Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
38ad6c10
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
38ad6c10
编写于
5月 31, 2021
作者:
T
TeslaZhao
提交者:
GitHub
5月 31, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1268 from HexToString/develop-p
Optimize pybind efficiency
上级
2b1ba946
f270c38d
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
34 addition
and
117 deletion
+34
-117
core/general-client/src/general_model.cpp
core/general-client/src/general_model.cpp
+34
-117
未找到文件。
core/general-client/src/general_model.cpp
100755 → 100644
浏览文件 @
38ad6c10
...
...
@@ -90,9 +90,10 @@ int PredictorClient::init(const std::vector<std::string> &conf_file) {
if
(
conf_file
.
size
()
>
1
)
{
model_config
.
Clear
();
if
(
configure
::
read_proto_conf
(
conf_file
[
conf_file
.
size
()
-
1
].
c_str
(),
&
model_config
)
!=
0
)
{
if
(
configure
::
read_proto_conf
(
conf_file
[
conf_file
.
size
()
-
1
].
c_str
(),
&
model_config
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to load general model config"
<<
", file path: "
<<
conf_file
[
conf_file
.
size
()
-
1
];
<<
", file path: "
<<
conf_file
[
conf_file
.
size
()
-
1
];
return
-
1
;
}
}
...
...
@@ -154,16 +155,17 @@ int PredictorClient::numpy_predict(
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_lod_slot_batch
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
string_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
string_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
string_shape
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
string_lod_slot_batch
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
string_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
string_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
string_shape
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
string_lod_slot_batch
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res_batch
,
const
int
&
pid
,
const
uint64_t
log_id
)
{
int
batch_size
=
std
::
max
(
float_feed_batch
.
size
(),
int_feed_batch
.
size
());
batch_size
=
batch_size
>
string_feed_batch
.
size
()
?
batch_size
:
string_feed_batch
.
size
();
batch_size
=
batch_size
>
string_feed_batch
.
size
()
?
batch_size
:
string_feed_batch
.
size
();
VLOG
(
2
)
<<
"batch size: "
<<
batch_size
;
predict_res_batch
.
clear
();
Timer
timeline
;
...
...
@@ -207,7 +209,8 @@ int PredictorClient::numpy_predict(
tensor_vec
.
push_back
(
inst
->
add_tensor_array
());
}
VLOG
(
2
)
<<
"batch ["
<<
bi
<<
"] "
<<
"prepared"
;
VLOG
(
2
)
<<
"batch ["
<<
bi
<<
"] "
<<
"prepared"
;
vec_idx
=
0
;
for
(
auto
&
name
:
float_feed_name
)
{
...
...
@@ -216,6 +219,11 @@ int PredictorClient::numpy_predict(
LOG
(
ERROR
)
<<
"idx > tensor_vec.size()"
;
return
-
1
;
}
int
nbytes
=
float_feed
[
vec_idx
].
nbytes
();
// int ndims = float_feed[vec_idx].ndim();
void
*
rawdata_ptr
=
(
void
*
)
float_feed
[
vec_idx
].
data
(
0
);
int
total_number
=
float_feed
[
vec_idx
].
size
();
// float* end_ptr = (rawdata_ptr + total_number);
Tensor
*
tensor
=
tensor_vec
[
idx
];
VLOG
(
2
)
<<
"prepare float feed "
<<
name
<<
" shape size "
<<
float_shape
[
vec_idx
].
size
();
...
...
@@ -226,49 +234,8 @@ int PredictorClient::numpy_predict(
tensor
->
add_lod
(
float_lod_slot_batch
[
vec_idx
][
j
]);
}
tensor
->
set_elem_type
(
P_FLOAT32
);
const
int
float_shape_size
=
float_shape
[
vec_idx
].
size
();
switch
(
float_shape_size
)
{
case
4
:
{
auto
float_array
=
float_feed
[
vec_idx
].
unchecked
<
4
>
();
for
(
ssize_t
i
=
0
;
i
<
float_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
j
=
0
;
j
<
float_array
.
shape
(
1
);
j
++
)
{
for
(
ssize_t
k
=
0
;
k
<
float_array
.
shape
(
2
);
k
++
)
{
for
(
ssize_t
l
=
0
;
l
<
float_array
.
shape
(
3
);
l
++
)
{
tensor
->
add_float_data
(
float_array
(
i
,
j
,
k
,
l
));
}
}
}
}
break
;
}
case
3
:
{
auto
float_array
=
float_feed
[
vec_idx
].
unchecked
<
3
>
();
for
(
ssize_t
i
=
0
;
i
<
float_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
j
=
0
;
j
<
float_array
.
shape
(
1
);
j
++
)
{
for
(
ssize_t
k
=
0
;
k
<
float_array
.
shape
(
2
);
k
++
)
{
tensor
->
add_float_data
(
float_array
(
i
,
j
,
k
));
}
}
}
break
;
}
case
2
:
{
auto
float_array
=
float_feed
[
vec_idx
].
unchecked
<
2
>
();
for
(
ssize_t
i
=
0
;
i
<
float_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
j
=
0
;
j
<
float_array
.
shape
(
1
);
j
++
)
{
tensor
->
add_float_data
(
float_array
(
i
,
j
));
}
}
break
;
}
case
1
:
{
auto
float_array
=
float_feed
[
vec_idx
].
unchecked
<
1
>
();
for
(
ssize_t
i
=
0
;
i
<
float_array
.
shape
(
0
);
i
++
)
{
tensor
->
add_float_data
(
float_array
(
i
));
}
break
;
}
}
tensor
->
mutable_float_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_float_data
()
->
mutable_data
(),
rawdata_ptr
,
nbytes
);
vec_idx
++
;
}
...
...
@@ -283,6 +250,9 @@ int PredictorClient::numpy_predict(
return
-
1
;
}
Tensor
*
tensor
=
tensor_vec
[
idx
];
int
nbytes
=
int_feed
[
vec_idx
].
nbytes
();
void
*
rawdata_ptr
=
(
void
*
)
int_feed
[
vec_idx
].
data
(
0
);
int
total_number
=
int_feed
[
vec_idx
].
size
();
for
(
uint32_t
j
=
0
;
j
<
int_shape
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
int_shape
[
vec_idx
][
j
]);
...
...
@@ -295,72 +265,18 @@ int PredictorClient::numpy_predict(
if
(
_type
[
idx
]
==
P_INT64
)
{
VLOG
(
2
)
<<
"prepare int feed "
<<
name
<<
" shape size "
<<
int_shape
[
vec_idx
].
size
();
tensor
->
mutable_int64_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_int64_data
()
->
mutable_data
(),
rawdata_ptr
,
nbytes
);
vec_idx
++
;
}
else
{
VLOG
(
2
)
<<
"prepare int32 feed "
<<
name
<<
" shape size "
<<
int_shape
[
vec_idx
].
size
();
}
const
int
int_shape_size
=
int_shape
[
vec_idx
].
size
();
switch
(
int_shape_size
)
{
case
4
:
{
auto
int_array
=
int_feed
[
vec_idx
].
unchecked
<
4
>
();
for
(
ssize_t
i
=
0
;
i
<
int_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
j
=
0
;
j
<
int_array
.
shape
(
1
);
j
++
)
{
for
(
ssize_t
k
=
0
;
k
<
int_array
.
shape
(
2
);
k
++
)
{
for
(
ssize_t
l
=
0
;
k
<
int_array
.
shape
(
3
);
l
++
)
{
if
(
_type
[
idx
]
==
P_INT64
)
{
tensor
->
add_int64_data
(
int_array
(
i
,
j
,
k
,
l
));
}
else
{
tensor
->
add_int_data
(
int_array
(
i
,
j
,
k
,
l
));
}
}
}
}
}
break
;
}
case
3
:
{
auto
int_array
=
int_feed
[
vec_idx
].
unchecked
<
3
>
();
for
(
ssize_t
i
=
0
;
i
<
int_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
j
=
0
;
j
<
int_array
.
shape
(
1
);
j
++
)
{
for
(
ssize_t
k
=
0
;
k
<
int_array
.
shape
(
2
);
k
++
)
{
if
(
_type
[
idx
]
==
P_INT64
)
{
tensor
->
add_int64_data
(
int_array
(
i
,
j
,
k
));
}
else
{
tensor
->
add_int_data
(
int_array
(
i
,
j
,
k
));
}
}
}
}
break
;
}
case
2
:
{
auto
int_array
=
int_feed
[
vec_idx
].
unchecked
<
2
>
();
for
(
ssize_t
i
=
0
;
i
<
int_array
.
shape
(
0
);
i
++
)
{
for
(
ssize_t
j
=
0
;
j
<
int_array
.
shape
(
1
);
j
++
)
{
if
(
_type
[
idx
]
==
P_INT64
)
{
tensor
->
add_int64_data
(
int_array
(
i
,
j
));
}
else
{
tensor
->
add_int_data
(
int_array
(
i
,
j
));
}
}
}
break
;
}
case
1
:
{
auto
int_array
=
int_feed
[
vec_idx
].
unchecked
<
1
>
();
for
(
ssize_t
i
=
0
;
i
<
int_array
.
shape
(
0
);
i
++
)
{
if
(
_type
[
idx
]
==
P_INT64
)
{
tensor
->
add_int64_data
(
int_array
(
i
));
}
else
{
tensor
->
add_int_data
(
int_array
(
i
));
}
}
break
;
}
}
tensor
->
mutable_int_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_int_data
()
->
mutable_data
(),
rawdata_ptr
,
nbytes
);
vec_idx
++
;
}
}
VLOG
(
2
)
<<
"batch ["
<<
bi
<<
"] "
<<
"int feed value prepared"
;
...
...
@@ -383,10 +299,11 @@ int PredictorClient::numpy_predict(
tensor
->
set_elem_type
(
P_STRING
);
const
int
string_shape_size
=
string_shape
[
vec_idx
].
size
();
//string_shape[vec_idx] = [1];cause numpy has no datatype of string.
//we pass string via vector<vector<string> >.
//
string_shape[vec_idx] = [1];cause numpy has no datatype of string.
//
we pass string via vector<vector<string> >.
if
(
string_shape_size
!=
1
)
{
LOG
(
ERROR
)
<<
"string_shape_size should be 1-D, but received is : "
<<
string_shape_size
;
LOG
(
ERROR
)
<<
"string_shape_size should be 1-D, but received is : "
<<
string_shape_size
;
return
-
1
;
}
switch
(
string_shape_size
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录