
words
=
[
int
(
x
)
for
x
in
group
[
1
:
int
(
group
[
0
])]]
label
=
[
int
(
group
[
-
1
])]
feed
=
{
"words"
:
words
,
"label"
:
label
}
dataset
.
append
(
feed
)
line_id
+=
1
fin
.
close
()
dataset
.
append
(
line
.
strip
())
start
=
time
.
time
()
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
infer_time_list
=
[]
counter
=
0
feed_list
=
[]
for
inst
in
dataset
:
counter
+=
1
feed_list
.
append
(
inst
)
if
counter
==
resource
[
"batch_size"
]:
fetch_map_batch
,
infer_time
=
client
.
batch_predict
(
feed_batch
=
feed_list
,
fetch
=
fetch
,
profile
=
True
)
#prob.append(fetch_map["prediction"][1])
#label_list.append(label[0])
infer_time_list
.
append
(
infer_time
)
counter
=
0
feed_list
=
[]
if
counter
!=
0
:
fetch_map_batch
,
infer_time
=
client
.
batch_predict
(
feed_batch
=
feed_list
,
fetch
=
fetch
,
profile
=
True
)
infer_time_list
.
append
(
infer_time
)
if
args
.
request
==
"rpc"
:
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
args
.
endpoint
])
for
i
in
range
(
1000
):
if
args
.
batch_size
>=
1
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
feed_batch
.
append
({
"words"
:
word_ids
})
result
=
client
.
batch_predict
(
feed_batch
=
feed_batch
,
fetch
=
[
"prediction"
])
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
for
fn
in
filelist
:
fin
=
open
(
fn
)
for
line
in
fin
:
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
r
=
requests
.
post
(
"http://{}/imdb/prediction"
.
format
(
args
.
endpoint
),
data
=
{
"words"
:
word_ids
,
"fetch"
:
[
"prediction"
]})
end
=
time
.
time
()
client
.
release
()
return
[
prob
,
label_list
,
[
sum
(
infer_time_list
)],
[
end
-
start
]]
if
__name__
==
'__main__'
:
conf_file
=
sys
.
argv
[
1
]
data_file
=
sys
.
argv
[
2
]
resource
=
{}
resource
[
"conf_file"
]
=
conf_file
resource
[
"server_endpoint"
]
=
[
"127.0.0.1:9292"
]
resource
[
"filelist"
]
=
[
data_file
]
resource
[
"thread_num"
]
=
int
(
sys
.
argv
[
3
])
resource
[
"batch_size"
]
=
int
(
sys
.
argv
[
4
])
return
[[
end
-
start
]]
thread_runner
=
MultiThreadRunner
()
result
=
thread_runner
.
run
(
predict
,
int
(
sys
.
argv
[
3
]),
resource
)
print
(
"thread num {}
\t
batch size {}
\t
total time {}"
.
format
(
sys
.
argv
[
3
],
resource
[
"batch_size"
],
sum
(
result
[
-
1
])
/
len
(
result
[
-
1
])))
print
(
"thread num {}
\t
batch size {}
\t
infer time {}"
.
format
(
sys
.
argv
[
3
],
resource
[
"batch_size"
],
sum
(
result
[
2
])
/
1000.0
/
1000.0
/
len
(
result
[
2
])))
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{})
print
(
result
)
python/examples/imdb/benchmark_batch.sh
0 → 100644
浏览文件 @
3aa1ad8a
rm
profile_log
for
thread_num
in
1 2 4 8 16
do
for
batch_size
in
1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT
/bin/python benchmark_batch.py
--thread
$thread_num
--batch_size
$batch_size
--model
imdbo_bow_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
done
python/examples/imdb/local_train.py
浏览文件 @
3aa1ad8a
...
...
@@ -35,6 +35,8 @@ def load_vocab(filename):
if
__name__
==
"__main__"
:
from
nets
import
lstm_net
model_name
=
"imdb_lstm"
vocab
=
load_vocab
(
'imdb.vocab'
)
dict_dim
=
len
(
vocab
)
...
...
@@ -50,8 +52,6 @@ if __name__ == "__main__":
dataset
.
set_batch_size
(
128
)
dataset
.
set_filelist
(
filelist
)
dataset
.
set_thread
(
10
)
from
nets
import
lstm_net
model_name
=
"imdb_lstm"
avg_cost
,
acc
,
prediction
=
lstm_net
(
data
,
label
,
dict_dim
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
.
minimize
(
avg_cost
)
...
...
python/examples/imdb/test_client.py
浏览文件 @
3aa1ad8a
...
...
@@ -18,7 +18,7 @@ import sys
client
=
Client
()
client
.
load_client_config
(
sys
.
argv
[
1
])
client
.
connect
([
"127.0.0.1:9
393
"
])
client
.
connect
([
"127.0.0.1:9
292
"
])
# you can define any english sentence or dataset here
# This example reuses imdb reader in training, you
...
...
@@ -28,7 +28,7 @@ imdb_dataset.load_resource(sys.argv[2])
for
line
in
sys
.
stdin
:
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
feed
=
{
"words"
:
word_ids
,
"label"
:
label
}
feed
=
{
"words"
:
word_ids
}
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
fetch_map
=
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
print
(
"{} {}"
.
format
(
fetch_map
[
"prediction"
][
1
],
label
[
0
]))
python/examples/imdb/text_classify_service.py
浏览文件 @
3aa1ad8a
...
...
@@ -35,6 +35,7 @@ class IMDBService(WebService):
imdb_service
=
IMDBService
(
name
=
"imdb"
)
imdb_service
.
load_model_config
(
sys
.
argv
[
1
])
imdb_service
.
prepare_server
(
workdir
=
sys
.
argv
[
2
],
port
=
9393
,
device
=
"cpu"
)
imdb_service
.
prepare_dict
({
"dict_file_path"
:
sys
.
argv
[
3
]})
imdb_service
.
prepare_server
(
workdir
=
sys
.
argv
[
2
],
port
=
int
(
sys
.
argv
[
3
]),
device
=
"cpu"
)
imdb_service
.
prepare_dict
({
"dict_file_path"
:
sys
.
argv
[
4
]})
imdb_service
.
run_server
()
python/examples/util/show_profile.py
浏览文件 @
3aa1ad8a
...
...
@@ -29,9 +29,9 @@ with open(profile_file) as f:
for
line
in
f
.
readlines
():
line
=
line
.
strip
().
split
(
"
\t
"
)
if
line
[
0
]
==
"PROFILE"
:
prase
(
line
[
1
])
prase
(
line
[
2
])
print
(
"thread num {}"
.
format
(
thread_num
))
for
name
in
time_dict
:
print
(
"{} cost {} s
per
thread "
.
format
(
name
,
time_dict
[
name
]
/
(
print
(
"{} cost {} s
in each
thread "
.
format
(
name
,
time_dict
[
name
]
/
(
1000000.0
*
float
(
thread_num
))))
python/paddle_serving_client/utils/__init__.py
浏览文件 @
3aa1ad8a
...
...
@@ -31,6 +31,7 @@ def benchmark_args():
help
=
"endpoint of server"
)
parser
.
add_argument
(
"--request"
,
type
=
str
,
default
=
"rpc"
,
help
=
"mode of service"
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
1
,
help
=
"batch size"
)
return
parser
.
parse_args
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录